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Abstract 

We propose a method called adaptive multiple feature subset (AMFES), 
which ranks and selects features at a reasonable computation cost. In the 
AMFES ranking procedure, we conduct an iterative process. At the initial 
stage, we compute features’ strength (i.e., degree of usefulness) based on 
various subsets drawn from the pool of all features. We then rank features 
according to their strength thus derived. At each subsequent stage, we input 
half of features that were top-ranked from the previous stage. We then 
re-rank them in the same fashion as we do at the first stage. In the AMFES 
selection procedure, we conduct a sequential batch search to tremendously 
reduce the computation cost. Compared with a few other methods, we show 
by experiments that AMFES achieves higher or comparable test accuracy 
rates. When achieving comparable rates, AMFES selects a smaller number 
of features. We argue that the employment of multiple feature subsets can 
diminish the ill effect of feature correlation, which explains the advantage of 
AMFES over other methods on the experimental data sets. 
Keywords: AMFES, adaptive multiple feature subset, feature correlation, 
feature ranking, feature selection  

1. Introduction 
The performance of a learning machine can be hampered by the presence of a 

large set of irrelevant variables, or features. Although some effective learning methods, 
such as support vector machines (SVMs) (Cortes & Vapnik, 1995; Vapnik, 1995), can 
tolerate a few irrelevant features, their generalization power is likely to be compro-
mised by a large number of such features. This so-called “curse of dimensionality” 
(COD) occurs because one needs to sample a lot more data points to gain insight into 
a high-dimensional feature space compared to a low-dimensional one. In the case of 
SVM learning, the insufficiency of training samples may create an illusion that a 
larger margin exists in a high-dimensional space than in a low-dimensional one. 
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Feature selection is a highly developed area with many methods proposed in di-
verse directions. Part of the reason for the multitude of approaches is that, under a 
rigorous formulation, the problem is known to be NP-hard (Amaldi and Kann, 1998). 
Thus, in practice, approximate solutions, or approximate problems with exact solu-
tions or further approximate solutions were proposed. In this paper, we consider fea-
ture selection as a means of extracting a subset of features from the set of full features. 
We do not address those methods that transform features (as linear combinations or 
clusters of original features, for example) before reducing the number of them. Under 
this restriction, feature selection methods can be generally categorized into three types: 
filters, wrappers, and embedded methods (Blum and Langley, 1997; Kohavi and John, 
1997; Guyon and Elisseeff, 2003; Lal et al., 2006). Filters evaluate features individu-
ally according to some statistical or information-theoretic criteria. Wrappers evaluate 
feature subsets using certain search strategies to find the locally best subset. They 
proceed in this manner until no better feature subset can be found. Embedded methods 
rely on learning machines to evaluate the usefulness of features. Examples of the 
learning machines are SVM or decision tree (Breiman et al., 1984; Quinlan, 1986). 

In our view, a high dimensionality becomes a curse often through the combina-
tion of two things, the large number of irrelevant features and a small set of training 
samples. When the number of features, d, is higher than the number of samples, n, 
there are at most n independent features in the training data set. When d is much 
higher than n, many feature vectors turn into linear combinations of a small set of 
feature vectors, where a feature vector derives its components from all samples’ cor-
responding feature values. This means that an irrelevant feature can become signifi-
cantly correlated with some critical features, thus appearing as useful as the critical 
features. 

There are many methods that attempt to do away with the ill effect of feature 
correlation. These methods can be divided into forward selection and backward elim-
ination. One the side of forward selection, there are methods that make use of 
Gram-Schmidt orthogonalization to remove dependent features from a ranked list es-
tablished by a forward procedure (Rivals and Personnaz, 2003; Stoppiglia et al., 2003). 
There are also methods that employ mutual information as a measure to select fea-
tures in a forward fashion (Torkkola, 2003; Fleuret, 2004). In the area of linear re-
gression, the stepwise regression approach (Weisberg, 1980) first chooses a feature 
that mostly correlates with the class label. It then conducts iteratively to select a fea-
ture that mostly correlates with the residuum (the unexplained part) of the previously 
chosen features. There are modifications and extensions of stepwise regression in 
various directions, including least angle regression (Efron et al., 2004), elastic net 
(Zou and Hastie, 2005), and streamwise feature selection (Zou et al., 2006). 
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On the side of backward elimination, the recursive feature elimination (RFE) 
method trains an SVM on all features and eliminates the feature deemed as least use-
ful by SVM (Guyon et al., 2002). The process proceeds recursively with the remain-
ing features. It then ranks features in the reverse order as they are eliminated. The 
RFE method has the advantage of evaluating features collectively using a learning 
machine that is good at this aspect. The disadvantage of a backward elimination 
method is its computation speed. In applications, one often encounters thousands of 
features and will take an extremely large amount of time to run RFE on them. 

In this paper, we propose a method that evaluates features based on a number of 
feature subsets that are generated in an adaptive fashion. For this reason, we call our 
method the adaptive multiple feature subset (AMFES) method. A major difficulty of 
feature selection is to cope with the ill effect of feature correlation. Due to the rela-
tively large number of features to samples, an irrelevant feature g may be accidentally 
correlated with some critical features, but not with all of them. With the introduction 
of multiple feature subsets, we find that g and its correlated features co-locate in some 
subsets, but not in all subsets. Examining a sufficient number of subsets, we are able 
to see that irrelevant features are not as useful as critical features. 

To further improve the outcome, we implement the ranking procedure at a num-
ber of stages. At the first stage, we evaluate and rank all features. In doing so, we 
move most, if not all, critical features to the top ranks, thereby reduce the number of 
irrelevant features in those ranks. At each subsequent stage, we input the features 
whose ranks at the previous stage were above the median rank. We thus deal with a 
set of top-ranked features, which contains fewer irrelevant features. Then, to improve 
the feature ranking, we re-rank these features in the same way as we did at the first 
stage. 

Randomly generated feature subsets have been used to form random forests (Ho, 
1995, 1998; Breiman, 2001). A random forest consists of multiple decision trees, each 
of which is built on a feature subset. While individual decision trees perform rather 
weakly, a combination of them often forms a strong classifier. Breiman (2001) further 
proposed a feature selection method for random forest. Based on a similar idea, Tuv et 
al. (2009) developed a more sophisticated method. 

While Breiman and Tuv et al. proposed a feature selection method for an ensem-
ble of classifiers, Lai et al. proposed a random subset method (RSM) for a single 
SVM classifier. AMFES is also a method for a single classifier. On the other hand, 
RSM generates feature subsets and ranks features in one step. AMFES performs an 
iterative re-ranking process. Moreover, AMFES employs different feature strength 
measure from RSM. We show by experiment that AMFES performs better than when 
there is no iterative re-ranking procedure. We also show that AMFES achieves better 
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or comparable test accuracy rates to RFE, and selects a smaller number of features. 
Moreover, AMFES runs a lot faster than RFE. 

The remainder of the paper is organized as follows. In Section 2, we describe the 
basic components of AMFES, namely, the feature strength measure, as well as the 
feature ranking and feature selection procedures. In Section 3, we present our experi-
mental setting and the experiment results. Section 4 contains some concluding re-
marks. 

2. The AMFES Method 
We assume that a learning set of data points is given. This set will be further di-

vided into a training component and a validation component. The ranking procedure 
works on the training component exclusively. It computes features’ strength, estab-
lishes a ranked list according to this measure, and produces nested subsets incorpo-
rating more and more features with smaller feature strength. The selection procedure 
works on the validation component to evaluate these nested subsets. Very often we are 
given with a very small learning data set, so we have to work on more than one pair of 
training and validation components. This will slightly complicate the selection proce-
dure. We return to this in Section 2.3. 

The implementation of AMFES is available at the following website 
http://ocrwks11.iis.sinica.edu.tw/~dar/Download/WebPages/AMFES_ACML.htm, 

along with the source code, execution file, readme file, and data sets used in our ex-
periments. 

2.1 The ranking procedure 

We assume that a given training component comprises data points (x1, y1), (x2, 
y2), …, (xn, yn), where xi is a d-dimensional feature vector and yi∈{-1, 1} is the label 
of xi, for i = 1, 2, …, n. The AMFES ranking procedure is implemented in stages. At 
the initial stage, we evaluate all the d features and rank them accordingly. At the next 
stage, we take half of the top-ranked features from the first stage as input and rank 
them in the same way. This procedure continues at the subsequent stages until no 
more than three features remain. 

At a given stage, we assume that k features are input to this stage, and for con-
venience we index them from 1 to k. First, we generate a number of feature subsets of 
size j, where j = (int)(k/2). Each feature subset S induces a transformation; for exam-
ple, if S = {2, 4, 6}, the transformation induced by S converts x = (x1, …, xk) to z = (x2, 
x4, x6). The steps of the ranking procedure are as follows. 

 
I. Generate m independent subsets S1, …, Sm, where each Si consists of j ele-

ments drawn randomly and independently from the k input features. 

http://ocrwks11.iis.sinica.edu.tw/~dar/Download/WebPages/AMFES_ACML.htm


5 
 

II. Each Si induces a transformation that converts x1, …, xn to zi1, …, zin. We 
build an SVM classifier Ci on zi1, …, zin. Then, for each feature f, we com-
pute weighti(f), which is defined below. 

III. We compute the strength of each feature f by summing all the weights that 
have been assigned to f, and divide the sum by the number of times each 
weight has been assigned to f. The result is denoted by θm(f): 

{ S }1

{ S }1

I ( )
( )

I
i

i
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f ii
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where I is an indicator function such that Iproposition = 1 if the proposition is 
true; otherwise, Iproposition = 0. 

IV. Rank all the input features in descending order of θm (·). 
 

To complete the description, we need to define weighti(f) and the value of m, 
both appearing in (1). With regard to the first term, we denote the objection function 
of Ci as 1 2( , ,..., ),i sobj v v v  where v1, v2, …, vs are support vectors of Ci. We then de-
fine weighti(f) as the change in the objective function due to f, i.e., 

( ) ( ) ( )
1 2 1 2( )  | ( , ,..., ) ( , ,..., ) |f f f

i i s i sweight f obj obj= −v v v v v v , 

(Guyon et al., 2002; Rakotomamonjy 2003). 
With regard to the second term, we do not fix the value of m in advance. Instead, 

we add one feature subset at a time until a stop criterion is met. Let θm be a 
k-dimensional vector comprising the ranking scores derived from the m feature sub-
sets generated thus far. Since these subsets were randomly and independently drawn, 
the law of large numbers (Breiman, 1992) ensures that, as we repeat the process on 
and on, θm will converge to a constant vector, which is the vector of some average re-
sults. For this reason, we stop generating any new feature subset when θm and θm-1 
become close to each other, i.e., 

2
1
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1
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|| ||
m m

m

−

−

−
<

θ θ
θ
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where ||θ|| is understood as the Euclidean norm of vectorθ. 

2.2 The selection procedure 

After the features have been ranked, a naïve way to find the critical features is to 
train an SVM classifier on each Fk, comprised of top-k ranked features, and compute 
its validation accuracy rate, for k = 1, 2, …, d. We then pick the Fk that has the highest 
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validation accuracy rate. This procedure can be time-consuming, however, because 
there are d sets of top-k ranked features and d can be a very large number. It is not ro-
bust either, since a tiny variation in the validation accuracy rate can tremendously al-
ter the optimal Fk. 

We thus propose a time-saving and robust procedure as follows. We first create 
some artificial features whose predictive powers are poor by design. Selecting fea-
tures with the help of artificial features were proposed by Bi et al. (2003), Stoppiglia 
et al. (2003), and Tuv et al. (2006). Our approach follows closely that of Tuv et al. 
However, we rely on a validation procedure to determine the optimal batch, instead of 
a statistical test adopted by Tuv et al. When artificial features are created, we put the 
original and artificial features together and rank them at the same time.  

We index an original feature by the proportion of artificial features that are 
ranked above it. Thus, each index is a real number between 0 and 1. We then conduct 
the following sequential batch search. Let p1, p2, … be a sequence of indices with p1 < 
p2 < …. Let B(pi) be the batch of original features whose indices are smaller than or 
equal to pi, for i = 1, 2, … We first train an SVM on B(p1) and compute its validation 
accuracy rate v(p1); we then train an SVM on B(p2) and compute v(p2), etc. We find 
the first pk at which v(pk) ≥ vb and v(pk) ≥ v(pl) for k ≤ l ≤ k+10, where vb is the valida-
tion accuracy rate of an SVM trained on all features. The optimal batch is B(pk). 

To further save time on the search, we modify the process as follows. We first 
conduct a coarse search and then a fine search. The coarse search is a sequential 
search on a coarse scale, conducted as follows. Let pi = i×0.005 for i = 1, 2, …, 200. 
Clearly, p1 = 0.005 and p200 = 1. We train an SVM on B(pi) and compute v(pi) for all i. 
Let pk be the first index at which v(pk) ≥ vb and v(pk) ≥ v(pl) for k ≤ l ≤ k+10. The fine 
search is a full search on a fine scale, conducted as follows. Let q1, q2, …, q10 be a 
sequence of indices such that qj = pk-1 + (j-1)×0.001 for j = 1, 2, …, 10. Clearly, q1 = 
pk-1 and q10 = pk+1. We train an SVM on B(qj) and compute v(qj) for all j. We then find 
the smallest qm such that v(qm) ≥ v(qj) for all j. The optimal batch is B(qm). 

The method used to create artificial features is illustrated with the data shown in 
Figure 1. We are given with three vectors x1, x2 and x3, each of which occupies a row 
of matrix X. There are therefore three samples and four features in X. To create four 
artificial features, we permute the entries of each column in X. We then place the four 
original columns and the four permuted columns in matrix X'. The three vectors x1', 
x2,' and x3', each of which occupies a row in X', comprise eight features, four of which 
are original and the other four are artificial. Moreover, xi' is of the same class type as 
xi.  Since the artificial features of xi' are purposely made to disassociate with the 
class type of xi', they are poor for predicting that class type. 
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Figure 1. We expand four features into eight features, four of which are original and the 
other four are artificial. 

In the general setting, we transform the training data (x1, y1), (x2, y2), …, (xn, yn) 
to (x1', y1), (x2', y2), …, (xn', yn), where xi has d components and xi' has 2d components. 
The first d components of xi' are identical to the d components of xi, while the re-
maining d components of xi' are artificial. Since the artificial components of zi are 
purposely made to disassociate with yi, they are poor for predicting yi. 

Note that in the ranking procedure, when there is no artificial feature, we output 
at each stage those features whose ranks are above the median rank so that half of the 
features appear in the output. Now, when artificial features are incorporated in the 
ranked list, we still want half of the original features to appear in the output. So we 
make the following modification. We first identify the original feature whose rank r is 
behind half of the original features. We then output every feature, original or artificial, 
whose rank is above r. 

2.3 Putting All Things Together 

To integrate ranking and selection procedures into one process, we need to deal 
with a few additional problems. First, when a data set is very small, it is important 
that we extract more than one validation component from the data set. Second, em-
ploying SVM as the learning machine, we have to specify whether to employ a linear 
or a non-linear SVM and also how to choose the best parameters for it. Third, some 
preprocessing step can be added to our process to enhance its performance. 

We start with the first problem. When a learning data set L is given, we extract a 
number of training-validation pairs from L. Each pair randomly divides L into a 
training component and a validation component at a ratio of 4:1. We want to extract at 
least 5 pairs and we also want the number of validation samples add up to at least 100. 
So we extract p training-validation pairs from L, where p = max(5, (int)(500/n +0.5)) 
and n is the number of sample in L. 

When a training-validation pair is given, we perform the ranking procedure as 
described in Section 2.1. Since there are p training-validation pairs, we perform p 
such procedures. The selection procedure is modified as follows. The procedure is 
now divided into three parts. In the first part, we work on all training-validation pairs. 
In each pair, we train an SVM on B(pi) and compute its validation accuracy v(pi), for 
pi = i×0.005. In the second part, we compute av(pi), the average of v(pi) over all pairs. 



8 
 

We perform a coarse search on av(pi) to find the optimal pi. We then perform a fine 
search on av(qj), qj = pk-1, …, pk+1, to find the optimal qj. This optimal qj does not cor-
respond to a unique batch, however, since each pair has its own B(qj) and they can be 
all different. Thus, in the third part, we work on L to find a unique batch. We first cre-
ate artificial features and perform a ranking procedure on the original and artificial 
features. Next, we collect the original features whose indices are smaller than or equal 
to the optimal qj derived previously. These are the features that we select for L. 

The next problem is to determine the type of SVM and the choice of parameters. 
First of all, it is not necessary to use the same type of SVM in both ranking and selec-
tion. For convenience, we short hand linear SVM by L and non-linear SVM by N. 
When L is employed for ranking and N for selection, we denote this combination as 
LN. Very often, we found LN a good combination, since L is fast in training and N is 
robust in classification. LL can be also a viable option. However, LL often gains 
some computation speed but loses some test accuracy to LN. There are cases in 
which NN is a much better option than LN, reflecting the fact that the training data 
set is very non-linear in nature. NL is not a good option, due to the obvious reason. 

As for parameters, the ranking procedure is less sensitive to the choice of param-
eters. So throughout a ranking procedure, we train SVMs using the same parameters 
that were found to be best for the baseline, i.e., the case in which all features were 
used for training. For the selection procedure, we conduct the coarse search under all 
feasible parameters. The best parameters are those under which the highest validation 
accuracy rate is achieved. In the fine search, we inherit the best parameters found in 
the coarse search. 

The final issue is the possibility of enhancing the ranking procedure by adding a 
stage, the 0th stage, to the procedure. At this stage, we train an SVM on all features. 
We then rank these features by means of equation (1) or (2), depending whether we 
train a non-linear or a linear SVM. We then output to the next stage half of the origi-
nal features as well as the artificial features that are ranked in between. Adding the 0th 
stage is a minor tuning. But it gains some saving in computation time, because the 0th 
stage trains only one SVM and outputs about half of features to the remaining stages. 
Another benefit of conducting a 0th stage is the following. When we have no or very 
few irrelevant features, the SVM classifier produces a good ranked list at the 0th stage. 
At later stages, the procedure may re-arrange a few critical features’ ranks but will not 
impair the quality of the ranked list. This creates a slightly better outcome sometimes 
than when there is no 0th stage. 

3. Experimental Results 
In this section, we compare AMFES with a few methods, including CORR, RFE, 

SVM, NAMFES, and stepwise regression. We described RFE and stepwise regression 
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in Section 1. We would like to include for comparison some methods that extend the 
stepwise regression method. Unfortunately, the available source codes for the latter 
methods have severe limitation in RAM storage, which makes the comparison diffi-
cult. CORR (Golub et al., 1999; Hall, 2000) evaluates a feature in terms of its correla-
tion with the label. This method then ranks features in descending order of the corre-
lation value. The SVM method ranks features according to equation (1) or (2), de-
pending whether a non-linear or linear SVM is used. So SVM’s ranking procedure is 
the same as the 0th stage of AMFES ranking procedure. We also include a method for 
comparison, whose ranking procedure consists of the 0th and the 1st stages of AMFES 
ranking procedure. We call this an NAMFES method, with the first two letters “NA” 
standing for “non-adaptive”.  

To select features, we apply the AMFES selection procedure to the ranked lists 
derived by CORR, RFE, SVM, and NAMFES. Stepwise regression has its own way 
to select features. It does not have two separate procedures, one for ranking and the 
other for selection. Finally, when a collection of selected features is derived, we eval-
uate its predictive power by building an SVM on this collection and compute the 
SVM’s accuracy rate on some test data. 

In our experiment, we apply the above methods to both benchmark and synthetic 
data sets. In all the benchmark data sets, features outnumber samples by a large 
amount. We use synthetic data sets in our experiment for conveying the following 
point. Even though irrelevant features are independently generated from critical fea-
tures, they can appear to be useful as critical features. Moreover, we demonstrate that 
all the compared methods perform similarly on the synthetic data sets as in the 
benchmark data sets. The synthetic data sets thus constitute an explanation for what 
are observed on the benchmark data sets. 

This section is divided into three subsections. In the first subsection, we describe 
the data sets used in the experiment. The next subsection contains the experimental 
results, expressed in testing accuracy rates, number of selected features, and total time 
consumed in the training and testing phases. In the third subsection, we provide a 
visualization of some feature selection results. 

3.1 Experimental Data Sets 

We use both benchmark data sets and synthetic data sets in the experiment. Each 
data point in a dataset is associated with one of two labels, denoted as 1 and -1 re-
spectively. Table 1 shows the benchmark data sets, their properties, and the sources. 

Dataset d n Source 

Colon 2,000 62 U. Alon et al., 1999; 
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/ 

Lymphoma 
(Lymph) 4,026 96 A. A. Alizadeh et al., 2000; 

http://llmpp.nih.gov/lymphoma/data.shtml 

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://llmpp.nih.gov/lymphoma/data.shtml
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Leukemia 
(Leuk) 7,129 72 T. R. Golub, et al., 1999; 

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/ 

Arcene 10,000 100 Feature selection challenge of NIPS 2003; 
http://www.nipsfsc.ecs.soton.ac.uk/datasets/ 

NOVA 16,969 1,929 Active learning challenge 2009 by Causality Workbench; 
http://www.causality.inf.ethz.ch//al_data/NOVA.html  

Table 1. The benchmark data sets used in the experiment, where d = the number of features, 
and n = the number of samples. 

To construct synthetic data sets, we follow the design described by Guyon (2003) 
closely. The synthetic data sets comprise data points x = (x1, …, xc, xc+1, …, xd), where 
x1, …, xc are critical features and xc+1, …, xd are irrelevant features. The irrelevant 
features are independent unit normal random variables (i.e., their distribution is nor-
mal, whose mean is 0 and whose standard deviation is 1). The critical features x1, …, 
xc are generated according to the following linear model. 

= +v uW μ , 

where v = (x1, …, xc), u = (u1, …, uc), W is a c×c matrix, and µ = (µ1, …, µc). The 
vector u is composed of c independent unit normal random variables. The matrix W 
comprises entries that are randomly drawn from the closed interval [-1, 1]. The vector 
µ is composed of c numbers. In summary, v is a multi-normal random vector whose 
mean vector is µ and whose covariance matrix is WTW, where WT is the transpose of 
W. Labeled data points are generated according to two sets of W’s and µ’s; the first 
set is associated with label 1 and the second set with label -1. The ith component of µ, 
µi, takes a value b or –b depending the label of x is 1 or -1, where b is drawn random-
ly from [0.5, 1.5]. 

To avoid the generation of outliers, we adjust the value of xi, i = 1, …, d, by the 
following truncation procedure: 

max(min( ,| | 3), | | 3)i i i ix x η η+ − − , 

where ηi is the mean of xi, which is a positive or a negative number if xi is a critical 
feature, or 0 if xi is an irrelevant feature. In our experiment, we generate two synthetic 
data sets, whose properties are shown in Table 2. 

 
Data Set d n c 
Syn-50 1,000 100 50 
Syn-100 1,000 100 100 

Table 2. The synthetic data sets used in the experiment, where d = the number of features, 
and n = the number of samples, and c = the number of critical features. 

3.2 Testing Accuracy, Number of Selected Features, and Time Consumption 

When a data set D is given, we extract several learning-testing pairs from D. 

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.nipsfsc.ecs.soton.ac.uk/datasets/
http://www.causality.inf.ethz.ch/al_data/NOVA.html
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Each pair randomly divides D into a learning component and a testing component at a 
ratio of 5:1. We want the number of testing samples add up to at least 500. So we ex-
tract p learning-testing pairs from D, where p = (int)(600/n+0.5) and n is the number 
of samples in D. For each learning-testing pair is given, the ranking and selection 
procedures are performed on the learning component. The computation of test accu-
racy rates is performed on the testing component. 

For AMFES, SVM, NAMFES, and RFE, we took LN approach for all the data 
sets, that is, the ranking procedure was performed with L and the selection procedure 
was performed with N. For both types of training, we employed LIBSVM (Fan et al., 
2005). LIBLINEAR (Fan et al., 2008; Chang and Lin, 2008), a specialized tool kit for 
solving linear SVM, could be used for the L training. But there was no advantage of 
using it in our experiment, because all the data sets were small. CORR’s ranking pro-
cedure does not involve any SVM training. For CORR’s selection, we performed the 
same N training as for AMFES selection. Stepwise regression does not involve any 
SVM training. All we had to do was to train a non-linear SVM on its selected features. 
We had to also search for the best parameters for this SVM. We could not produce a 
result for stepwise regression on “NOVA”, because the source code we retrieved from 
the public domain has a limitation on the RAM storage. 

The parameter involved in the L training was the cost factor C, whose values 
were taken from Φ = {10a: a = 0, …, 5}. Two parameters involved in the N training 
were the cost factor C and the γ parameter in an RBF function. The values of C were 
taken from Φ; and the values of γ were taken from Ψ = {10b: b = -4, -3, …, 4}. When 
the best parameters were determined in the selection process, we trained a non-linear 
SVM with the same parameters and compute its test accuracy rates on the testing 
component. 

The results of applying all methods to the data sets, benchmark and synthetic, are 
displayed in Figures 2 to 4. Figure 2 shows the test accuracy rates per learning-testing 
pair. Figure 3 shows the number of selected features per learning-testing pair. Figure 4 
shows the time consumed in the training and testing process per learning-testing pair. 
All the computations were performed on a Quad-Core Intel Xeon X3550 processor 
with a 2.33GHz CPU and 32GB RAM. 
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Figure 2. The test accuracy rates per learning-testing pair obtained by applying the six feature 
selection methods to the benchmark and synthetic data sets. 

 
Figure 3. The number of selection features per learning-testing pair obtained by applying the 
six feature selection methods to the benchmark and synthetic data sets. 
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Figure 4. The time (expressed in seconds) per learning-testing pair consumed by the six fea-
ture selection methods on the benchmark and synthetic data sets. 

The two synthetic data sets, “Syn-50” and “Syn-100”, presented some interesting 
results. There are 50 critical features in “Syn-50”. However, all methods except step-
wise regression selected more than 50 features on this data set (cf. Figure 3). Why? 
Our explanation is as follows. There are 100 samples in “Syn-50” and hence 67 sam-
ples in each of its training components. This means that there are at most 67 inde-
pendent features, while there are 1,000 features in total. As a result, many feature 
vectors turn into linear combinations of very few feature vectors. This causes some 
irrelevant features to correlate with critical features, thus to appear useful as critical 
features. This phenomenon occurs because the number of training samples is small 
compared to the number of features. The same account applies to the outcomes de-
rived from “Syn-100”. 

In terms of test accuracy rate, AMFES outperformed all other methods on both 
benchmark and synthetic data sets. In terms of features, stepwise regression selected 
the smallest numbers of them but it also achieved the lowest test accuracy rates. 
AMFES always selected smaller numbers of features than RFE and CORR. In terms 
of time, stepwise regression consumed the least amount of it, at the expense of test 
accuracy rate. AMFES consumed much less time than RFE; it also consumed less 
time than CORR on all data sets except “Arcene”, due to the following reason. Alt-
hough CORR is faster in ranking, it spends more time on selection because it selects 
more features. CORR selects more features, because it evaluates features individually 
and can easily misjudge irrelevant features as useful when they correlate with some 
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critical features that in turn correlate with the label. 
AMFES, NAMFES, and SVM can be viewed as a family of methods. SVM is 

the most primitive one; NAMFES is designed to improve it; AMFES is designed to 
improve NAMFES. So, we expect that the test accuracy rates of AMFES, NAMES, 
and SVM appear in a decreasing order. Figure 2 confirms this expectation. On the 
other hand, the numbers of selected features should appear in an increasing order, 
which is confirmed by Figure 3. The times consumed by the three methods are com-
parable, as shown in Figure 4, because AMFES requires more time for ranking and 
less time for selection than the other two methods. 

Note that the above conclusions hold for benchmark data sets as well as for syn-
thetic data sets. We thus believe there is a common explanation for what occurred in 
both types of data sets. That is, when training samples is insufficient, feature correla-
tion is responsible for inducing all the above methods to misjudge irrelevant features 
as useful features. Moreover, AMFES works better in lessening the ill effect of feature 
correlation, which is manifested in the better accuracy rates and the smaller numbers 
of selected features. 

3.3 Visualization 

To visualize how the compared methods progress in the ranking and selection 
procedures, we associate each method with a validation-curve (v-curve, for short), 
constructed as follows. We first form, as in the coarse search, the average validation 
accuracy rates av(pi) over a number of training-validation pairs, for pi = 0.005, 
0.01, …. We then construct the curve {(pi, av(pi)): i = 0.005, 0.01, …}. Finally, we 
modify this curve by replacing the optimal av(pi) derived in the coarse search by the 
optimal av(qj) derived in the fine search. This constitutes our v-curve. 

In Figure 5, we show the v-curves derived by AMFES, RFE, and CORR for the 
data set “NOVA”. The figure shows that the three methods’ v-curves reach their peaks 
at pi = 0.065, 0.085, and 0.385 respectively. In Figure 6, we show the v-curves derived 
by AMFES, NAMFES, and SVM for the same data set. The figures show that both 
AMFES’s and NAMES’s v-curves reach their peaks at pi = 0.065. However, AMFES 
attains a higher peak value than NAMFES. On the other hand, CORR’s v-curve 
reaches its peak at a much higher pi. 

Note that when producing the v-curves, we employed no test component. How-
ever, the two figures predict that, when test components were given, AMFES would 
produce no lower test accuracy rates and select smaller amount of features, than all 
other methods. This is confirmed by the results shown in Figures 2 and 3. 

Due to space limitation, we only show v-curves derived for “NOVA”. However, 
we would see similar v-curves if we plotted them for other data sets. 



15 
 

 
Figure 5. The v-curves derived by AMFES, RFE, and CORR on the data set “NOVA”. 

 
Figure 6. The v-curves derived by AMFES, NAMFES, and SVM for the data set “NOVA”. 

4. Conclusion 
This paper presents a method called AMFES, which evaluates features on multi-

ple feature subsets. Moreover, AMFES iteratively re-ranks those features that were 
deemed as more useful than the remaining ones so as to improve the quality of the 
final ranked list. In so doing, we claim that AMFES is able to reduce the ill effects of 
feature correlation, which is caused by the insufficiency of training samples compared 
with irrelevant features. This assertion was supported by the better performance of 
AMFES on both synthetic and benchmark data sets than a few other methods, includ-
ing RFE, CORR, and stepwise regression. Also, AMFES was shown to outperform 
SVM and NAMFES, on which AMFES was designed to make improvement. 
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