
 TR-IIS-12-004

Ubiquitous Smart Devices and

Applications for Disaster Preparedness

W. P. Liao, Y. Z. Ou, E. T. H. Chu, C. S. Shih and J. W. S. Liu

Apr. 25, 2012 || Technical Report No. TR-IIS-12-004

http://www.iis.sinica.edu.tw/page/library/TechReport/tr2012/tr12.html

 1

Institute of Information Science, Academia Sinica

Technical Report TR-IIS-12-004

Ubiquitous Smart Devices and Applications for
Disaster Preparedness

W. P. Liao, Y. Z. Ou, E. T. H. Chu, C. S. Shih and J. W. S. Liu,

ABSTRACT

Recent advances in disaster prediction and detection technologies and ICT support infrastructures
have enabled the generation and reliable deliveries of machine-readable early disaster alerts over
all communication pathways. The emergence of ubiquitous smart devices and applications that
can receive, authenticate and process standard-conforming disaster alert messages and respond by
taking appropriate actions to help us to be better prepared for nature disasters is a natural next
step in the advancement of disaster management technologies. Such smart devices and
applications are called iGaDs (intelligent Guards against Disasters). This paper describes
reference architecture, key components and design of iGaDs in general and an ASIC
enhancement of battery-powered iGaDs.

Keywords: Ubiquitous computing, embedded devices, smart environment, disaster preparedness

Copyright@ April 2012

 W. P. Liao and Y. Z. Ou are affiliated with Computer Science Department, National Tsing-Hua University, Taiwan. Their

email addresses are {wpliao, zou}@cs.nthu.edu.tw
E. T. H. E. T. H. Chu is affiliated with Computer Science Department, National Yunlin University of Science and Technology,

Taiwan. His email address is edwardchu@yuntech.edu.tw.
C. S. Shih is affiliated with Computer Science and Information Engineering, National Taiwan University, Taiwan. His email

address is cshih@csie.ntu.edu.tw
J. W. S. Liu is affiliated with Institute of Information Science and Research Center for Information Technology Innovation,

Academia Sinica, Taiwan. Her email address is janeliu@iis.sinica.edu.tw.

 2

Ubiquitous Smart Devices and Applications for
Disaster Preparedness

W. P. Liao and Y. Z. Ou
National Tsing-Hua Univ.
Dept. of Computer Science
Hsinchu, Taiwan ,{wpliao,

zou}@cs.nthu.edu.tw

E. T. H. Chu
National YunLin Tech.

Dept. of Computer Science
Yunlin, Taiwan

edwardchu@yuntech.edu.tw

C. S. Shih
National Taiwan Univ.

Dept. of CS and Info. Eng
Taipei, Taiwan

cshih@csie.ntu.edu.tw

J. W. S. Liu
Academia Sinica.

Inst. of Information Science
Taipei, Taiwan

janeliu@iis.sinica.edu

Abstract—Recent advances in disaster prediction and detection
technologies and ICT support infrastructures have enabled the
generation and reliable deliveries of machine-readable early
disaster alerts over all communication pathways. The emergence
of ubiquitous smart devices and applications that can receive,
authenticate and process standard-conforming disaster alert
messages and respond by taking appropriate actions to help us to
be better prepared for nature disasters is a natural next step in
the advancement of disaster management technologies. Such
smart devices and applications are called iGaDs (intelligent
Guards against Disasters). This paper describes reference
architecture, key components and design of iGaDs in general and
an ASIC enhancement of battery-powered iGaDs.

Keywords-ubiquitous computing, embedded devices, smart
environment, disaster preparedness

I. INTRODUCTION
In recent decades, we have seen tremendous advances in

technologies for the predication and detection of nature
disasters and ICT infrastructures for generation and distribution
of disaster alerts/warnings. Today, most developed regions of
the world are literally covered by diverse in-situ and remote
sensors [1, 2], ranging from surveillance and eco sensors in
oceans, to advanced weather radars, to sensors monitoring
surface and underground water and road and bridge conditions,
to broadband seismometers arrays and strong motion sensors,
and so on. Efforts of large projects (e.g., OSIRIS [3], SANY [4]
and SensorNet [5]) and standards organizations (e.g., OGC [6]
and OASIS [7]) have made available standards and tools
needed to support interoperability of diverse sensor networks
and sensor webs and the processing and use of multi-domain,
real-time sensor data and information provided by them.

Recent advances in ICT infrastructures include platforms
for emergency services. An example is IPAWS-OPEN
(Integrated Public Alert and Warning System – Open Platform
for Emergency Networks) [8] in the USA. The platform
provides services to receive and authenticate standard-based
messages from alerting authorities and then broadcasts the
messages via all communication pathways, including digital
radio broadcast, cellular networks and Internet. XML-based
message format standards CAP (Common Alerting Protocol) [9]
and EDXL-DE (Emergency Data Exchange Language

Distribution Element) [10] enable information exchanges
between emergency information systems and public safety
organizations, automatic report by sensor systems to analysis
centers, and aggregation and correlation of warnings from
multiple sources. Consequently, alert decision support systems
(e.g., [11-16]) not only can generate more accurate alerts earlier
but also can have the alerts delivered sooner and used for more
purposes than possible a few years ago.

This paper describes the design and implementation of
smart embedded devices, systems, and applications that can
receive, authenticate and process standard-based disaster alert
messages and respond by taking specified actions to help us
minimize personal dangers and reduce property damages and
economic losses when disasters strike. Such devices and
applications are called iGaDs (intelligent Guards against
Disasters) [17] in general. For sake of concreteness, our
discussions assume that alert messages conform to CAP
standard and are distributed by IPAWS, and every iGaD can
receive alerts via one or more of cellular networks, Internet,
and other wireless connections. We will highlight the capability
of devices and applications to process and respond to CAP
messages by saying that they are CAP-aware.

The CAP and IPAWS assumption is not as restrictive as it
seems. What will be said about iGaDs in later sections are
applicable even when messages do not conform to CAP,
provided that they are in a XML format, are signed and
broadcast by a trusted service via all communication pathways
and contain information needed to support iGaDs decisions.

As examples, Fig. 1 shows two embedded iGaDs designed
to respond to warnings of imminent strong earthquakes.
Nowadays, earthquake-prone regions such as Taiwan, Japan
and parts of USA and Mexico are monitored by broadband
arrays of seismometers and strong seismic motion sensors.
Seismic data sent by them via RF to computers at analysis
centers enable the determination of the focus and magnitude of
each earthquake, and in case of severe quakes, the broadcast of
alerts, a fraction of a second or more before shock waves arrive
and ground motion starts in the affected areas. When warned of
an earthquake of a specified magnitude or stronger, a CAP-
aware elevator controller in a smart building slows down
elevators and stops them when they reach the closest floors, as
shown in the left half the figure.

This work was partially supported by Taiwan Academia Sinica Thematic
Project OpenISDM (Open Information Systems of Disaster Management).

 3

 ?xmlns version = “1.0”
<alert xmlns = ……
<event>Earthquake</event>
<urgency>Immediate</urgency>
<severity>Strong</severity>
<certainty>Observed</certainty>…
<parameter>

<valueName>Magnitude
</valueName>

<value>7.2</value>
</parameter>…
<area>

<circle>32.9525 -115.5585
0</circle>

</area>…

?xmlns version = “1.0”
alert xmlns = ……
<event>Earthquake</event>
<urgency>Immediate</urgency>
<severity>Strong</severity>
<certainty>Observed</certainty>

Alert extraction

Action activation rule evaluation

Device interface

iGaD
Earthquake. Slow
down and pull over

Vehicle safety system

Elevator
controller

Alert extraction

Action activation rule evaluation

Device interfaces

Figure 1. Examples of embedded iGaDs

In addition to CAP-aware elevator controllers, a smart
building may have iGaDs that unlock entry-access controlled
doors to ease evacuation, shut down natural gas flow into the
building to prevent fire, and so on. The other example shown in
Fig. 1 is a CAP-aware vehicle safety system on board a truck
traveling in an affected area. When triggered by a strong
earthquake alarm, it warns the driver of the imminent
earthquake, turns on the hazard flashers, disengages the cruise
control and helps the driver to slow down. A CAP-aware
variable message sign system broadcasts text messages to signs
before tunnels and bridges on highways to tell drivers to
slowdown and pull over.

In addition to embedded iGaDs, software iGaDs are CAP-
aware applications that run on computers, smart phones and
other platforms with sufficient computing power and memory
space and some form of location-based service. Examples
include applications that respond to severe earthquake alerts by
telling surgeons in hospitals to pause on-going operations, or
shoppers in supermarkets of relatively safe aisles to be during
the quake, or children in schools to stay calm and take cover
under their desks, and so on. Other examples of iGaDs for
preparedness against major earthquakes and other types of
natural disasters, together with discussions on how they can
help, can be found in [17].

Following this introduction, Section 2 describes related
works. Section 3 describes reference architecture and key
components for building configurable and customizable iGaDs.
Section 4 describes a design and implementation of embedded
iGaDs and an ASIC enhancement for battery powered iGaDs.
Section 5 summarizes the paper and discusses future works.

II. RELATED WORKS
We focus here primarily on embedded iGaDs. They can be

viewed as actuators in a large, distributed cyber-physical
system with diverse sensors, complex decision support servers
and communication networks. Being dependable and
responsive is essential. Some iGaDs, including the examples
mentioned above, aim to complement and to be integrated with
the increasingly broader spectrum of devices, applications and

services offered by modern smart homes and environments to
make the environments safer against disasters. Problems related
to their integration are out of scope of this paper. We will not
address them except to say that technologies and protocols for
smart environments [18] should be used for this purpose.

As stated earlier, iGaDs receive and respond to alert
messages in CAP [9] format sent by alert authorities via
IPAWS – OPEN [8]. In this aspect, they resemble CAP-EAS
decoders in the public emergency alerting system (EAS) [19] in
the USA for use by the President to address the public during
national emergencies and by state and local authorities for
delivery of emergency information, including severe weather
and earthquake alerts, to people in specific areas. Since late
2010, FEMA has adopted CAP v1.2 and implemented IPAWS-
OPEN. Tests of CAP-EAS are now being conducted regularly.
Some of the implementation guidelines published recently by
CAP-EAS Industry Group are applicable to the design and
implementation of iGaDs, especially for iGaDs that function as
emergency alert systems for large buildings, shopping malls,
etc. Many common requirements (e.g., low cost and power
consumption), in addition to being easily configurable and
customizable to work in different environments and conditions,
make the design and implementation of iGaDs uniquely
challenging, however. We will return to discuss problems in
these respects and describe solutions to them.

XML processing capabilities is essential since CAP is a
XML format. Software iGaDs have a wide range of choices
among matured XML parsers for operating systems and
programming languages supported by popular computer and
mobile platforms. In addition to the open source Java library
[20] for parsing CAP messages specifically, choices of XML
parsers include NSXML and libxml2 [21, 22] available for
Apple iOS and SAXParser [23] in Android Java SDK.
Windows Phones has LINQ to XML [24], which is an XML
programming interface.

Hardware XML parsers have begun to emerge and offer us
an alternative to software solutions. Existing hardware parsers
(e.g., [25]) are typically designed for applications that need
high throughput and processing speed. In contrast, we need
lightweight parsers that can extract alert information from CAP
messages within a fraction of a second with minimum energy.

As the next section will explain, iGaDs also include as a
key component a rule engine. Similar to XML parsers, there
are many matured software inference/rule engines. Examples
include CLIPS [26] and JESS [27]; they are widely used in
context-aware applications. Table-based rule engines (e.g.,
Logician [28]) and rule engines for mobile devices (e.g., MiRE
[29]) are also sufficient for iGaDs.

Rather than using such a rule engine, Section 4 will present
a lightweight, customizable scheme to provide embedded
iGaDs with the capability of processing the rules that govern
their choices of actions of embedded iGaDs.

III. REFERENCE ARCHITECTURE AND MAJOR COMPONENTS
This section first discusses our design and architecture

choice for all iGaDs and the rationale behind the choice. It then
describes a general structure and major components.

 4

A. Design Choices and Rationale
Despite significant differences in their functionalities,

different types of iGaDs share many requirements, which
include configurability, customizability and affordability.
Building them from configurable components within a general
architectural framework is a try-and-true way to make them
affordable. Configurability of iGaDs goes beyond this level,
however: Individual iGaDs of the same type are often required
to respond to the same alert differently, depending on where
and how they are used.

To illustrate, let us consider an iGaD guarding an entry-
access controlled door of an office building that is a designated
public severe storm shelter. The door is normally locked. When
alerted of an EF (Enhanced Fujita) 4 or 5 tornado, the iGaD is
required to respond by unlocking the door in order to make the
building accessible to all people. The iGaD also unlocks the
door in response to alerts of earthquakes magnitude 8 or
stronger to ease the evacuation of people in the building. In
other words, the iGaD shall send an unlock command to the
building door in response to an alert message if either one or
both of the following rules is true.

(1) (EventType == “Earthquake”)AND
(Scale >= THRESHOLD_MAGNITUDE)

(2) (EventType == “Tornado”) AND
(Scale >= THRESHOLD_SEVERITY)

 The values of variables EventType and Scale in the
expressions of these rules are the standard name of the event
(e.g., earthquake, tornado, tropical cyclone, etc.) and the value
of the severity measure (e.g., in the USA, Modified Mercalli
(MM) intensity scale for earthquakes, Enhanced Fujita (EF)
scale for strength of tornados, and category for hurricanes, etc.)
specified by the alert. They are extracted from the message by
an XML parser before the rules are evaluated. Parameters with
all capital-letter names are configuration parameters of the
iGaD. Here, THRESHOLD_MAGNITUDE is the maximum
earthquake magnitude the building is constructed to withstand,
and THRESHOLD_SEVERITY is the minimum severity of
tornados for which the building is used as a public shelter. By
setting these parameters at installation time and maintenance
time, we can customize the iGaD according to the construction,
condition and usage of the building.

We call rules such as (1) and (2) action activation rules of
the iGaD. In addition to changing configuration parameters that
define the rules, action decisions of individual iGaDs of the
same type can also be customized by providing them with
individualized rules. As an example, suppose that an iGaD for
outside doors in a smart home is the same as the iGaD for a
shelter door. This iGaD should also command the doors to
open in response to a strong earthquake, though likely of a
lower threshold scale. During a tornado emergency, however,
the outside doors and vents of the house should open in order to
equalize air pressures in and out of the house, but only if and
when a tornado actually hits the house. We can take into
account of this consideration by letting the iGaD have the
additional rule defined in terms of the readings of digital
barometers inside and outside of the house. Rule (3) stated
below is an example: The iGaD sends open commands to the

outside doors when rule (1) is true or when rules (2) and (3) are
both true.

(3) InsideAirPressure >=
OutsideAirPressure * THRESHOLD_RATIO

These examples motivated us to use a rule engine to
provide iGaDs with decision support. The action activation
rules of typical iGaDs can be expressed in terms of
propositional logic or predicate logic, simple enough to be
evaluated as described in Section 4.

B. Major Components
Fig. 2 shows the major functional components of embedded

iGaDs and information flows among them. We can logically
partition an embedded iGaD into a CAP message processor and
a device controller. A software iGaD does not have a device
controller; a CAP-aware application takes its place.

The CAP message processor is essential the same for all
iGaDs. It is responsible for extracting from each alert message
the information needed by the iGaD device controller (or
application) to decide whether and how to respond.

In addition to making decisions regarding actions taken by
the iGaD, the device controller controls one or more physical
device(s) (e.g., automatic lock and gas valve) connected
physically to it, or via one or more networks. The interface
with each device clearly depends on the device. Specific details
in their interconnections and interactions are unimportant for
the sake of our discussion here. It suffices to say that the iGaD
interacts with the driver of each physical device via events: The
device driver handles events from the iGaD as commands (e.g.,
lock and unlock commands), and events from the drivers are
treated by the iGaD as acknowledgements.

CAP Message Processor

Alert type &
information Alert

records

Affected
areas

Alert
message

buffer
Modem Signature

validation
XML

parser

Location
filter

Device
Controller

Device interfaces

Configuration
files

Device
location

Resources

Local data

Rule processor

Rule engine

Activation
parameters
and rules

Figure 2. General structure and major components

 5

Some iGaDs also relies on local data (e.g., device location,
local sensor data, etc.) provided by its operating environment
for this purpose, as shown by Fig. 2. The figure omits
interfaces to them as well.

As Fig. 2 indicates, once a message arrives in the input
message buffer, it is authenticated by the signature validation
module based on its enveloped digital signature. The module
also stores and maintains the key(s) in ways dictated by the
message standard. Again, the information extracted by the
XML parser from each alert message received by the iGaD
include the name and scale of the type and severity of the alert
event, as well as specifications of areas affected by the alert.
The message may also provide resources such as human-
readable descriptions and URLs of files containing supplement
information (e.g., photos, maps, audio, and so on) that may be
useful to the public EAS and some iGaDs.

The C-like data structures in Fig. 3 illustrate how iGaD
maintains the output of the XML parser. BasicAlertInfo holds
values of EventType and Scale and other values extracted from
the beginning of the CAP message. These values enable the
iGaD to screen the message quickly to determine whether the
alert event described by the message is of one of its attend-to
types (i.e., event types for which the iGaD is designed to
respond) and whether the event is of a scale warranting its
further attention. Message screening is important for typical
embedded iGaDs that have only one or a few attend-to event
types. The next section will discuss this issue further.

The XML parser processes the remaining part of the
message and saves the extracted values in AdditionalAlertInfo
only when the message passes message screening. Once the
iGaD has ascertained that the alert event is of an attend-to type
and with severity within the specified scale range of the type,
the location filter is invoked to determine whether any of the
physical devices controlled by the iGaDs is located in an
affected area defined by a polygon, or a circle, or a geocode
contained in the alert element and hence is targeted by the alert.
If any of them is located in an affected area, the iGaD then
evaluates action activation rules and issues commands
accordingly to physical devices controlled by it.

As stated earlier, the alert message may include additional
parameters of the event, expiration times, image and text
descriptions, and so on. Some iGaDs (e.g., those that provide
emergency alert functions of building management systems)
can use them as suggested by the CAP-EAS implementation
guidelines [19] in the generation of their responses.

IV. DESIGN AND IMPLEMENTTION
This section first describes a design of embedded iGaDs.

The design aims to make them highly configurable and
customizable while keeping their processing and memory
usages small. There are good reasons to off-load some or all of
the CAP-awareness functions to an ASIC (Application-Specific
Integrated Circuit) or a microcontroller. The section presents
the reason for off-loading the message screening function to an
ASIC as a minimal hardware enhancement of battery powered
iGaDs and then describes a proof of concept ASIC prototype.

typedef struct BasicAlertInfo {
Identifier; // Message identifier
… // Sender ID, References, Scope, etc.
Status; // Actual or Exercise
MsgType; // Alert, Cancel, Error, .
Scope; //.Public, Restricted, Private
Category; // Geo, Met, Health, etc.
EventType; // Earthquake, Tornado, etc.
Scale; // Value of severity measure
Urgency; // Immediate, Future, etc.
Certainty; // Observed, Likely, etc.
…
* AdditionalAlertInfo;

} BASIC_ALERT_INFO;

typedef struct AdditionalAlertInfo {
* BasicAlertInfo;
AffectedAreaListHead;
ParameterListHead;
ResourceListHead;
… // Description, instructions, etc.

} ADDITIONAL_ALERT_INFO

typedef struct AffectArea {
union {

struct PolygonCoordinates;
struct CircleCenterRadius;
GeoCode;
AffectedAreaListEntry; }

} AFFECTED_AREA

Figure 3. Basic and addttional alert information

A. A Design Pattern for Configurable iGaDs
Fig. 4 describes in pseudo code a design for configurable

iGaDs. To keep the description simple, all error handling paths
are omitted. The figure also omits specifics on the interfaces
between the iGaD and the physical devices controlled by it and
iGaD and local sensors and services relied on by it.

This version uses a message handler (MsgHandler) thread to
stream input messages to one or more alert message buffers.
The remaining functions of the iGaD are performed by the
main thread.

Major data structures
typedef struct PhysDevInterfaces {

Information on physical devices;
Events for interaction with drivers;
…

} PHYS _DEV_INTERFACES;

typedef struct iGaDLocation {
Coordinates; Geocode;

} iGaD_LOCATION;

typedef struct LocalData {
… // Other local data

} LOCAL_DATA;

typedef struct iGaDConfig {
SizeOfNamesScalesRules;
NoAttendToTypes;
NoRuleFunctions;
TotalSizeOfRuleFunctions;
Other information on rule library

for loading rule functions;
} iGAD_CONFIG;

typedef struct EventConfig {
TypeName;
ScaleUpperThreshold;
ScaleLowerThreshold;
* ActivationRuleFunc;

} EVENT_CONFIG;

// Variables shared with MsgHandler
typedef struct SharedVar {

ReadyEvent; ExitEvent;
MessageWaitingEvent;
ProcessingDoneEvent;
* AlertMessageBuffer;

} SHARED_VAR;

PhysDevInterfaces; AlertMessageBuffer;
BasicEventInfo; AdditionalEventInfo;
EventConfig[];
Initialize PhysDevInterfaces;
Copy ConfigParameters file to iGaDConfig;

// iGaDConfig is initialize
EventConfig = calloc (

iGaDConfig.SizeOfNamesScalesRules);
Copy NamesScalesRules file to the pool;

// EventConfig array is initialized
Complete load rule functions;
Initialize events and complete initialization;
Create MsgHandler thread;
Set SharedVar.ReadyEvent;

W: Waitfor SharedVar.MessageWaitingEvent;
// Screen the message
XMLParser (* BasicEventInfo,

AlertMessageBuffer);
for every element i of EventConfig[] {

if (current event is of attend-to type & its
scale is in threshold range of the type) {
// The message passed.
XMLParser (* AdditionalEventInfo,

AlertMessageBuffer);
if (DeviceLocation is an affected area

listed in AddditionalEventInfo) {
invoke ActivationRuleFunc of the type;
if (Some action is to be taken)

Raise events in PhyDevInterfaces;
break;

} // iGad not in an affected area,
} // Continue to search EventConfig array

} // The event can be ignored
Log alert; Set ProcessingDone;
goto W; // go to wait for new message
… // Run until shutdown
set SharedVar.ExitEvent;
wait until MsgHandler exits;
cleanup and return;

}

Void main { // iGad main thread
iGaDLocation; localData;
iGaDConfig; SharedVar;

Figure 4. Pseudo code description of embedded iGaDs operatons

 6

In general, the number of message handler threads and
numbers of threads for XML parsing and rule evaluation are
configuration parameters of the iGaD. The configuration
described here is appropriate for simple iGaDs that have only a
small number of attend-to event types. We have seen examples
earlier. iGaDs that are required to respond to numerous alert
types in ways governed by numerous and complex rules may
need to use multiple threads to manage message buffers and
parse messages and processes action activation rules.

The threads in an iGaD communicate via events: After
authenticating the message in the current buffer, MsgHandler
sets MessageWaitingEvent to indicate that the message is ready
to be processed. ProcessingDoneEvent is set by the main
thread to let MsgHandler know that the message in the buffer
can be discarded. In addition, the main thread sets ReadyEvent
and ExitEvent to tell MsgHandle that the iGaD is ready to work
and wants to terminate, respectively.

Another design choice of this version is to use a library of
(action activation) rule functions to support action activation
decisions of the iGaD. The library is loaded at run time into the
address space of the iGaD executable. This choice is also for
simple iGaDs that have a few rules. (Without loss of generality,
the description assumes one rule function per attend-to event
type.) For iGaDs with numerous or complex rules, a better
alternative is to use a general-purpose rule engine (e.g., [28, 29])
capable of processing all the rules of all kinds of iGaDs.

The left half of Fig. 4 lists some of the major data structures.
Some of the configuration parameters of the iGaD are held in a
structure of a known size, called iGaDConfig. It is initialized by
copying the values of an identical structure in the configuration
file ConfigParameters. Elements of iGaDConfig provides the
iGaD thread with the sizes of remaining configuration data and
the rule library so that memory can be allocated for them
dynamically, as indicated in the lines in the top-right part of Fig.
4.

An array of EventConfig structures, one for each attend-to
event type of the iGaD, holds other configuration parameters:
Specifically, each EventConfig holds name, scale thresholds
and a pointer to the rule function for an attend-to event type.
During initialization, the values of these structures, as well as
executables of the rule functions, are copied from the
configuration file NamesScalesRules. In short, the iGaD thread
initializes every data structure or function that needs to be
customized for the iGaD by copying the corresponding
structure or function stored in its configuration files. Finally, as
its name indicates, SharedVar structure holds variables shared
by the threads.

Lines in the right column in Figure 4 describe the work
done by the main thread: After it successfully completes
initialization, it waits for MessageWaitingEvent to be set by
MsgHandler. When awaken, the thread first screens the
message: It extracts from the message the event type and
severity of the alert and compares them with the event type and
scale thresholds held in EventConfig[] to determine whether the
alert is of the type and severity for which it is required to
respond. If the message passes the screening test, the main
thread proceeds to parse the rest of the message and determine

whether and how to respond to the alert. This work is done by
the for loop listed in the bottom half of the right column.

Clearly, this and similar designs can be easily implemented
to run on common computing and mobile device platforms.
Modern low-cost, low-power microcontrollers (e.g., the 32-bit
Stellaris LM3S1016) capable of delivering tens of Dhrystone
MIPS at less than 5 mW per MIPS are well suited for
embedded iGaDs.

We can also argue for the merits of using XML parsers and
rule engines (e.g. [21-29]) now available on popular platforms
to implement CAP-awareness functions of iGaD applications
that run on smart phones, PDAs, and computers. In a browser-
based programming environment, we also can use a JAVA
script to extract alert information and process action activation
rules. Indeed, these options are all reasonable for iGaDs (such
as CAP-aware elevator controllers and vehicle and building
safety systems) that are always powered on and plugged to
uninterruptable power sources.

B. Hardware Enhancement
Pure software implementation is problematic for battery

powered embedded iGaDs or CAP-aware applications on
portable platforms, however. To see why, let us look at a laptop
or smart phone hosting an early earthquake warning application.
With no other CAP-aware applications on the platform, CAP
messages other than strong earthquake alerts can be ignored.
Nevertheless, all messages must be processed as soon as they
arrive to make sure that they are about earthquake, even when
the platform is off or in a power-saving mode. Turning the
platform on or wake it up is not a problem: The laptop can be
powered up in ways similar to how NOAA weather radios are
turned on by alerts, and the phone can be woken up if alert
messages are treated as incoming calls. However, letting all
CAP messages wake up the platform is clearly not acceptable.
Even in an earthquake prone region, there are only a few strong
earthquake alerts per year, but probably hundreds and
thousands of broadcast alert messages for all event types.

An ideal solution is to incorporate into popular platforms of
computers and personal communication devices iGaD
hardware components that can provide applications on the
platforms with CAP-awareness capabilities. Being a XML
document one to a few thousand characters in length, a typical
message can be processed by the components within a second
or two even when the components operate at sleep-mode clock
rates of the platforms. Moreover, their cost can be minuscule if
they conform to international standards such as CAP and hence,
can be mass produced like ICs for phones.

The ideal solution is not going to happen until diverse
iGaDs have been proven cost-effectiveness beyond doubts as
tools for disaster preparedness and they are used pervasively.
Until then, an ASIC message screener shown in Fig. 5 is a
solution. It is primarily for iGaDs that run on battery powered
platforms: It screens incoming CAP messages. When it finds a
message that may require the response of one or more iGaD
served by it, it wakes or powers up the platform if the platform
is sleeping or off and notifies the iGaD(s) to respond.

 7

...

CAP message buffer(s) Basic Info
extractor

From
Modem

Event type
Scale

Msg Type

Certainty
Urgency...

Event type
LowScale

Msg Type

HighScale
Certainty...

Configuration
registers

Temp

Control &
decision

3

8

ALU

CLR

Basic info
registers

Message screening
rule processor

Alert host
& iGaD(s)

8

M
U
X

SEL

M
U
X

SEL

Figure 5. ASIC CAP message screener

In the proof-of-concept message screener, basic Info
extractor is a small hardware parser. It recognizes only the tags
marking message type, event type, scale, urgency and certainty
elements in the beginning of CAP messages. (Fig. 3 gives
examples of their possible values.) After scanning the
beginning of the current message in the message buffer, it
extracts the values of these elements, translates the values into
internal codes and places the code in the alert register file. The
number of alert registers and the number of bits per register are
small. (Fig. 5 shows eight registers with 8 bits per register.)

The ASIC also has a register file of similar sizes for each
iGaD served it; the registers in the file hold the corresponding
configuration parameters of the iGaD. Having extracted basic
information from the message, the extractor enables the
message screening rule processor to compare the extracted
values against the corresponding configuration parameters of
the iGaDs stored in their configuration registers.

For sake of simplicity, Fig. 5 does not show the clock and
most of the enable lines. It shows only select lines to the
multiplex, clear to the message buffer and asserts to the host
and iGaD from the control and decision circuit. The circuit
sequences the comparisons of register contents. If the result of
a microinstruction in the sequence indicates that the message is
not intended for any iGaD served by the screener, the circuit
terminates the processing and clears the current message buffer.
If the extracted values passes all the comparisons and hence
match the corresponding configuration parameters of an iGaD,
the circuit alerts the iGaD, having the platform powered or
woken up if necessary.

As shown here, the message screener does no other work.
All the works, including authenticating the message, checking
affected areas, etc. are done by the iGaD(s) once the screener
finds that the message warrants attention.

Even with the help of the ASIC message screener, state-of-
the-art notebooks and laptops remain to be less than ideal
platforms for some iGaD applications. The reason is that they
typically take 10’s of second to wake up from deep sleep mode
and even longer to power up. This amount of delay is too long

for early earthquake alert applications used in areas such as
Taiwan and parts of California where the time between the
detection of an earthquake to time when earth movements are
felt can be as short as a small fraction of a second. On the other
hand, the delay is tolerable for storm and flood warning
applications as long as long as it is less than a minute.

V. SUMMARY AND FUTURE WORK
In previous sections, we first discussed how iGaDs can help

us better prepare against natural disasters. The acronym iGaD
stands for intelligent guards against disasters. They are
embedded devices, systems of devices, and applications
designed to process and respond to disaster alert messages that
are in a standard XML format, generated by registered alert
agencies and emergency alert services, and broadcast via all
communication pathways. In addition to their being machine-
readable and automatic authenticable, these alert messages
differ from tweets, RTM (right this moment) and other kinds of
eyewitness reports sent by crowd via social media in yet
another important way: Eyewitness reports have proven to be
effective tools for people to inform people of on-going
emergencies. In contrast, alert messages used by iGaDs provide
early warnings of imminent calamities, typically prior to their
ill effects are felt by people in affected area. iGaDs aim to
make use of the small lead time to prepare our living
environment and ourselves in face of potential danger.

We also presented in previous sections an architectural
framework for building diverse iGaDs that can be customized
individually at installation and maintenance times according to
their usages and operating environments. By adjusting
configuration parameters and component choices, embedded
iGaDs for smart homes, smart work places, shopping malls, etc.
that run on common computing platforms and microcontrollers
that are powered up and connected to uninterruptable power
sources can be implemented as suggested by the design pattern
described in Section 4.

iGads running on battery powered platforms need to be
enhanced by a small ASIC message screener such as the one
described in Section 4. The device screens incoming messages
to filter out all but the small percentage of them that require the
attention of the iGaDs served by it. Clearly, the message
screener is useful even when keeping the energy consumed by
processing irrelevant messages small is not essential.

We are experimenting with proof-of-concept prototypes of
ASCI message screener and embedded iGaD capable of
controlling simple physical devices such as automatic locks and
spot lights used for public shelter doors, hazard flashers in cars,
etc. We are yet to assess their performance in terms of response
times versus processing, memory usage and power usage
overheads.

Many iGaDs are safety-critical devices or components of
safety equipment. Their being highly dependable is of critical
importance. For this reason, a major emphasis of our future
work is on dependability. The pseudo code description
presented in Fig. 4 leaves out all the error handling paths,
which normally amounts to multiple times the size of working
code. Similar, rules governing actions to take when alert events
are cancelled or physical device malfunctions, as well as rules

 8

for interdependency of actions in response to multiple events of
different types, can be far more complex than action activation
rules governing normal operations. Just like error handling
code, error and failure handling rules must be well designed.

Meeting dependability requirements from the system
perspective is even more challenging. For many reasons,
including error and failure handling, we may want iGaDs to be
able to communicate and collaborate. This and other seemingly
reasonable functionalities can add considerable complexity and
make the system as a whole less dependable. Problems on
tradeoffs amongst functionalities, system complexity and
dependability need to be rigorously formulated and solved.

Ultimately, hopefully in not so distance future, iGaDs need
to tested and evaluated in field trials of significant sizes and
scopes. For this purpose, we will need matured prototypes that
can convincingly demonstrate their effectiveness for disaster
preparedness in likely scenarios.

Lastly, but most importantly, we will need to reexamine the
message format standards (e.g., CAP [9]) and delivery services
(e.g., IPAWS-OPEN [8]). Thus far, the primary consumers of
CAP alert messages are public emergency alert systems and
commercial mobile alert services. These systems process the
messages and then rebroadcast to public in human-readable
forms. The open platform, protocols and standards designed for
this much more restricted usage may not be ideal when
messages are also pushed to enterprise and personal computing
and communication platforms running diverse iGaDs used for
diverse purposes in diverse environments and conditions.
Extensive testing and field trials need to be done to determine
whether and what revisions will be needed.

ACKNOWLEDGMENT
The authors wish to thank T. Y. Chen of National Tsing-

Hua University for his comments and suggestions.

REFERENCES
[1] C. Buratti, A. Conti, D. Darkari, and B. Verdone, “An overview on

wireless sensor networks technology,” Sensors, 2009
[2] R. Sherwood and S. Chien, “Sensor Web: a new paradigm for

operations,” in Proceedings of International Symposium on Reducing
the Cost of Spacecraft Ground Systems and Operations, June 2007

[3] OSIRIS (Open architecture for Smart and Interoperable networks in Risk
management based on In-situ Sensors), http://www.osiris-fp6.eu/

[4] SANY - an open service architecture for sensor networks, edited by M.
Klopfer and I. Simons, http://sany-ip.eu/publications/3317, 2009.

[5] J. Strand, “SensorNet,” presentation at
http://www.ittc.ku.edu/workshops/sensornet/john_strand.pdf

[6] M. Botts, G. Percivall, C. Reed and J. Davidson, “OGC® sensor web
enablement: Overview and high level architecture,”
http://www.opengeospatial.org/pressroom/papers

[7] OASIS (Organization for the Advancement of Structured Information
Standards), http://www.oasis-open.org/

[8] IPAWS-OPEN (Integrated Public Alert and Warning System – Open
Platform for Emergency Networks), at
http://www.fema.gov/emergency/ipaws/about.shtm

[9] CAP: Common Alerting Protocol, V1.2, http://docs.oasis-
open.org/emergency/cap/v1.2/CAP-v1.2-os.html ,

[10] EDXL-DE: Emergency Data Exchange Language Distribution Element,
V1.0, at http://www.oasis-
open.org/committees/download.php/17227/EDXL-DE_Spec_v1.0.html

[11] P. Patel, “Phase-array radar could improve tornado warning time,” IEEE
Spectrum, June 2011.

[12] WDSS-II (Warning Decision Support System – Integrated Information),
http://www.wdssii.org/

[13] T. C. Shin, et al., “Strong motion instrumentation programs in Taiwan,”
in Handbook of Earthquake and Engineering Seismology, W. H. K. Lee,
H. Kanamori and P. C. Jennings, Ed. Academic Press, 2003 and BATS
(Broadband Array in Taiwan for Seismology),
http://bats.earth.sinica.edu.tw

[14] FMNEAR Solution (developed by Dr. Bertrand Delouis, 2010)
[15] G. P. Hayes, L. Rivera, and H. Kanamori, “Source inversion of the W-

Phase: real-time implementation and extension to low magnitudes,”
Bulletin of Seismological Society America, 80, 2009.

[16] T. Nagao, A. Takeuchi, and K. Nakamura, “A new algorithm for the
detection of seismic quiescence: introduction of the RTM algorithm, a
modified RTL algorithm,” Earth Planets Space, Vol. 63, No. 3, 2011

[17] J. W. S. Liu, E. T.-H. Chu and C. S. Shih, “Cyber-physical elements of
disaster prepared smart environments,” in presss, IEEE Computer,
http://doi.ieeecomputersociety.org/10.1109/MC.2012.149, April 2012.

[18] D. Cook and B. Das, Smart Environments: Technology, Protocols and
Applications, Wiley, 2004.

[19] CAP-EAS Implementation Guideline, CAP-EAS Industry Group, May
2010.

[20] Common Alerting Protocol Library, http://code.google.com/p/cap-
library/

[21] [NSXML Parser, at
https://developer.apple.com/library/mac/documentation/cocoa/conceptua
l/nsxml_concepts/NSXML_Concepts.pdf

[22] libxml2, at http://xmlsoft.org/
[23] SAXParser, at

http://docs.oracle.com/javase/1.4.2/docs/api/javax/xml/parsers/SAXPars
er.html

[24] LINQ to XML at http://msdn.microsoft.com/en-
us/library/system.xml.linq.aspx

[25] E. C. Chee, E. Mohd-Yasin, A. K. Mustaph, “RBStrex: Hardware XML
parser for embedded systems,” International Conference for Internet
Technology and Secure Transaction, 2009.

[26] CLIPS: A Tool for Building Expert Systems at
http://clipsrules.sourceforge.net/

[27] JESS, the Rule Engine for the Java Platform , at
http://herzberg.ca.sandia.gov/

[28] E. D. Schmidt, “Logician: A table-based rules engine suite in
C++/.NET/Javascript using XML,” at
http://www.codeproject.com/Articles/194167/Logician-A-Table-based-
Rules-Engine-Suite-In-C-NET

[29] C. Choi, et al., “MiRE: a minimal rule engine for context-aware mobile
devices,” Proceedings of the 3rd International Conference on Digital
Information Management, November 2008

