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Abstract

“Human Computation” represents a new paradigm of

applications that exploit people’s desire to be entertained

by outsourcing certain steps of the computational process

to the players. Such applications also produce useful

metadata as a by-product. Games With A Purpose (GWAP)

demonstrate the potential of human computation to solve

a variety of problems that computer computation cannot

currently resolve completely. In this paper, we propose a

metric, called system gain, for evaluating the performance

of human computation systems, and also use analysis to

study the properties of GWAP systems. We argue that

GWAP systems should be played with strategies. Therefore,

based on our analysis, we implement an Optimal Puzzle

Selection Strategy (OPSA) to improve human computation.

Using a comprehensive set of simulations, we demonstrate

that the proposed OPSA approach can effectively improve

the system gain of GWAP systems, as long as the number

of puzzles in the system is sufficiently large.

Index Terms—Games With A Purpose; Human Computa-

tion; Collaborative Tagging

I. Introduction

In the last two decades, the Internet has undergone

rapid growth in terms of its usage, population, geographic

distribution, and applications. Recent surveys of world-

wide Internet usage reported that, in 2008, there were

more than 100 million Facebook users [4], 258 million

registered YouTube users [4], and more than 16 million ac-

tive subscriptions to Massively Multiplayer Online Games

(MMOGs) [3]. The figures for Facebook and YouTube rep-

resent annual growth rates of 305% and 94%, respectively,

over the previous year. It is evident that Internet users

today want to socialize and be entertained, in addition to

exploiting traditional applications, such as the WWW, FTP,

and Email.

Among numerous emerging Internet applications, “Hu-

man Computation” represents a new paradigm that exploits

people’s desire to be entertained by outsourcing certain

steps of the computational process to the players [7, 8, 17].

In [18], Von Ahn proposed the use of human computa-

tion to create Games With A Purpose (GWAP), which

provide entertainment and produce useful metadata as a

by-product. By exploiting “human cycles” in computation,

the paradigm has shown promise in solving a variety of



problems, such as image annotation and common sense

reasoning, which computer computation has been unable

to resolve completely thus far.

Several human computation systems have been pro-

posed in recent years [10, 12, 19, 21–24]. Among them,

the ESP Game [19] was the first to successfully realize

the advantages of human computation systems, and it was

subsequently adopted as the Google Image Labeler [1]. It

has been shown that the image labels collected through the

ESP game are usually of good quality. Moreover, the game

results allow more accurate image retrieval, help users

block inappropriate images (e.g., pornographic content),

and improve web accessibility (e.g., the labels can help

visually impaired people surf web pages [5]).

In this work, we define a metric, called system gain, to

evaluate the performance of human computation systems.

The proposed metric considers two factors: the average

time required for each puzzle, and the average outcomes

produced by each puzzle. Both factors are critical for

human computation systems, but unfortunately they do not

complement each other. We believe that human compu-

tation systems should be Played With Strategies (PWS).

Using analysis, we investigate the inner properties of the

ESP, TagATune, and Verbosity games, which correspond

to three types of GWAP systems defined in [20] (i.e.,

the output-agreement game, the input-agreement game,

and the inversion-problem game respectively). Based on

our analysis, we propose an Optimal Puzzle Selection

Algorithm (OPSA) that maximizes the system gain by

properly accommodating the two opposing factors. Using a

set of simulations, we evaluate the proposed OPSA scheme

on two widely used schemes, namely the Random Puzzle

Selection Algorithm (RPSA) and the Fresh-first Puzzle

Selection Algorithm (FPSA). The results demonstrate that,

under the OPSA scheme, the GWAP system yields a much

better system gain than under the two compared schemes.

In addition, the presented analysis is simple and applicable

to other human computation systems.

The remainder of this paper is organized as follows.

Section II contains a review of related works on human

computation systems. In Section III, we describe three

GWAP systems, the ESP, TagATune, and Verbosity games,

which correspond to the output-agreement game, the input-

agreement game, and the inversion-problem game respec-

tively. In Section IV, we present our analysis of the three

GWAP systems; and in Section V, we compare three

puzzle selection algorithms for the ESP game, namely the

RPSA, FPSA, and OPSA schemes. Section VI presents a

comprehensive set of simulation results, which we analyze

and explain in detail. In Section VII, we consider several

issues arising from this work. We then summarize our

conclusions in Section VIII.

II. Background

The concept of “Human Computation” was pioneered

by Luis Von Ahn and his colleagues, who created games

with a purpose [18], which people play voluntarily. The

games also produce useful metadata as a by-product. By

taking advantage of people’s desire to be entertained, hu-

man computation has shown promise in solving some prob-

lems that computer computation cannot currently resolve

completely. In recent years, a substantial and increasing

amount of research effort has been invested in the area, and

several human computation systems have been developed



for a variety of purposes [10, 12, 19, 21–24].

The online ESP Game [19] was the first human com-

putation system, and it was subsequently adopted as the

Google Image Labeler [1]. In the system, two randomly se-

lected players are paired to create a game, and a randomly

selected image is displayed to both players simultaneously.

To execute the task, the players must enter possible words

to label the image until an “agreement” is reached (i.e., the

same word is entered by both players). The agreed word

is typically a good label for the image, and the system

then displays another image as a new task to be solved.

As mentioned earlier, it has been shown that the collected

labels facilitate more accurate image retrieval, help users

block inappropriate images (e.g., pornographic content),

and improve web accessibility (e.g., the labels can help

visually impaired people surf web pages [5]).

In addition to image annotation, the Peekaboom system

[24] can help determine the location of objects in images;

and the Squigl system [2] and the LabelMe system [12]

provide complete outlines of the objects in an image.

Phetch [21, 22] provides image descriptions that improve

web accessibility and image searches, while the Matchin

system [2] helps image search engines rank images based

on which ones are the most appealing. The concept of

the ESP Game has been applied to other problems. For

instance, the TagATune system [9], which provides anno-

tation for sounds and music, can improve audio searches.

The Verbosity system [23] and the Common Consensus

system [10] collect “common-sense” knowledge that is

valuable for commonsense reasoning and enhancing the

design of interactive user interfaces. The Context-Aware

Recognition Survey (CARS) system [25] uses ubiquitous

sensors to monitor activities in the home, while the Gopher

system [6] employs mobile social gaming for geospatial

tagging. Moreover, [15] applies human computation to

ontology alignment and web content annotation for the

Semantic Web using various games, such as OntoPronto,

SpotTheLinks, OntoTube, and OntoBay. Finally, Shenoy

and Tan [14] show that it is possible to design environ-

ments in which humans cannot avoid processing some

tasks (and still produce some useful outcomes), even

though they are not actively trying to do so.

III. Game Descriptions

In this section, we describe the ESP game [19], the

TagATune game [9], and the Verbosity game [23], which

correspond, respectively, to the output-agreement game,

the input-agreement game, and the inversion-problem

game defined by Von Ahn and Dabbish [20].

A. The Output-agreement Game: ESP

The ESP Game [19] was the first human computation

system to exploit people’s desire to be entertained, and

provide useful metadata as a by-product. When a user logs

into the system, he/she is automatically matched with a

random partner. The two players do not know each other’s

identity as they cannot communicate.

Initially, a randomly selected image is displayed to both

players simultaneously. The players then input possible

words to label the image until an “agreement” is reached

(i.e., the same word is entered by both players), and

a bonus score is awarded to each player based on the

‘quality’ of the agreed word. In practice, the ‘quality’ of a

word is measured by its popularity; generally, words that



are more popular receive lower scores. After the players

agree on a word, they are shown another image. In each

game, they have two and a half minutes to label 15 images.

The word on which the two players agree becomes the

label of the image, and it can not be used the next time that

image is displayed in another game (the word is called a

“taboo” word of the image). The rationale for using taboo

words is to ensure that each image is labeled with a variety

of words.

B. The Input-agreement Game: TagATune

The TagATune Game [9] is an input-agreement game

that provides useful metadata of sounds and music (col-

lectively referred to as tunes) by applying the concept

of games with a purpose. Similar to the ESP game,

when a user logs into the system, he/she is automatically

matched with a partner, who is selected randomly and

anonymously from a pool of available players. Again, the

two players do not know each other’s identity as they

cannot communicate. They are asked to collaborate and

determine whether they have been given the same input

puzzle (i.e., tune).

In a game round, each player is given an input (tune),

but only the system knows whether the inputs are the same

or different. The players have to use possible words to

properly describe their input. They win a game round (and

obtain points) if they both correctly determine whether they

have the same input tune; otherwise, they lose the game

round (i.e., their score is zeros). During a game round,

the players are allowed to stop or replay their respective

tunes at any time, and they are allowed to see each other’s

outputs. Moreover, they can decide to pass over a tune if

they both think it is too difficult.

Since the players want to win as many points as

possible, it is in their best interest to provide accurate

outputs that appropriately describe their respective inputs,

so that they can determine if their inputs are the same.

As a result, the words collected in a TagATune game

are typically good enough to describe the input tunes.

Moreover, the outcomes may become official tags of the

tunes if enough people agree (the threshold of which

depends on the game’s statistics).

C. The Inversion-problem Game: Verbosity

The Verbosity Game [23] is a popular inversion-

problem game that employs human computation to collect

commonsense reasoning related to a word by asking one of

the players to guess the input puzzle (i.e., a word) based on

the other player’s description of the puzzle. Like the ESP

and TagATune games, two players are selected at random

to create a game; once again, they do not know each other.

The players take turns to play the roles of “Describer” and

“Guesser”. The Describer is asked to provide a number of

words to describe the given input, and the Guesser has to

guess the input based on the Describer’s outputs.

To make the game easier, Verbosity provides the De-

scriber with a set of sentence templates to describe the

input puzzle (e.g., “it looks like ” and “it is a type

of ”). The Describer can see all of the Guesser’s

inputs, so he can adjust his playing strategy during the

game round. Since both players have to collaborate to

win the game, the Describer must do his best to help

the Guesser guess the input. Since the game structure

encourages players to enter correct information, the col-



lected descriptions are typically good enough to be used

as official tags of the corresponding puzzles.

The inversion-problem game can be regarded as a

special case of the input-agreement game, except that (1)

the number of outcomes per game round is limited (i.e.,

there are at most m outcomes in each game round, and

m is much smaller than the total number of possible

outcomes); and (2) a game round cannot be a failure in

inversion-problem games (i.e., the two players will pass

over a puzzle if they can not complete it using the first m

descriptions). For instance, in the Verbosity game, there

are only 6 sentence templates (i.e., m = 6).

IV. Game Analysis

For the sake of efficiency, the GWAP system tries to

collect outcomes with the largest possible aggregated score

in the shortest possible time, for each puzzle. There is a

trade-off between these two factors. On the one hand, to

minimize the time required per puzzle, the system prefers

that each puzzle is played only once. The rationale is to

maximize the number of games that players try to solve.

On the other hand, the system prefers to take as many

labels as possible for each puzzle, which results in the

playing of fewer distinct puzzles. Thus, an optimal puzzle

selection strategy that can accommodate the two goals

is highly desirable. To this end, we propose a metric to

evaluate the system gain of the GWAP system, and analyze

the puzzle selection problem. We discuss the analysis in

the following subsections.

A. The Output-agreement Game: ESP

Let N be the number of puzzles that have been played at

least once in the system, T be the average time consumed

per puzzle, and S be the total score of all the agreed labels.

We define the system gain, G, of the ESP game as follows:

G = ln(C1 × N

NT
) × ln(C2 × S

N
)

= ln(C1 × 1
T

) × ln(C2 × S

N
),

(1)

where C1 and C2 are two scaling constants that ensure

ln(C1 × 1
T ) > 0 and ln(C2 × S

N ) > 0 respectively.

Clearly, the system gain increases as the average time

required per puzzle (i.e., T ) decreases, and/or as the

average total score (per puzzle) (i.e., S
N ) increases. Sup-

pose that, in the system, each puzzle has the potential

to yield K labels in total; that each tag is associated

with one positive score value based on its popularity. For

simplicity, we assume there are totally X distinct scores

(i.e., S1, S2, S3, ..., SX ) in the system; and that Si = ei.

Moreover, we assume that Ki labels have the score Si, and

that Ki = eX−i. Therefore, the total number of potential

labels per puzzle (K) can be derived by Eq. 2, and the

expected score of each tag (E[S]) can be obtained by Eq.

3.

K =
X∑

i=1

Ki =
eX − 1
e − 1

(2)

E[S] =
∑X

i=1 eieX−i

K
=

eX(e − 1)X
eX − 1

(3)

For each game round, let Ps and ts be the probability

and the average time spent when the game round results

in an agreement; Pp and tp be the probability and the

average time spent when the players decide to pass over

the assigned puzzle; and Pt and tt be the probability and



the average time spent when the game round is terminated

due to timeout. Since we know that Ps +Pp +Pt = 1, we

can obtain t, i.e., the expected time interval between any

two consecutive outcomes in the ESP game, by

t = ts +
Pp

Ps
× tp +

Pt

Ps
× tt. (4)

Suppose each puzzle has accumulated r agreements on

average (i.e., T = r× t, and E[S]× r = S
N ). We can then

rewrite Eq. 1 as follows:

G = ln(C1 × 1
r × t

) × ln(C2 × E[S] × r)

=
(
ln(C1/t) − ln(r))

)× (ln(C2E[S]) + ln(r))

= −(ln(r))2 + (ln(C1/t) − ln(C2E[S]))ln(r)

+ ln(C1/t)ln(C2E[S])

= −
(

ln(r) − ln(C1) − ln(t) − ln(C2E[S])
2

)2

+ C,

(5)

where C is a constant with a value equal to

ln(C1/t)ln(C2E[S]) +
(

ln(C1)−ln(t)−ln(C2E[S])
2

)2

. Note

that C also represents the largest possible system gain,

which occurs when

r = e
ln(C1)−ln(t)−ln(C2E[S])

2 . (6)

B. The Input-agreement Game: TagATune

Similar to the analysis in subsection IV-A, let N be the

number of puzzles that have been played at least once in

the system, T be the average time required to solve each

puzzle, and O be the total score of all the game outcomes.

We define the system gain, G, of the TagATune game as

follows:

G = ln(C1 × N

NT
) × ln(C2 × O

N
)

= ln(C1 × 1
T

) × ln(C2 × E[O]),
(7)

where C1 and C2 are two scaling constants that ensure

ln(C1 × 1
T ) > 0 and ln(C2 × S

N ) > 0 respectively, and

E[O] is the expected total score of the game outcomes for

each puzzle.

Clearly, the system gain increases as the average time

required per puzzle (i.e., T ) decreases, and/or as the aver-

age total score per puzzle (i.e., E[O]) increases. Suppose

that each puzzle in the system has the potential to yield

a total of K outcomes, each of which is associated with

one positive score based on the outcome’s popularity. In

addition, suppose the score of the k-th outcome is vk, and

the probability that the k-th outcome will be output is

pk. For simplicity, we assume there are totally X distinct

scores (i.e., S1, S2, S3, ..., SX ) in the system, and that

Si = ei. We also assume that Ki outcomes have the score

Si, and that Ki = eX−i (i.e., the total number of potential

outcomes per puzzle (K) derived by Eq. 2. Then, we can

obtain the expected total score of the new outcomes (per

puzzle) in the r-th game round, E[Or], by Eq. 8, and the

expected total score of all the outcomes after the first r

game rounds, E[O], by Eq. 9.

E[Or] = (1 − p1)r−1 × p1 × v1 + (1 − p2)r−1 × p2 × v2

+ . . . + (1 − pK)r−1 × pK × vK

=
K∑

k=1

(1 − pk)r−1 × pk × vk.

(8)



E[O] =
r∑

i=1

E[Oi]

=
r∑

i=1

K∑
k=1

(1 − pk)i−1 × pk × vk

=
K∑

k=1

pk × vk ×
r∑

i=1

(1 − pk)i−1

=
K∑

k=1

pk × vk × 1 − (1 − pk)r

1 − (1 − pk)

=
K∑

k=1

vk(1 − (1 − pk)r).

(9)

For each game round, let Ps and ts be, respectively,

the probability and the average time spent when the game

round results in an agreement; Pp and tp be, respectively,

the probability and the average time spent when the players

decide to pass over the assigned puzzle; Pt and tt be,

respectively, the probability and the average time spent

when the game round is terminated due to timeout; and Pf

and tf be the probability and the average time spent when

the game round fails. Since we know that Ps + Pp + Pt +

Pf = 1, we can obtain t, i.e., the expected time interval

between any two consecutive outcomes in the TagATune

game, by

t = ts +
Pp

Ps
× tp +

Pt

Ps
× tt +

Pf

Ps
× tf . (10)

In total, there are X distinct scores (i.e., e, e2, e3,

..., eX ), eX−i outcomes with scores equal to ei, and the

occurrence probabilities are equal to 1/ei; hence, we know

that

K∑
k=1

vk(1 − (1 − pk)r) ≈
K∑

k=1

vk(1 − (1 − rpk))

= r
K∑

k=1

vkpk = rK.

(11)

Moreover, since T = r × t, we can rewrite Eq. 7 as

follows:

G = ln(C1 × 1
r × t

) × ln(C2 ×
K∑

k=1

vk(1 − (1 − pk)r))

≈
(

ln(
C1

t
) − ln(r)

)
× (ln(C2) + ln(rK))

=
(

ln(
C1

t
) − ln(r)

)
× (ln(C2K) + ln(r))

= −
(

ln(r) − ln(C1
t

) − ln(C2K)
2

)2

+ C,

(12)

where C is a constant with a value equal to

ln(C1
t

)ln(C2K) +
(

ln(
C1
t

)−ln(C2K)

2

)2

. Note that C also

represents the largest possible system gain, which occurs

when

r = e
ln(

C1
t

)−ln(C2K)

2 . (13)

C. The Inversion-problem Game: Verbosity

We consider that the inversion-problem game is a

special case of input-agreement games, except for the

following factors.

1) There are no game round failures in an inversion-

problem game (i.e., Pf = 0). Thus, we can rewrite

Eq. 10 as

t = ts +
Pp

Ps
× tp +

Pt

Ps
× tt. (14)

2) The number of possible outcomes per game round

is limited (i.e., m is limited); however, Equations 8

and 9 still hold.

Therefore, similar to input-agreement games, we can

obtain the system gain by

G = ln(C1 × N

NT
) × ln(C2 × O

N
)

≈ −
(

ln(r) − ln(C1
t

) − ln(C2K)
2

)2

+ C,

(15)



where C is a constant with a value equal to

ln(C1
t

)ln(C2K) +
(

ln(
C1
t

)−ln(C2K)

2

)2

. Note that C also

represents the largest possible system gain, which occurs

when

r = e
ln(

C1
t

)−ln(C2K)

2 . (16)

V. Game Strategies

In this section, we present three puzzle selection algo-

rithms for the GWAP system, namely the Random Puzzle

Selection Algorithm (RPSA), the Fresh-first Puzzle Selec-

tion Algorithm (FPSA), and the proposed Optimal Puzzle

Selection Algorithm (OPSA). We take the RPSA scheme’s

performance as the baseline (in terms of system gain).

The heuristics-based FPSA scheme tries to maximize the

first component of Equations 1, 7, and 15 (i.e., minimize

the value of T ); and the OPSA scheme tries to achieve

the largest possible system gain based on our analysis (as

discussed in Sec. IV).

We use P to denote the set of all puzzles in the system,

and we define the following three functions used by

the puzzle selection algorithms: 1) Select Random(P ),

which randomly selects a puzzle from the input puzzle

set P ; 2) Select P layed(P ), which selects the puzzle

from the input puzzle set P that has been played most

frequently; and 3) Select Fresh(P ), which selects the

puzzle from the input puzzle set P that has been played

least frequently. We discuss the three algorithms in the

following.

A. RPSA and FPSA

Algorithms 1 and 2 detail the steps of the Random

Puzzle Selection Algorithm (RPSA) and the Fresh-first

Algorithm 1 The Random Puzzle Selection Algorithm

(RPSA).

1: Function RPSA
2: p ⇐ Select Random(P )
3: Return p

Algorithm 2 The Fresh-first Puzzle Selection Algorithm

(FPSA).

1: Function FPSA
2: p ⇐ Select Fresh(P )
3: Return p

Puzzle Selection Algorithm (FPSA) respectively. In each

round, RPSA selects a puzzle at random from the puzzle

pool P . FPSA, on the other hand, selects the puzzle that

has been played least frequently in the system. It is a

greedy, heuristics-based approach that tries to maximize

the first component of Eq. 1.

B. The Proposed Scheme: OPSA

In the proposed Optimal Puzzle Selection Algorithm

(OPSA), N denotes the number of puzzles that have

been played, and E denotes the expected score of each

label. In addition, r denotes the optimal number of rounds

(discussed in Sec. IV); and for each entry p of P , p.r

represents the round number in which the puzzle p was

played. Suppose that the puzzle set P0 contains all the

puzzles that have not been played; P1 contains all the

puzzles that have been played at least once, but less than

r rounds; and the set P2 = P −P0−P1 contains the other

puzzles. We detail the OPSA algorithm in Algorithm 3.



Algorithm 3 The Optimal Puzzle Selection Algorithm

(OPSA).

1: Function OPSA
2: if {P1} is NOT empty then
3: p ⇐ Select P layed(P1)
4: p.r ⇐ p.r + 1
5: if p.r = r then
6: Move p from P1 to P2

7: end if
8: Return p
9: else

10: if {P0} is NOT empty then
11: p ⇐ Select Random(P0)
12: p.r ⇐ 1
13: if p.r < r then
14: Move p from P0 to P1

15: else
16: Move p from P0 to P2

17: end if
18: Return p
19: else
20: p ⇐ Select Fresh(P2)
21: p.r ⇐ 1
22: Return p
23: end if
24: end if

VI. Evaluation

A. Output-agreement Games

In this section, we describe the simulations performed

to investigate the intrinsic properties of the ESP game

based on our analysis. We also evaluate the system gain

of the three puzzle selection strategies. For simplicity, we

set the values of the two scaling constants C1 and C2

to 200 and 1 respectively. Moreover, we set the values

of the parameters (ts, tp, tt) to (0.2, 0.4, 0.15)1; and the

parameters (Ps, Pp, Pt) to (0.6, 0.3, 0.1)2. All the results

1Intuitively, tp > ts, since the players tend to pass over a puzzle
when they realize it will be difficult to reach an agreement. Moreover,
the players may be forced to terminate a game round simply because
they do not have enough time to finish the puzzle, i.e., ts > tt.

2It is important to ensure that Ps > Pp; otherwise, the players may
feel frustrated when playing the game. Moreover, Pt must be very small
so that the players have sufficient time to solve the puzzles in order to
increase the system efficiency.
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Fig. 1. Comparison of the system gain under
various r settings in both the simulations and
the analysis. (X = 6)

are based on the average performance of 100 simulations.

1) The Optimal r: In the first set of simulations, we

evaluated our analytical model’s accuracy in determining

an optimal r value for the ESP game. We assumed that the

number of puzzles in the system was infinite, and that all

of them were unsolved at the beginning of the simulation

(i.e., no labels were discovered for any puzzles). Figure 1

shows the evaluation results in terms of the system gain

for r values between 2 and 100, when the maximum score

value X was fixed at 6. In the figure, the analysis curve

is derived by Eq. 5, where E[S] can be obtained by Eq.

3. The optimal r is equal to 10.3353 when X = 6. We

observe that the analysis curve matches the simulation

curve very well, and the optimal r values (i.e., those that

yielded the largest system gain) of the two curves are also

comparable.

Next, we varied the maximum score value X in the

range 2 to 10 and compared the derived optimal r values

using both simulations and analysis, as shown in Figure 2.

The results indicate that the analysis curve only matches
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the simulation results well when X ≥ 3. The reason is

that, in the analytical model, the optimal r value is larger

than the total number of potential tags per puzzle (K in

Eq. 2) when X < 3, as shown in Figure 3. Thus, the model

can not be used when X < 3 because the optimal number

of rounds per puzzle (r) is larger than the number of tags

(K) that a puzzle has in the system.

Figure 2 shows that, when X > 3, the optimal r value

decreases as the X value increases. This confirms our
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Fig. 4. The relationships between the values
of r and the different values of Ps and Pp,
where X = 6 and Pt = 1 − Ps − Pp.

intuition that the value of E[S] increases as X increases

(cf. Eq. 3). As a result, based on Eq. 6, the optimal r

value will decrease as X increases. We find that if there

are several different scores in the system, more rounds of

each puzzle must be played in order to achieve a better

overall system gain.

In addition, we evaluate the relationship between the

system parameters (i.e., Ps, Pp, and Pt) and the number

of game rounds required to maximize the system gain r in

the proposed Optimal Puzzle Selection Algorithm. Figure

4 shows the comparison results of r and different values

of Ps and Pp (X is fixed at 6 and Pt = 1 − Ps − Pp).

From the results, we find that the values of r increase with

the values of Ps; whereas, given the same value of Ps, r

is more resilient against the changes in Pp and Pt values.

In other words, the optimal r value is highly correlated

to the probability of achieving an agreement in a game

round. Moreover, the higher the likelihood of reaching an

agreement in each game round, the larger value of r will

be.
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2) Comparison of RPSA, FPSA, and OPSA: We now

evaluate the performance of the three puzzle selection

algorithms on the ESP game in terms of the system gain. In

the simulation, we set X = 6 and calculate the system gain

after 10,000 agreements are reached in each simulation

run. Let M denote the total number of puzzles in the

system. The simulation results are shown in Figure 5.

The results in Figure 5 show that when M is small

(say, smaller than a threshold M ′), the three algorithms are

comparable in terms of the system gain achieved. However,

when M is larger than M ′, the system gain of OPSA

remains constant, regardless of the changes in the value

of M . In contrast, the system gain of FPSA and RPSA

degrades as the value of M increases, although RPSA de-

grades slightly less than FPSA when M is very large. More

precisely, the threshold M ′ represents the minimal number

of puzzles required to achieve the maximum system gain

(i.e., M ′ = N = 10000/r). Since X = 6, we know that

E[S] = 10.3353 and r = 7 (from Eq. 3 and 6 respectively).

Therefore, in this case, M ′ = 10000/7 ≈ 1429. The results

indicate that, under the OPSA scheme, the ESP game must

maintain at least a certain number of puzzles to achieve

the maximum system gain3; otherwise, it will favor the

RPSA and FPSA schemes because their performance is

comparable to that of OPSA and they are relatively easy

to implement.

B. Input-agreement Games and Inversion-

problem Games

Next, we discuss the simulations performed to inves-

tigate the inner properties of the TagATune game. We

also evaluate the system gain of the three puzzle selection

strategies. For simplicity, we set the values of the two scal-

ing constants C1 and C2 to 200 and 1 respectively. More-

over, we set the values of the parameters (ts, tf , tp, tt) to

(0.2, 0.2, 0.4, 0.15)4, and the parameters (Ps, Pf , Pp, Pt)

to (0.5, 0.3, 0.1, 0.1)5. All the results are based on the

average performance of 100 simulations.

1) The Optimal r: In the first set of simulations,

we evaluated the accuracy of our analytical model in

determining an optimal r value for the TagATune game.

We assumed that the number of puzzles in the system was

infinite, and all of them were unsolved at the beginning

of the simulation (i.e., no labels were discovered for any

3Fortunately, this is not usually a problem, since the number of the
puzzles can be easily increased by adding new puzzles from the Internet.

4Intuitively, tp > ts, since the players tend to pass a puzzle when
they realize it will be difficult to reach an agreement; and ts = tf , since
they are both equal to the average time required for the players to reach
an agreement. Moreover, the players may be forced to terminate a game
round simply because they do not have enough time to finish the puzzle,
i.e., ts > tt.

5It is important to ensure that Ps > Pp, otherwise the players may
feel frustrated when playing the game. Moreover, Pt must be very small
so that the players have sufficient time to solve the puzzles in order to
increase the system efficiency.
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various r settings in both the simulations and
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puzzles). Figure 6 shows the evaluation results in terms of

the system gain for r values between 2 and 30 when the

maximum score value X was fixed at 3. In the figure, the

analysis curve, which is derived by Eq. 12, matches the

simulation curve, and the optimal r values (i.e., those that

yielded the largest system gain) of the two curves are also

comparable.

We also evaluated the relationships between the system

parameters (i.e., Ps, Pp, Pt, and Pf ) and the number of

game rounds required to maximize the system gain r under

OPSA. Figure 7 shows the comparison results for r and

different values of Ps and Pp (X is fixed at 3, Pp = 0,

and Pt = 1−Ps −Pf ). From the results, we observe that

the value of r increases with the values of Ps; whereas,

given the same value of Ps, r is more resilient against

the changes in Pp and Pt values. Clearly, the optimal r

value is highly correlated to the probability of achieving

an agreement in a game round; that is, the higher the

probability, the larger value of r will be.
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schemes with various numbers of puzzles,
where X is set to 3 and the system gain is cal-
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2) Comparison of RPSA, FPSA, and OPSA: Here, we

evaluate the three puzzle selection algorithms on input-

agreement and inversion-problem games. In the simulation,

we set X = 3 and calculate the system gain after 5,000

agreements are reached in each simulation run. Let M

denote the total number of puzzles in the system. The

simulation results are shown in Figure 8.



The results in Figure 8 show that when M is small

(say, smaller than a threshold M ′), the three algorithms are

comparable in terms of the system gain achieved. However,

when M is larger than M ′, the system gain of OPSA

remains constant regardless of the changes in the values

of M . In contrast, the system gain of FPSA and RPSA

degrades as the value of M increases, although RPSA

degrades slightly less than FPSA when M is very large.

More precisely, the threshold M ′ represents the minimal

number of puzzles required to achieve the maximum

system gain (i.e., M ′ = N = 5000/r). Since X = 3,

we know that r = 3 (by Eq. 13). Therefore, in this case,

M ′ = 5000/3 ≈ 1667. The results indicate that, under

the OPSA scheme, the TagATune game must maintain at

least a certain number of puzzles to achieve the maximum

system gain6; otherwise, it will favor the RPSA and FPSA

schemes because their performance is comparable to that

of OPSA and they are easy to implement.

VII. Discussion

We have presented an analytical model for evaluating

the system gain of three types of GWAP systems. In

addition, we have proposed the Optimal Puzzle Selection

Algorithm (OPSA), which strategically selects the puzzles

that should be played next in order to achieve the largest

possible system gain. However, there are some issues that

have yet to be addressed. Below, we briefly discuss those

issues and suggest possible solutions.

First, the proposed analytical model is only valid for

two-player GWAP systems. However, recent studies have

6Fortunately, this is not usually a problem, since the number of the
puzzles can be easily increased by adding new puzzles from the Internet.

reported that multi-player games should improve the per-

formance (i.e., the efficiency and quality) of future GWAP

systems [11]. Therefore, extending the proposed model

to support multi-player GWAP systems as well as other

emerging types of GWAP games (e.g., mobile GWAP

systems) would be beneficial.

Second, in this study, we assume that each game round

produces an outcome with a positive score. However,

it is possible for a round to have a negative outcome

(e.g., if incorrect labels are assigned either intentionally

or accidentally). Thus, we need a validation mechanism

to examine the outcomes of games [16]. Moreover, it

is necessary to extend the proposed analytical model to

consider scenarios of zero and negative outcomes for more

general cases. We defer a detailed evaluation of this issue

to a future work.

Finally, our current analytical model does not consider

the factor of player diversity, such as the player’s age,

gender, interests, language proficiency, education, and oc-

cupation, in the design of GWAP systems. Since it is

widely accepted that diversity is a key factor in improving

efficiency, productivity, and overall success [13], GWAP

systems would benefit substantially by embracing the

diversity of players. To this end, it is necessary to combine

research on human computation and social networks, and

design a set of player selection strategies to better utilize

player diversity in GWAP systems. Again, we leave a

detailed discussion of this issue to future work.

VIII. Conclusion

In this paper, we have studied GWAP systems, which

represent an emerging human computation paradigm, and



proposed a metric called system gain for evaluating a

game’s performance. Moreover, we argue that GWAP

systems need to be played with strategies in order to

collect human intelligence in a more efficient manner.

Based on our analysis, we propose and implement the

Optimal Puzzle Selection Algorithm (OPSA) to provide

guidelines for improving GWAP systems. Using a compre-

hensive set of simulations, we investigated the properties

of GWAP systems, and demonstrated that the proposed

OPSA scheme substantially outperforms other schemes in

all test cases. Furthermore, the proposed analysis is simple

and applicable to other human computation games, and the

proposed puzzle selection strategy shows promise for use

in the design and implementation of future GWAP systems.
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