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Abstract 

In this paper, we propose a novel binarization method for document images pro-

duced by cameras. Such images often have varying degrees of brightness and re-

quire more careful treatment than merely applying a statistical method to obtain a 

threshold value. To resolve the problem, our method divides an image into several 

regions and decides how to binarize each region. The decision rules are derived 

from a learning process that takes training images as input. Tests on images pro-

duced under normal and inadequate illumination conditions show that our method 

yields better visual quality and better OCR performance than three global binari-

zation methods and four locally adaptive binarization methods. 

Keywords: document image binarization, global threshold, image processing, lo-

cal threshold, multi-label problem, non-uniform brightness, support vector ma-

chines 

1. Introduction 

Binarizing images of documents captured with camera-equipped electronic devices, such 

as PDAs or cellular phones, presents a new challenge. The captured content can be transformed 

in various ways. For example, French content can be translated into English, or information on 

a business card can be identified and stored in proper categories, such as name, address, tele-

phone number, etc. The new challenge to binarization arises because such images are produced 

under illumination conditions that are inferior to those found in a scanning environment. As a 

 



 

result, there are varying degrees of brightness over the images. If we simply apply a global 

threshold, as we do with scanned images, the binarized results could be too bright in one area 

and too dark in another area. A more effective way of binarizing such images is therefore de-

sired. 

Before discussing the problem in detail, we briefly review binarization methods proposed 

in the literature. Following Sezgin and Sankur [1], we classify the methods into six categories. 

Histogram-based methods: These methods determine the binarization threshold by 

analyzing the shape properties of the histogram, such as the peaks and valleys (Sezan [2]), or 

the concavities (Rosenfeld and Torre[3]). Pavlidis [4] constructs a histogram by using 

gray-image pixels with significant curvature, or second derivative, values and then selects a 

threshold based on the histogram. 

Clustering-based methods: The threshold is selected by partitioning the image’s pixels 

into two clusters at the level that maximizes the between-class variance (Otsu [5]), or mini-

mizes the misclassification errors of the corresponding Gaussian density functions (Kittler and 

Illingworth [6]). 

Entropy-based methods: These methods employ entropy information for binarization 

(Kapur et al. [7]). 

Object attribute-based methods: These methods select the threshold based on some 

attribute quality (e.g., edge matching of Hertz and Schafer [8]) or the similarity measure be-

tween the original image and the binarized image (Huang and Wang [9]). 

Spatial binarization methods: These methods binarize an image according to the high-

er-order probability or the correlation between pixels (Abutableb [10]). 

Locally adaptive methods: These methods compute a local threshold based on the in-

formation contained in the neighborhood of each pixel, or in the region of the image. In 

Bernsen’s method [11], for example, the threshold is a function of the lowest and highest gray 

values; however, in Niblack’s method [12], it is a function of the mean and the standard devi-
 



 

ation of the gray scales. Taxt et al. [13] apply the EM algorithm to compute the local threshold, 

while Eikvil et al. [14] apply Otsu’s method to compute it. Mardia and Hainsworth [15] 

compute the local threshold based on the estimation of two-point spatial covariance. Chow and 

Kaneko [16], and Nakagawa and Rosenfeld [17], compute the local threshold by analyzing the 

bimodality of gray values. The threshold can also be determined by comparing a pixel’s gray 

value with the average gray value of the pixels in its neighborhood (White and Rohrer [18]), or 

its local variance (Yasuda [19]). Sauvola and Pietikäinen [20] (also, Sauvola et al. [21]) first 

partition an image into windows and rapidly classify each window into background, picture 

and text. They then apply various binarization rules to the different types of window. Kim [22] 

modifies Sauvola and Pietikäinen’s approach by introducing more than one window size for 

textual content. As an alternative to the above approaches, some special features extracted in 

the neighborhood of a pixel can be used to determine the local threshold. Examples are gradient 

information (Trier and Taxt [23], Parker [24], and Yanowitz and Bruckstein [25]), and cha-

racter stroke width (Kamel and Zhao [26], Yang and Yan [27], and Ye et al. [28]). 

If a binarization method computes a threshold for an entire image, it is called a global 

method. Trier and Taxt [29] evaluated four such methods ([5-7] and [10]) and concluded that 

Otsu’s approach [5] outperforms the other three. On the other hand, if a method computes a 

threshold for the neighborhood around each pixel or for each designated block in the image, it 

is called a local method. Trier and Jain [30] evaluated some of these methods ([11-16], [18], 

and [23-25]) and concluded that those proposed by Bernsen [11], Niblack [12] and Eikvil et al. 

[14] are the top-ranked local threshold methods in terms of the error rate and rejection rate for 

character recognition, and also for the visual criterion. More complete surveys of image thre-

sholding techniques can be found in [1] and [29-35]. 

As noted earlier, using cameras to produce document images creates a new challenge for 

document image binarization. To address the problem, Park et al. [36] proposed block adaptive 

binarization of business card images produced by a PDA camera. This method is very similar to 
 



 

that of Eikvil et al. [14], which partitions an input image into blocks. For a given block, b, a 

larger concentric block, denoted as L(b), is found and Otsu’s method is applied to it. If the 

difference between the means of two classes, determined by Otsu’s method, exceeds a certain 

threshold, block b is classified as a content block; otherwise, it is classified as a background 

block. Content blocks are binarized according to Otsu’s thresholds, while background blocks 

are set directly to white or black based on the average of gray values found in them. The me-

thod in [36] differs from that of [14] in the way content blocks are differentiated from back-

ground blocks, and also in the way the sizes of b and L(b) are set. 

Our method also divides a document image into smaller areas, but differs from the me-

thods proposed in [14] and [36] in a number of respects. For example, instead of dividing an 

image into fixed-size blocks, we divide it into k×k regions, using the value of k obtained in 

experiments. Dividing each image into the same number of regions ensures that the binariza-

tion effect is relatively invariant with respect to the resolution of the camera. Within each re-

gion r, one of the following four actions is applied: set the whole of r to black, set the whole of 

r to white, use Otsu’s method to compute the threshold for r, or use the smallest Otsu threshold 

in the neighboring regions as the threshold for r. A learning process is used to establish the 

rules for deciding which of the above actions should be adopted for each region. The rules are 

expressed as decision functions, which take a number of features extracted from r as input. The 

experiment results demonstrate that the above factors have a significant impact on the suc-

cessful performance of our method. 

The crucial step in our approach is establishing rules to decide which action should be 

applied to each sub-divided region. To do this, we utilize a machine learning approach, namely, 

the support vector machine (SVM) classification method [37-38], which represents a major 

development in pattern classification research. Two innovations of SVM are responsible for its 

success: (1) the ability to find a hyperplane that divides samples into two groups with the 

widest margin between them; and (2) the extension of the concept in (1) to a high-
 



 

er-dimensional setting using a kernel function to represent a similarity measure on that setting. 

Both innovations can be formulated in a quadratic programming framework whose optimal 

solution is obtained in a reasonable amount of time. This makes SVM a practical and effective 

solution for many pattern classification problems. In this paper, we divide training images into 

a number of regions and label the appropriate actions for them, after which we commence the 

SVM learning process and construct the decision functions. Since the total number of regions is 

relatively small, compared to the alternative approach in which pixels are labeled, it is rela-

tively easy for humans to label the regions using a graphic-user interface. The proposed bina-

rization method thus constitutes an interesting application of the SVM approach in the area of 

image analysis. 

The remainder of the paper is organized as follows. In Section 2, the proposed binariza-

tion method is introduced. In Section 3, we discuss the learning algorithm. Section 4 details the 

experiment results. Then, in Section 5, we present our conclusions. 

2. The Proposed Binarization Method 

As our approach involves the computation of thresholds using Otsu’s method, we begin 

by giving a brief summary of that method. Given a gray-scale image, Otsu’s method sets a 

threshold thrl as follows: 
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, and pm is the proportion of pixels in the image whose gray scale is m for m = 1, 

2, …, 256. It then designates a pixel p as black, if p’s gray scale is less than or equal to thrl; or 

white otherwise. 
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When the background and foreground intensities are well separated, Otsu’s method yields 

good binarized results. However, if the image intensities are inseparable, the resulting thre-

 



 

shold value is unsuitable. Fig. 1a shows a document image taken by a camera. From the his-

togram of the image, shown in Fig. 1b, we observe that the gray scales associated with the 

foreground pixels are mixed with those associated with the background pixels; thus, it is dif-

ficult to determine a good threshold value for binarization. In fact, when applying Otsu’s me-

thod, we find that the threshold value is 185, causing part of the image to become blurred. 

Clearly a different binarization solution is required. 

    
 (a) (b) 

 
 (c) 
Fig. 1. (a) A document image obtained by a camera under the inadequate illumination 
condition. (b) The histogram of (a). (c) The document image binarized using Otsu’s 
method. 

An immediate solution is to divide an image into several regions and apply a thresholding 

method to each region separately. However, the image should not be divided according to the 

layout structure of the document, since the whole image (shown in Fig. 1a) falls within the 

same text region of the layout structure, while the brightness varies extensively over the region. 

 



 

Instead, we divide the image into equal-sized regions. For example, we divide the image in Fig. 

2a into 3×3 regions and apply Otsu’s method to obtain a local threshold (LT) for each region. 

The Otsu thresholds usually vary according to the regions. For example, in Fig. 2b, the thre-

sholds are 204 over region A and 156 over region B. The resulting binarized image, shown in 

Fig. 2b, is more satisfactory than the result shown in Fig. 1c. 

   
 (a) (b) 
Fig. 2. (a) A raw image partitioned into 3×3 regions. (b) The binarized image using 
Otsu’s method to find the local threshold for each region. 

Even so, using Otsu threshold as a local threshold can yield poor results for regions 

containing background pixels only. For example, region C in Fig. 3a would be improperly 

binarized, as shown in Fig. 3b, if the Otsu threshold (= 162) were employed as the LT. In fact, 

setting the LT to 0 would yield a satisfactory result, as shown in Fig. 3c. A reasonable condition 

for setting the LT to 0 is to take reference of the μ and σ values of a given region, which are the 

mean and variance of C’s gray values respectively. When the σ value is high, there is good 

mixture of black and white pixels, so we can use the Otsu threshold as the LT. On the other 

hand, when the σ value is low, we can set the LT to 0, provided the μ value is high. Fig. 3 is an 

example of the latter case, where the σ value of region C (= 9.3) is low. Thus, it is reasonable to 

set the LT of C to 0, since its μ value is 158 – a rather high value. 

 



 

 

  (a) 

   

 (b) (c) 
Fig. 3. (a) An original gray-scale image. (b) The image binarized using Otsu’s me-
thod to find a local threshold for each region. (c) The local threshold is set to 0 for 
region C. 

If the σ and μ values of a region are both low, it is reasonable to set the LT to 255. Fig. 4a 

provides such an example, in which the σ values of regions D, E, and F (= 7.1, 5.1, 4.6, re-

spectively) are low and their μ values (= 34, 32, 29, respectively) are also low, since these 

regions are parts of a figure. Using Otsu’s threshold as the LT would turn some of the pixels 

white, as shown in Fig. 4b. Instead, 255 could be a better LT, as shown in Fig. 4c. 

 



 

 
 (a) 

    

 (b)  (c) 

Fig. 4. (a) An original gray-scale image. (b) The image binarized using Otsu’s me-
thod to find a local threshold for each region. (c) The local thresholds for regions D, E, 
and F are set to 255. 

In Fig. 5a, region G is filled largely with white pixels, and some neighboring regions are 

also dominated by white pixels. In this case, using Otsu’s threshold (= 161) as the LT would 

turn many white pixels black, as shown in Fig. 5b. Instead, the lowest neighboring Otsu thre-

shold (= 106) serves as a better LT. Here, the minimum value is obtained from region H, which 

has a good mixture of black and white pixels, as shown in Fig. 5c.  

 



 

 

 (a) 

   
 (b) (c) 
Fig. 5. (a) An original gray-scale image. (b) The image binarized using Otsu’s me-
thod to find a local threshold for each region. (c) The local threshold is set to the 
minimum of the neighboring thresholds for region G. 

The above examples show that there are four possible actions we can take for each region 

r, namely: set the LT of r to 0, 255, TOtsu(r), or Tmin(r), where TOtsu(r) is the Otsu threshold for r, 

and 

min Otsu Otsu
( )

( ) min ( ), min ( )
s r

T r T r T s
∈Λ

⎧ ⎫= ⎨ ⎬
⎩ ⎭ ,                      (2)

 
where Λ(r) is the set of neighboring regions of r. The following features help determine which 

action would be appropriate for each region: TOtsu(r)-Tmin(r), μ(r), and σ(r); the last two terms 

are, respectively, the mean and the standard deviation of the distribution of gray-values in r. 

In summary, we extract the following features from each region r: 

Feature 1: TOtsu(r)-Tmin(r)  

 



 

Feature 2: μ(r); 

Feature 3: σ(r). 

From these features, we must decide which of the following actions would be the most ap-

propriate for binarizing region r: 

Action 1: set LT of r to 0; 

Action 2: set LT of r to 255; 

Action 3: set LT of r to TOtsu(r); 

Action 4: set LT of r to Tmin(r). 

3. Constructing Adaptive Binarization Rules Using Support Vector 

Machines 

Having specified the three features, we use the SVM method to determine which binari-

zation action to take for each region. SVM provides a learning algorithm that constructs deci-

sion functions from training data. We assume that a set of labeled training samples (x1, y1), …, 

(xn, yn) is given, where xi is a vector in the d-dimensional Euclidean space Rd and yi is the label, 

or class type, of xi for i = 1, 2, …, n. A decision function is of the form 

1
( ) ( , ) ,n

i i ii
f y kα β

=
= +∑x x x                         (3) 

where x∈Rd is a test sample, αi is a positive quantity derived in the learning process, β is a bias 

term, and k(xi, x) is a kernel function (see [37]), for i = 1, 2, …., n. The training samples xi for 

which αi > 0 are called support vectors. In fact, if we only retain the vectors on the right-hand 

side of (3), we get exactly the same decision function. SVM is especially effective for binary 

classification problems in which an object is assigned one of two labels. In such cases, a de-

cision function assumes only two values, which are the same as the two labels in question. It is 

thus called a binary decision function. Assuming that the two labels are –1 and 1, a binary 

decision function works in such a way that if f(x)≧0, x is assigned label 1; otherwise, it is 

assigned label –1. 

 



 

To apply SVM to the binarization problem, we must first map the problem to the SVM 

setting. We do this by dividing each image into k×k regions, which constitute our training 

samples. How to find an appropriate value of k is considered in Section 4.2. From each region r, 

we extract the three features, TOtsu(r)-Tmin(r), μ(r), and σ(r), to form a 3-dimensional feature 

vector; thus, the dimension of our Euclidean space is fixed at 3. The four actions are then taken 

as four labels so that if an action y is deemed appropriate for r, the latter is assigned the label y. 

Two other problems must also be addressed. First, for certain regions, there may be more 

than one appropriate binarization action. We can observe this problem by examining the image 

in Fig. 6a, which is divided into 9 regions from A to I. Among the regions, A and C carry a 

single label, Tmin, D to I carry labels TOtsu and Tmin, and B carries 0 and Tmin. Details are given in 

Table 1. To demonstrate that multiple labels are reasonable for some of these regions, in Fig. 6b, 

we show the binarized result using a common threshold Tmin as the LT of each region. 

Meanwhile, Fig. 6c shows the binarized result using the alternative threshold to Tmin as the LT 

of those regions for which two options are allowed. Both binarized results are acceptable. Thus, 

when preparing training data for the learning process, we allow multiple labels to associate 

with the training samples. We find that, among the 1,098 regions obtained in our data set, 352 

regions carry a single label and the remaining 746 regions carry multiple labels. A similar 

situation can be found in text categorization (Joachims [39], Schapire and Singer [40]) or scene 

classification (Moutell [41]). For example, a news article can belong to two categories, such as 

earn and trade in the Ruthers-21578 dataset (see [39-40]). 

 

 



 

 
 (a) 

   
 (b) (c) 
Fig. 6. (a) An original gray-scale image. (b) The image binarized using Tmin as the LT 
of all regions. (c) The image binarized using the alternative to Tmin as the LT of those 
regions for which two options are allowed. 

Table 1. The labels of regions A to I and the values of TOtsu and Tmin for each region. 

Region Label TOtsu Tmin 
A Tmin 138 106 
B 0, Tmin 151 106 
C Tmin 147 106 
D TOtsu, Tmin 106 97 
E TOtsu, Tmin 109 97 
F TOtsu, Tmin 107 99 
G TOtsu, Tmin 97 97 
H TOtsu, Tmin 100 99 
I TOtsu, Tmin 99 99 

 

In addition to the multi-label problem, we also need to deal with the multi-class problem. 

That is, there are four labels or class types in our application, but SVM can only deal with two 

class types at a time. To resolve these two problems we follow the solution proposed in [39] by 

using SVM to construct as many decision functions as there are labels (see also Bottou [42]). 

 



 

Therefore, assuming that the four labels in our application are {1, 2, 3, 4}, we use SVM to 

construct four binary decision functions {f1, f2, f3, f4}. 

To construct fi for i = 1, 2, 3, 4 in the training phase, we divide the training samples into 

two groups. The first group, called the positive group, consists of samples with label i, and the 

second group, called the negative group, consists of samples without label i. Thus, if a sample 

carries labels j and k, it will be assigned to the positive group associated with fj and the positive 

group with fk, but not to the negative group associated with fj or fk. In the testing phase, when a 

test sample x is given, we compute fi(x) for i = 1, 2, 3, 4 and assign label l to x when 

1,2,3,4
arg max ( )i

i
l

=
f= x .                                    (4) 

4. Experiment Results 

In this section, we discuss how to prepare training data, how to divide document images, 

and how to use SVMs for deriving decision functions. Furthermore, we compare the results 

obtained by our method with three global methods and four locally adaptive methods. Finally, 

we conduct sensitivity studies on the parameters and the types of images used in the experi-

ments. 

4.1 Data Preparation 

We collected 122 hardcopy documents from newspapers and magazines, and used an 

ORITE I-CAM 1300 one-chip color camera, with a resolution of 1,300,000 pixels, to photo-

graph them. We then stored the photographs as gray-scale images consisting of 320×240 pixels. 

The images were produced under two conditions: the normal illumination condition and the 

inadequate illumination condition. In the former, the room light was on and there were no ob-

structions between the light and the documents, resulting in more or less uniform brightness 

across the images. In the latter, although the room light was on, humans or objects cast shadows 

over the documents, so that the shadowy area appears darker than the rest of the image. In total, 

 



 

60 images were produced under normal illumination and 62 were produced under inadequate 

illumination. 

We use three measures to evaluate a given binarization method’s performance on the 122 

camera images. Let A = the number of characters in the 122 camera images (there are actually 

3,559 characters); B = the number of characters detected by ABBYY, an OCR software system; 

and C = the number of characters correctly recognized by ABBYY. The three measures, ex-

pressed in percentages, are: 

Recall rate = C/A; 

Precision rate = C/B; and 

F1 score, derived by the following formula [43-44] 

 rate)precision rate recall(
rateprecision rate recall)1(

2

2

+×
××+

=
β
β

βF ,                    (5) 

where β is set to 1. 

4.2. Determining the Number of Regions 

We divide each image into k×k regions and apply our binarization method to each region. 

To determine an appropriate value for k, we experimented with various values for k = 2, 3, …, 

10. One possible way to find the best value of k would be to apply SVM training to each k and 

then use ABBYY to evaluate the binarized results of each k. However, this would force us to 

label the regions that are generated in all possible divisions, which would be rather demanding. 

An alternative approach is to apply a simple but reasonable binarization scheme to evaluate the 

binarized results for each k, and then choose the k that yields the best OCR performance. 

We propose the following simple binarization scheme. For a given region r, if σ(r) is 

larger than a specified threshold σ0 (we set σ0=15), we simply set LT = TOtsu(r); otherwise, we 

classify the entire r as white if μ(r)>μ0, or black if μ(r)≦μ0, where μ0 is 128 (= 256/2). Having 

binarized all 122 images by means of this simple scheme, we apply ABBYY to the binarized 

images. Table 2 shows the recall rate, precision rate, and F1 score of the OCR results. All three 

 



 

measures suggest that dividing an image into 3×3 regions produces the best results. 

Note that this simple binarization scheme sets an entire region to white or black, according 

to two thresholds, μ0 = 128 and σ0 = 15 respectively. There is no doubt that the value of 128 is 

robust for μ0, since a totally white or black region usually has a mean value far away from 128. 

To test the robustness of 15 for σ0, we changed σ0 to 10 and found that the 3×3 division still 

achieves the best OCR performance using the new value. 

Having determined that k = 3 is the most appropriate value, we fetch the regions derived 

by the 3×3 division of all 122 images. There are 1,098 such regions, each comprised of 107×80 

pixels. These regions constitute our training samples. 

Table 2. The OCR accuracy derived by applying the simple binarization scheme to the 122 
images, sub-divided into k×k regions for k = 2, 3, …, 10. 

Number of Regions Recall Rate Precision Rate F1 Score 
2×2 93.73 93.76 93.74 
3×3 93.80 95.15 94.46 
4×4 92.77 94.82 93.78 
5×5 92.58 92.75 92.65 
6×6 91.86 93.85 92.84 
7×7 92.80 93.84 93.31 
8×8 92.06 93.47 92.74 
9×9 91.86 94.11 92.97 

10×10 91.29 93.54 92.40 
 

4.3. Constructing Decision Functions with SVM 

As stated in Section 3, SVM is employed to construct the decision functions. In addition, 

we use the LIBSVM toolkit [45] to conduct SVM training. We need to perform four SVM 

training operations, each of which divides training samples into two groups: one group consists 

of all samples with label i, and the other consists of all samples without label i for i = 1, 2, 3, 4. 

We employ the soft-margin version of SVM (see [39] and [48]) and the RBF kernel function. 

The value range of the penalty factor C is set to {10a: a = -1, 0, …, 5}. The RBF function in-

volves a parameter γ, whose value range is set to {10b: b = -8, -7, …, 0}. To find the best values 

 



 

for (C, γ), we perform a cross validation operation whereby all samples employed in the ex-

periment are partitioned into five folds. We conduct five tasks, using four folds in each task as 

training data to construct SVM classifiers and the remaining fold as test data. We then select the 

values of (C, γ) that maximize the average accuracy rates in the five tasks. By so doing, we find 

the optimal (C, γ) to be (10, 0.1), resulting in a 98.57% average accuracy rate (see Table 3). 

The four decision functions {f1, f2, f3, f4} derived from the SVM training jointly assign 

label l0, defined in (4), to the test samples. A test sample is deemed correctly classified if one of 

its labels matches l0. The binarized images generated by the above method were then tested on 

the ABBYY software. In this test, we obtained 97% of the F1 score (see Table 3). 

As well as constructing decision functions from multiple-labeled training samples, we 

also conducted an experiment in which each training sample was assigned a single label chosen 

randomly from the multiple labels the sample carries. From the experiment results, also shown 

in Table 3, we conclude that training SVM decision functions with multiple-labeled samples 

achieves a better cross-validation result and OCR performance. 

Table 3. Results derived from multiple-label and single-label assignments. 

Labeling Method Average Accuracy Rate of 
Five-Fold Cross Validation 

F1 Score for 
OCR Performance 

Multiple Labels 98.57 97.0 
Single Label 96.56 95.7 

 

4.4. Comparisons with Other Binarization Methods 

In order to make comparisons, we implemented seven other binarization methods. Three 

of them are global threshold methods proposed by Rosenfeld and Torre [3], Pavlidis [4], and 

Otsu [5] respectively; the other four are locally adaptive methods proposed by Bernsen [11], 

Niblack [12], Taxt et al. [13], and Eikvil et al. [14] respectively. For the parameters involved in 

the three locally adaptive methods, we adopted the values suggested in [30]. We would have 

liked to implement the method proposed by Park et al. [36], as it had been explicitly applied to 

 



 

camera images. However, we were not given the values of parameters for this method. We 

therefore implemented Eikvil et al.’s method instead, because there is a high degree of simi-

larity between the two methods. 

Figs. 7 to 10 show four camera images and their binarized results. The raw images are 

shown in Figs. 7a to 10a. The images in 7a and 8a were taken under the normal illumination 

condition, while those in 9a and 10a were taken under the inadequate illumination condition. 

Following each raw image, we show its binarized results. To determine the impact of the dif-

ferent binarization methods on character recognition, we fed all the binarized results into the 

ABBYY software. Table 4 shows the OCR performance on (i) images produced under a normal 

illumination condition, (ii) images produced under the inadequate illumination condition, and 

(iii) all images. The boldface figures in the table indicate the best performances. 

 



 

   
(a) (b) (c) 

   
 (d) (e) (f) 

    
 (g) (h) (i) 

Fig. 7. (a) A raw image taken under the normal illumination condition. The image 
binarized by: (b) our method, (c) Otsu’s method, (d) Bernsen’s method, (e) Niblack’s 
method, (f) Eikvil et al.’s method, (g) Rosenfeld and Torre’s method, (h) Pavlidis’s 
method, and (i) Taxt et al.’s method. 
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 (g) (h) (i) 

Fig. 8. (a) A raw image taken under the normal illumination condition. The image 
binarized by: (b) our method, (c) Otsu’s method, (d) Bernsen’s method, (e) Niblack’s 
method, (f) Eikvil et al.’s method, (g) Rosenfeld and Torre’s method, (h) Pavlidis’s 
method, and (i) Taxt et al.’s method. 
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Fig. 9. (a) A raw image taken under the inadequate illumination condition. The image 
binarized by: (b) our method, (c) Otsu’s method, (d) Bernsen’s method, (e) Niblack’s 
method, (f) Eikvil et al.’s method, (g) Rosenfeld and Torre’s method, (h) Pavlidis’s 
method, and (i) Taxt et al.’s method. 
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Fig. 10. (a) A raw image taken under the inadequate illumination condition. The 
image binarized by: (b) our method, (c) Otsu’s method, (d) Bernsen’s method, (e) 
Niblack’s method, (f) Eikvil et al.’s method, (g) Rosenfeld and Torre’s method, (h) 
Pavlidis’s method, and (i) Taxt et al.’s method. 

 



 

Table 4. OCR performance of the eight binarization methods. 

Binarization Method Ours Otsu’s Bernsen’s Niblack’s
Eikvil

et al.’s

Rosenfeld 

and Torre’s 
Pavlidis’s 

Taxt 

et al.’s

Images Produced under the 

Normal Illumination Con-

dition 

Recall  97.40 94.00 87.50 77.21 91.54 82.13 82.58 88.45

Precision 97.08 94.60 37.14 42.04 89.23 90.41 84.17 51.56

F1 97.24 94.50 53.12 54.44 90.37 86.07 83.37 65.15

Images Produced under the 

Inadequate Illumination 

Condition 

Recall  96.84 84.61 85.31 85.72 89.06 57.62 78.03 89.62

Precision 96.68 93.10 44.61 42.53 78.95 92.15 79.47 60.67

F1 96.76 88.64 58.58 56.85 83.70 70.90  78.74  72.36 

All Images 

Recall  97.12 89.31 86.41 81.47 90.30 69.88  80.31  89.04 

Precision 96.88 93.85 41.38 42.29 84.09 91.28  81.82  56.12 

F1 97.00 91.52 55.96 55.67 87.04 79.16  81.06  68.84 

 

Based on the above results, we make the following observations: 

(1) In terms of OCR performance, our method outperforms the other methods by sub-

stantial margins. It also produces satisfactory binarized results for camera images taken under 

both normal and inadequate illumination conditions. 

(2) Otsu’s method produces acceptable binarized results for images taken under the 

normal illumination condition, provided that the foreground area makes up a relatively high 

proportion of the image, as shown in Fig. 7c; however, the method performs poorly on images 

containing only a few characters, as shown in Fig. 8c. It also has difficulty with images taken 

under inadequate illumination conditions. The other two global threshold methods (i.e., Ro-

senfeld and Torre’s method and Pavlidis’s method) work rather well on images containing only 

a few characters (Fig. 8g and 8h), but their performance is inconsistent on other images. 

(3) Although the four locally adaptive methods perform well in foreground areas, the 

methods of Bernsen, Taxt et al., and Niblack may create pepper noise in background areas. 

Eikvil et al.’s method performs relatively better in background areas, but it has difficulty if the 

brightness of such areas varies beyond a certain level, as shown in Fig. 10f. 

(4) By adjusting some parameters (the block size, for example) of the three locally adap-

 



 

tive methods, we can improve the visual quality of some binarized images at the expense of 

other images. This means that none of three methods can binarize all images well under a set of 

specific operating parameters. 

4.5. Sensitivity Studies 

Our method relies on the results of two learning processes. The first process determines 

the value of k for the k×k division of images, while the second constructs four decision func-

tions. It is natural to ask: How sensitive is our binarization method to the results of the learning? 

For example, what would happen if we construct the decision functions based on a 5×5 division 

of images in the training phase, and apply them to the 5×5 division of images in the testing 

phase? We show the OCR performance of this division in the second row of Table 5, with the 

OCR performance of the 3×3 division shown in the first row. Interestingly, the different deci-

sion functions yield almost the same OCR performance. 

Table 5. The OCR performance of the decision functions trained on k×k divisions of images 
and applied to k×k, where k = 3 or 5. 

Division Number Recall Rate Precision Rate F1 Score 
3×3 97.12 96.88 97 
5×5 97.19 96.75 96.97 

 

Since all our learning processes are based on images taken by one type of camera, we 

want to determine if we can obtain satisfactory binarized results by applying our decision 

functions to images produced by other types of camera. To find out, we produced two raw 

images using a Logitech QuickCam Pro 4000 and a Logitech QuickCam Zoom. The images, 

which were taken under the inadequate illumination condition, are shown in Figs. 11a and 11b 

respectively. We apply the same decision functions derived in the learning process using im-

ages produced by an ORITE I-CAM 1300 one-chip color camera, as noted earlier. The bina-

rized results of the two images, shown in Figs. 11c and 11d respectively, appear to have fine 

visual quality. This demonstration by no means implies that the same decision functions can 

 



 

yield good binarized results of images produced by all possible types of camera. However, it 

does suggest that the learned decision rules based on images created by one type of camera 

achieve satisfactory results when applied to images created by cameras manufactured with 

similar technology and specifications. This may be acceptable in terms of applications, since 

the binarization rules are likely to be run by an operating system embedded in the camera and 

manufacturers would like those rules to be tuned to their type of camera. 

 

   
 (a)  (b) 

   
 (c)  (d) 

Fig. 11. Binarization results of an image produced under the inadequate illumination 
condition. (a) Raw image generated by Logitech QuickCam Pro 4000. (b) Raw image 
generated by Logitech QuickCam Zoom. (c) Binarized result of (a). (d) Binarized 
result of (b). 

It would be reasonable to ask: How does our method handle documents that contain both 

text and pictures? In fact, the co-existence of text and pictures has relatively little effect on our 

method’s performance. To demonstrate this assertion, Fig. 12a shows a document image with 

both types of content taken under a normal illumination condition, while Fig. 13a shows such 

 



 

an image taken under the inadequate illumination condition. The results, shown in Fig. 12b and 

13b, respectively, demonstrate that binarization is not affected by the occurrence of both text 

and picture content. Moreover, in Table 6, we detail the OCR performance of ABBYY on the 

binarized images to further demonstrate that pictures do not affect text recognition. 

   

 (a)  (b) 
Fig. 12. (a) A raw image taken under a normal illumination condition. (b) The image 
binarized by our method. 

     

 (a)  (b) 

Fig. 13. (a) A raw image taken under the inadequate illumination condition. (b) The 
image binarized by our method. 

Table 6. OCR performance on the images binarized by our method. 

 Recall Rate Precision Rate F1 Score 
Binarized Image in Fig. 12b 96.43 96.43 96.43 
Binarized Image in Fig. 13b 98.46 95.52 96.97 

 

 



 

5. Conclusion 

Document images with non-uniform brightness require binarization methods with deli-

cate local thresholds that must be determined according to various conditions. For this purpose, 

we propose a region-based binarization method. We use the SVM method to construct decision 

functions from the information provided by training samples and use these rules to decide what 

binarization action to take for each region. The experiments produce favorable results, judged 

in terms of the visual quality of images and also in terms of the OCR performance. 
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