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ABSTRACT 

EMWF (embedded workflow framework) is an open source middleware for flexible (i.e., 
configurable, customizable and adaptable) automation and assistive devices and systems, 
referred to collectively as SISARL (Sensor Information Systems for Active Retirees and 
Assisted Living). Examples include smart medication dispensers, autonomous appliances, 
service robots and robotic helpers for personal and home use, as well as automation tools for 
use in hospitals and long-term care facilities. EMWF 1.0 provides a light-weight workflow 
manager and engines on Windows CE, Windows XP Embedded, and Linux It is for small 
embedded automation devices. EMWF 2.0 will include basic message passing mechanism, 
real-time scheduling capability and workflow communication facility. This paper first gives 
an overview of EMWF 1.0 and then describes these extensions. 
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1 INTRODUCTION 

A major thrust of our recent research has been directed towards advancing the technologies 
for designing and building high-quality personal and home automation and assistive devices and 
systems at low cost. We refer to these devices (and systems) collectively as SISARL (Sensor 
Information Systems for Active Retirees and Assisted Living). Examples include smart 
medication dispensers, autonomous appliances, service robots and robotic helpers (e.g., [1-11]) 
designed to improve the quality of life and self-reliance of elderly, chronically ill or functionally 
limited individuals. SISARL also include automation and point-of-care tools (e.g., [12- 14]) for 
use in hospitals and other care-providing institutions for enhancing the quality and reducing the 
costs of medical and health care. 

Despite vase differences in their purposes and functions, SISARL have many common 
requirements. First and foremost is flexibility; by that, we mean configurability, customizability 
and adaptability. A flexible device can be easily configured to work with a variety of sensors and 
devices, rely on different support infrastructures and operate in different environments. It should 
be easily customizable according to its user’s preferences. The device should be able to adapt to 
serve the user well over time as the need of the user changes.  

We have adopted the workflow approach [15] as a means to achieve flexibility. Basic 
building blocks of a workflow-based device are activities: They are elementary steps of work 
done by the device. Some activities are executable code running on one or more CPU or 
microcontroller. Some activities are done by sensor devices, special purpose hardware and 
mechanical components. A semi-automatic device also has activities that are done by the user(s). 
Activities are composed into module-level components called workflows. The order and 
conditions under which activities in a workflow are executed, the resources (also called 
participants) needed for their execution, and interactions among activities are defined by the 
developer of the workflow. The definition can be in terms of some programming language (e.g., 
C# in Windows Workflow Foundation [16]), a process definition language (e.g., XPDL, WfMC 
standard XML Process Definition Language [17, 18]), or an execution language (e.g., BPEL, 
Business Process Execution Language [19]). Workflows can also be defined graphically [20]: In 
a workflow graph, nodes represent activities or states of the device, and directed edges represent 
transitions between activities or state transitions caused by executions of some activities.. 

To design and implement a workflow-based application, the developer only needs to define 
the workflows in the application and provide the resources (including executable library 
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functions, hardware devices, etc.) required by carried out the activities in them. Execution, 
sequencing and synchronization of activities and workflows are done by a middleware 
component called workflow engine (or engine for short). In essence, the workflow engine 
integrates workflow components dynamically at runtime as specified by the developer. EMWF 
(Embedded Workflow Framework) [21] is such a middleware. Like other workflow management 
system, EMWF also provides a workflow manager for scheduling activities and workflows, 
allocating resources to them and facilitating communication among them. 

Because of the relative ease with which workflow-based applications can be designed, 
implemented and configured, the workflow approach has been widely used in enterprise 
computing systems for automation of business processes. Today, there are standard process 
definition languages and execution languages, as well as matured engines and tools for defining, 
building and executing workflow applications (e.g., [16-20, 22-25]) on enterprise computers and 
mobile devices. They enable business application developers and domain experts with limited 
information technology expertise to tailor complex business processes to individual enterprises 
and across enterprises. EMWF aims to enable embedded devices be built on workflow paradigm. 
Case studies on modeling and design of workflow-based SISARL and their development and 
evaluation [21, 26, 27] have demonstrated to a great extent that componentization and flexibility 
come naturally with workflow-based design for embedded applications as well. 

Following this introduction, Section 2 provides illustrative examples to further elaborate 
workflow-based design and discusses rationales behind EMWF. Section 3 provides an overview 
of EMWF version 1.0 [21]. Section 4 describes extensions designed to provide the workflow 
management system with communication and real-time capabilities and additional requirements 
of EMWF 2.0, the next version of EMWF. Section 5 summarizes the paper. 

2 MOTIVATIONS AND RATIONALES 

Specifically, EMWF provides a workflow manager and engines on Microsoft Window CE , 
Windows XP Embedded and Linux. The engines are written in C in order to keep the memory 
footprint and runtime overhead introduced by the engine small. We focus here on the relatively 
mature Windows versions. Hereafter, by EMWF, we mean these versions except for where it is 
stated otherwise. Descriptions of a Linux version can be found in [21, 28]. 

EMWF engines are designed for embedded applications containing workflows that may run 
at high rates and interact closely with hardware devices. For this reason, existing workflow 
management systems for web-based business applications are not suitable for them. Typical 
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SISARL devices are not as severely power and size constrained as cell phones and PDA’s. 
Consequently, energy consumption and memory footprint requirements for EMWF engines and 
workflow applications are not as stringent as the requirements of engines and applications for 
mobile workflow management (e.g., [23-25]). 

(A) Simple Workflow-Based Devices 

Specifically, EMWF 1.0 is suited for relatively simple devices and system components that 
run on a processor. An example is an automatic vacuum cleaner. Its workflow-based structure is 
shown in Figure 1 for illustrative purpose. Most parts of the devices are built from workflows. 
We omit drivers and components that are hardwired. The rectangular boxes represent activities. 
The activities in the middle dotted box are executed by the workflow engine on a CPU. We call 
them software activities. Embedded devices also have external activities. In this example, they 
are in dotted boxes labeled environment interaction and robot components. External activities are 
carried out by sensor devices, microcontroller and mechanical parts of the device.  

A
Environment 
Interaction Software Workflows Robot Components

Move the robotMove the robotMove the robot

Edge maneuverEdge maneuverEdge maneuver

Sense edgeSense edgeEdgeEdge

20Hz

ContactContactContact
10Hz

TrackTrack
2Hz

Sense contactSense contact

Find obstacleFind obstacle

Track maneuverTrack maneuverTrack maneuver

On  
edge?

No

Yes

No

Yes

Obstacle 
found?

Yes

No

Contact 
maneuver
Contact Contact 

maneuvermaneuver

Contacted

 
Figure 1 Example of a workflow-based device 

Table 1 lists activities that start and stop workflows, and alter the timing and flow paths 
during their executions. These activities are said to be built-ins because they are provided by 
EMWF. The symbols used to represent some of them are from Microsoft Windows Workflow 
foundation (WF) GUI editor [16]. Top five rows lists examples of generic built-ins, including 
start, stop, if else, and wait-for built-ins shown in Figure 1. All applications need some or all 
generic built-ins. The bottom row of Table 1 lists built-ins specifically for robotic behavior 
coordination (BC), including arbiter, the built-in that performs fixed-priority arbitration among 
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edge, contact and track maneuvers in the device in Figure 1. Arbiter is implemented in EMWF 
1.0 with generic built-ins as described in [21]. Table 1 also lists built-in activities to be provided 
by EMWF 2.0, including superposition and voter activities for behavior coordination in robotic 
applications and push data, pull data and mode change activities for all embedded applications.  

Table 1 Built-in activities 
G

en
er

ic
 b

ui
lt-

in
s 

Start Stop While

Route If else (2-way XOR split)

Split Merge

Throw Exception

Execute workflowInvoke workflow

B
ui

lt-
in

s 
fo

r B
C

 

S A V

+
▬

Superposition Arbiter Voter

Mode change
Pull 
data

Push 
data

Wait for events / timers / workflow triggers

Delay /timeout Set events / timers

 

Before moving on, we note that one can easily build devices with different functionalities 
from components by modifying the graphs defining their workflow processes and/or using 
different participants for activities. Indeed, using the same reconfigurable workflows, we can 
change the workflow-based vacuum cleaner shown in Figure 1 into a navigation and propulsion 
component of an intelligent nursing cart by simply changing the workflow graph. By replacing 
the “back and random move” contact maneuver activity used in the vacuum cleaner with a 
“move back and hit” activity, we can change the device and make it behave like a toy sumo.  

(B) Messaging and Real-Time Capabilities 

Many SISARL applications rely on multiple computers, wire and wireless networks, local 
and remote sensors and control devices, and mobile and fixed user interfaces. Examples include 
many mobile robots and automation devices. To illustrate, Figure 2 shows a block diagram from 
[29] containing some of the tasks in Pygmalion, an experimental robot capable of performing 
delivery services. If the robot were workflow based, these tasks would be implemented by 
workflows. According to [29], the bumpers drivers and speed controller run at 1 KHz, and the 
position controller runs at 50 Hz. Obstacle avoidance makes use of the vision system and laser 
range finder. The former processes images captured by a camera to extract vertical lines. 
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Whether a vertical line is an obstacle is determined with the help of the range information 
captured by the laser range finder. Such a robot may also have a speech recognition system so 
that it can capture and interpret voice commands and a speaker location system that pinpoints 
where the speaker is by processing the delay patterns of direct and reflected sound signals. 
Oftentimes, navigation and obstacle avoidance tasks run on a processor while vision system and 
speech related tasks run on a separate processor or processors, and speed and position control 
tasks run on yet another processor.  

Obstacle 
avoidance

Odometer speed
controller

Bumpers 
drivers

Laser range 
finder driver

Kalman Filter

Vision system

NavigationPosition 
control 

Blinkers driver
 

Figure 2 Tasks of a mobile service robot [29] 

To support applications exemplified by Pygmalion, we extended EMWF 1.0 with a low-level 
message passing mechanism that implements push data and pull data built-ins in Table 1. It 
provides the essential low-level support for an end-to-end distributed workflow management 
system over all resources to facilitate the collection of data from sensors, delivery of commands 
to controllers, and monitoring and processing feedbacks from physical processes and so on. 
Section 4 will describe the mechanism.  

Many tasks shown in Figure 2 have real-time requirements: Obstacle avoidance and position 
control are examples. They must complete on a timely basis for the robot to move smoothly at a 
required speed without bumping into obstacles. For such devices, a defect of existing workflow 
management systems, include EMWF 1.0, as well as existing middleware for robotic 
applications [30], is the lack of adequate real-time support. This is the reason for extending 
EMWF 1.0 with an end-to-end scheduler at the higher level and a message scheduler at the 
lower-level. Together with prioritized queues provided by the workflow manager in EMWF 1.0 
for priority-driven CPU scheduling, the two-level scheduler enables the extended EMWF 1.0 to 
support many well known end-to-end scheduling strategies (e.g., [31, 32]).  
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(C) Workflow Communication 

EMWF 1.0 supports event-driven, sequential workflows, but not state machine workflows. 
More seriously, it lacks easy-to-use facilities for invocation of workflows by workflows and data 
exchanges between workflows. These limitations prevent us from using it for complex SISARL 
devices such as iNuC (intelligent nursing cart) [14] shown in Figure 3. 

Hospital server

login server

Patient 
calendars

Electronic 
patient 
records

Server-side
RK & DRM

Management
information

User
calendars &

settings

Local 
storage

WTM

iMANAaA

Interlock
mechanism

Lockers

CUELRK

DRM

UI

LIM

iNuC
Core

iNuC

  (a) 

Methods

Cart Host

Events

Core Services 
(Scheduling, persistence,

Transaction, Tracking)

Runtime Engine

AuthenticationAuthorization WorkTimeManager UserEventLogger

LockerInterlockDataRefresherRecordKeeper iMANAlarms

StateMachine

Service Interfaces MonitorAlertNotifier

DataRefresher

iNuCStateMachine
Workflow instance

MonitorAlertNotifier
Workflow instance

DataRefresher
Workflow instance(s)

Compound 
Activities

Workflow 
Instances

GenericCom

  (b) 
Figure 3 Alternative architectures of iNuC 
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Specifically, iNuC is a mobile medication administration and record keeping tool for nursing 
staffs. Such a cart carries daily supply of medications for each patient cared by the cart user. It is 
designed to be a self-contained unit: During network and hospital-wide server outage, the cart 
reliably maintains all records and synchronizes with the server when the server becomes 
available again. The major component tools and system modules include the user interface (UI), 
authentication and authorization module (AaA), work-time manager (WTM), intelligent monitor, 
alert and notification (iMAN), cart locker interlock mechanism (LIM), record keeper (RK), data 
refresh mechanism (DRM) and cart user event log (CUEL). Figure 3 (a) shows these components 
and the hardwired structure of the current version.  

A hospital typically needs not only full-service carts like iNuC, but also basic mobile carts 
(BaMC). A BaMC works collaboratively with a per patient ward server and relies on the server 
for many functions, including AaA, WTM, and iMAN functions. Moreover, the UI of BaMC 
differs significantly from that of iNuC. Building a BaMC by modifying the way modules are 
integrated in current hardwired version of iNuC shown in Figure 3(a) takes considerably more 
effort than building it from a workflow-base version of iNuC. Figure 3(b) shows a structure for a 
workflow-based iNuC. We are implementing this version to run on Microsoft Windows 
Workflow Foundation (WF) in .NET [16].  

Details in Figure 3(b) are not important for our discussion here. It suffices to say that the 
code developed for the current hardwired version can be reused to provide dynamically linked 
library functions required by activities and workflows. The behavior of the cart and its 
interaction with the user (i.e., the UI) depend almost solely on the iNuC state machine workflow 
shown in the bottom of the figure. We can change an iNuC into a BaMC by replacing the iNuC 
state machine workflow by a BaMC state machine workflow. When implemented on WF, such 
reconfiguration can be done dynamically without having to restart the cart. This is indeed a 
convincing demonstration of the merits of workflow-based design in terms of configurability.  

The graphical or textual definition of the state machine workflow of a cart provides a clear 
specification of the cart behavior. We can use it as such to simulate the cart and user-cart 
interactions in order to assess the usability, correctness and performance of the cart. The 
simulation environment described in [27] is for this purpose. We have used this approach to 
validate and evaluate the design of BaMC and the interaction of the cart with the server and the 
user. Finally, the service interfaces supported by WF makes the dependencies between 
components more explicit. These advantages are important. 
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WF has many shortcomings for applications such as iNuC and Pygmalion, however. Running 
in .NET environment means not only large system resource demands, but also less than ideal 
response times for time critical functions. To provide real-time scheduling capabilities requires 
replacing the default scheduling service by a custom one. This can be done in principle, but a 
custom scheduler in .NET environment is unlikely to give the developer control on scheduling 
and memory management to the degree necessary for many real-time applications. By supporting 
state machine workflows as well as event-driven sequential workflow and service interfaces for 
workflow communications, EMWF 2.0 aims to provide the advantages of WF for embedded 
applications without its shortcomings. 

3 EMWF 1.0 OVERVIEW 

This section presents an overview of the design and structures of EMWF 1.0. It also discusses 
the relative performance of alternative engine architectures.   

(A) SISARL-XPDL 

   The embedded workflow definition language supported by EMWF 1.0 is called 
SISARL-XPDL. It is an extended subset of the WfMC standard XPDL 2.0 [17]. Table 2 gives 
examples of SISARL-XPDL elements. How the elements are used can be deduced by and large 
from their names. We will explain the less obvious ones as needed.  

Table 2 Example of SISARL-XPDL elements 

Resources

Extensions

Workflow 
Data

Workflow
Structure

Workflow
Control

ParticpantType, Participant, Application
FormalParameter, ActualParameter

Period, ExtendedAttributes, BCA

TypeDeclaration, DataType, BasicType, SchemaType, 
DeclaredType, RecordType, DataField, InitialValue

Package, Pool, Lane, WorkflowProcess, BlockActivity, 
Activity, SubFlow, Task, Application, Implementation

Transitions,TransitionRef,TransitionRestriction, Route,
Merge, Split, StartEvent, EndEvent, Condition, 
IntermediateEventTrigger, Deadline, Priority

 

   The elements listed in the first four groups labeled workflow data, structure, control and 
resources are elements from the standard XPDL 2.0. The elements in the group labeled 
extensions are not part of the XPDL. BCA are built-ins activities for behavior coordination, 
including the ones listed in a bottom row in Table 1. Period and ExtendedAttributes enables the 
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developer to specify the execution rates and other attributes of activities and workflows. In 
particular, the developer can inform the workflow manager which workflows are real-time. By 
default, real-time workflows are scheduled on rate-monotonic basis according to their periods. 
The developer can override this commonly used scheduling strategy and tell the workflow 
manager how workflows and activities are to be scheduled via ExtendedAttributes. 

The SISARL-XPDL parser first translates extension elements into standard XPDL 2.0 
elements and then compiles XPDL 2.0 definitions of workflows directly into executable 
workflow scripts. The script is not easily human readable and error-prone to revise. This 
shortcoming will be eliminated in EMWF 2.0.  

(B) Engine Manager 

    Figure 4 shows the general structure of a workflow-based devices and major components 
(i.e., engine manager, workflow manager and workflow processor) of the EMWF 1.0. The XPDL 
term participant in the callout at upper right corner refers to a resource that is managed and 
allocated to workflows by the engine. A participant may be a hardware device (e.g., bar-code 
scanner, motor, sensor and even a CPU), a person, and so on. When assigned to do the work, 
such participants carry out external activities. Participants required by software activities include 
library functions, interfaces and shared resources.  

D
riv

er
s

Executables (.dll or .exe)

Workflow Manager and Processor

Configuration  Interface

Workflow
loader

Engine Manager

Workflow
instances

Workflow variables, 
participants & attributes

.wfs

 
Figure 4 Workflow-based device structure 

   The engine manager manages the configurations of the engine and application workflows. It 
is also responsible for handling user requests and managing their accesses to workflow-related 
definitions and optional contextual information. EMWF 1.0 offers the developer the ability to 
tune the engine via the configuration interface by changing its configuration parameters, which 
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include the maximum numbers of threads and priority levels, and the finest resolution of timers.  
The figure shows the configuration on a target device: Workflow definitions have been parsed on 
a development machine and the resultant workflow scripts are stored in .wfs files. During 
initialization, the engine manager initializes and configures the engine. It then loads all the .wfs 

files of the applications into memory.  

(C) Workflow Manager and Processor 

The workflow manager processes the workflow scripts, and the workflow processor executes 
activities according to the scripts. To keep the run-time overhead low, sometimes at the expense 
of memory footprint, the engine manager loads .wfs files of all workflows needed for all operation 
modes and adaptation during initialization. This allows the workflow manager to dynamically 
allocate memory for all instances of activities and workflows during initialization. Consequently, 
although EMWF 1.0 allows .wfs files to be added and removed for configuration purpose, the 
engine must be restarted for the configuration changes to take effect.  

EMWF 1.0 offers two different multi-threaded workflow processors on Microsoft Windows 
CE and XP Embedded. They are the WLA (workflow-level assignment) engine and the ALA 
(activity-level assignment) engine. The structures of the engines are shown in Figures 5 and 6, 
respectively. The term general activity in the figure refers to activities provided by the developer, 
i.e., not built-ins with the engine.  

Executables (.dll or .exe)

Engine Manager

Workflow 
Scheduler

Thread 
Dispatcher

Workflow instances

D
ev

ic
e 

D
riv

er
s

 

Figure 5 WLA engine structure 

In a WLA (workflow-level assignment) engine, shown in Figure 5, each thread is dedicated 
to a workflow. Specifically, the workflow manager attaches a thread to each workflow when it 
initializes the workflow and schedules the thread to execute all activities in the workflow. The 
thread inherits the priority of the workflow. Depending on the engine configuration and current 
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workload, the manager may assign additional threads to the workflow when a workflow has 
concurrently executable paths.  

In an ALA (activity-level assignment) engine, shown in Figure 6, activities are executed as 
work items by worker threads: The workflow manager maintains a FIFO queue per priority for 
queuing work items and assigns at least a thread per queue. The thread (or threads) serving a 
queue executes at the priority of the queue. Threads in the workflow manager and processor 
interact in more or less in the leader/followers pattern [33]. Worker threads are followers. For a 
device that has no blocking built-in activities, the workflow manager may have just one leader 
thread. The leader processes workflow scripts, wraps ready (i.e., enabled) general activities as 
work items and inserts them in priority queues according to their priorities to be executed by 
follower threads, and supervises their completion. With a few exceptions, built-ins are simple. 
The leader executes itself built-ins as they become enabled, which in turn leads to more general 
activities be ready and queued. These functions of the leader are depicted as general activity 
scheduler and built-in activity accelerator in Figure 6.  

 

Executables (.dll or .exe)

D
ev

ic
e 

D
riv

er
s 

Activity Processor

Workers

Work 
queues

Result queues

Workflow Manager

GAS (General 
activity 

scheduler) 

BAA (Built-in activity accelerator)

Non-blocking queue Blocking queue

To BAA 
& GAS

Engine Manager
Workflow instances

 

Figure 6 ALA engine structure 

(D) Relative Merits 

Since a thread assigned to a workflow in a WLA engine executes both general activities and 
built-ins in it, most of the transitions between activities incur no context switch. It is expensive 
for threads to change priority. This is why the current versions of WLA engines do not support 
varying priority within workflows, just like WF, which also uses the WLA strategy. In contrast, 
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varying priority in a workflow can be done by an ALA engine at no cost. Coherent time order for 
all tasks within a device is often expensive to achieve. Using an ALA engine, however, this can 
be accomplished naturally with no additional cost by having the engine use a single thread to 
handle all timing events. These advantages of ALA are important, especially for devices with 
time-critical tasks. On the other hand, every transition from one general activity to another incurs 
at least one context switch. This is a disadvantage when compared with WLA engines.  

We have measured the runtime performance of WLA and ALA engines using several 
benchmark workflow-based workloads running on a 3.4 GHz Pentium 4 and Windows CE 6.0 
platform. Each workflow-based workload is characterized by the number of workflows in the 
load, a test pattern and the granularity of activities in the workflows. For each workflow-based 
load, we also ran equivalent customized, hardwired code on Windows CE 6.0 without the engine. 
The difference between the response times for the two versions gives us an estimate of the 
runtime overhead introduced by the engines.  
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Figure 7 Performance data from [21] 

Figure 7 illustrates the kind of performance data obtained from this study. In this case, all 
activities are software activities with the same granularity. (The function for each activity calls a 
random number generator 10,000 times.) The WLA-HT engine is an enhanced WLA engine: A 
helper thread is used to create workflow instances on behalf of worker threads, hence the name 
WLA-HT. We can see that when activities are sufficient complex and hence are of sufficiently 
large granularity, as in the case shown here, runtime overheads of ALA and WLA-HT engines 
are acceptable, though not negligible. As expected, the disadvantage of ALA engine in terms of 
context switches becomes evident when activities are so small that the number of extra context 
switches is in order of 1000 per workflow. Details on test patterns, workflow granularities and 
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measurements taken, as well as additional plots of response times as functions of test pattern and 
granularity can be found in [21]. Similar measurement performed in Windows XP Embedded 
points to similar conclusions.  

Finally, to be sure that memory footprint is not an issue for majority of SISARL devices, we 
ran Roomba workflows shown in Figure 1 on the ALA engine. The engine consumes 
approximately 524 KB after it starts. It consumes 1114 KB after Roomba .wfs file is loaded. 
Footprint of this order is but a small fraction of available memory for typical service robots. 

4 EXTENSIONS IN EMWF 2.0 

We discussed earlier rationales for two kinds of extensions to be included in EMWF 2.0. 
First, messaging passing and end-to-end scheduling capabilities are essential parts of end-to-end 
workflow management for time-critical distributed and networked applications. These extensions 
have already been added to EMWF 1.0 on Windows XP Embedded and are described below 

The second kinds of extensions include capabilities and tools that are needed to make 
EMWF 2.0 not only a middleware ideally suited for devices ranging from simple devices such as 
automatic vacuum cleaner to service robots and automation tools such as Pygmalion and iNuC, 
but also an excellent design, development and evaluation environment for them. Among these 
extensions, supports for workflow-to-workflow communication and interactions are most 
essential. We will describe a preliminary design at the end of this section.  

(A) Messaging Mechanism    

Again, EWMF 2.0 aims to be an end-to-end real-time workflow management system.  
Figure 8 illustrates the environment provided by such a middleware as seen by a distributed 
workflow-based embedded application. In the figure, an agent refers to a software workflow that 
executes on a processor on behalf of a remote component. Filled triangles represent Send and 
Receive. They are the underlying operations for push data and pull data built-in activities, 
respectively. Unfilled triangles represent events. Events are routed by a system of service 
interfaces. These interfaces are primary means of communication and interaction among 
workflows. They are similar to local services provided by WF [16]. We will return shortly to 
describe the differences between EMWF service interfaces and WF local services.  

Figure 9 shows an example. We use it to help us explain how send and receive messages/data 
are implemented. The example contains two workflows. Workflow 1 contains a push data built-in 
while Workflow 2 contains two pull data built-ins. 
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Figure 8 End-to-end workflow management for distributed applications 
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Figure 9 Send/Receive under the control of a message scheduler 
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When encountering a push data built-in activity, the workflow manager dispatches a Send 

operation to move the data to be sent to Workflow 2 into a send buffer and queues a Send work 
item in one of the prioritized work queues. The work item is then executed by a worker thread 
according to the priority of the Send activity. Depending on whether the receiving workflow 
(e.g., Workflow 2 in Figure 9) runs locally or remotely, the Send work item either invokes an IPC 
or a Winsock send API function to move the data from the send buffer to the receive buffer. This 
and other data transfers are depicted by dashed arrows in the figure.  

Once arrived, the data waits in the receive buffer until the workflow manager of the receiving 
workflow encounters a pull data activity, depicted as a box with a block arrow pointing into the 
box. The manager then queues a receive work item to move the data from the receive buffer to 
the space of the receiving workflow. Specific work to done by Receive is application dependent. 
The developer can specify it is to be done via a parameter of Receive. 

(B) End-to-end Scheduling 

The end-to-end scheduler implemented as a part of real-time extension of EMWF 1.0 makes 
two assumptions on execution model and configuration. First, the system is statically configured: 
Here, the term static configuration means specifically that components of each application are 
partitioned and assigned to processors (and other types of resources) at initialization time. 
Components execute on the processors assigned to them. They are migrated to other processors 
only when reconfiguration becomes necessary. In contrast, in a dynamically configured system, 
the scheduler selects a processor for each execution instance of each component based on some 
criterion (e.g. processor load). The static configuration assumption is restrictive only when the 
platform contains multiple identical processors (e.g., as in a SMP or with replicated network 
connections). Advocates of the dynamic alternatives have been able to demonstrate higher 
processor utilization. This gain is at the expense of considerable increase in complexity of the 
scheduler. More seriously, there is yet no reliable and efficient ways to validate the timeliness of 
dynamic systems. For typical SISARL applications, the advantages of static configuration out 
weight its disadvantage in processor utilization.  

The second assumption is that the distributed nature of the applications is explicit. The 
validity of this assumption follows naturally in case of statically configured system. The 
scheduler(s) must have the information on the locations and connectivity of all components in 
order to schedule them effectively. At runtime, this information is made available to the 
scheduler(s) via the values of participants (i.e., required resources) and extended attributes of 
workflows. These values may be specified by the developer of the application when the 
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developer chooses to partition the application and assign processors/resources to individual 
partitions manually. EMWF 1.0 allows only this option. EMWF 2.0 will provide or integrate 
with a resource management tool separate from the scheduler to support this function. For 
real-time applications, the tool also perform admission control (i.e., allowing a new real-time 
application to start only when the system can meet all hard real-time requirements of the 
application in midst of applications that have already started.)  

To be concrete, Figure 10 shows the structure of a two-level scheduler for ALA engine. The 
descriptions of its operations below in term of this structure are by and large applicable to the 
case of WLA engine.  
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Figure 10 Two-level scheduler structure for ALA engine 

Because of the assumptions stated above, the extended attributes of each workflow instance 
contains information on the CPU used for each software activity and resources required by 
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external activities. If the workflow has real-time requirements, the extended attributes also 
specify a finite end-to-end deadline, estimated worst-case execution time of each activity and so 
on. The end-to-end slack time of the workflow is the difference between its end-to-end deadline 
and the total worst-case execution time of the longest chain of activities in the workflow.  

The workflow manager calls the high-level end-to-end scheduler when a new workflow 
instance becomes ready for execution. Currently, the only task performed by the scheduler is to 
distribute the available end-to-end slack time of each workflow to activities or sub-chains of 
activities. To explain, let us use the application in Figure 10 as an example. Suppose that the 
workflows in it run on two CPUs connected via a LAN. The longest chain of activities consists 
of three sub-chains: The first one is from the start of Workflow 1 to push data built-in; the second 
one contains the send/receive operations over the network; the third sub-chain starts from the 
first pull data built-in to the end of the Workflow 2. Suppose that the end-to-end deadline is one 
second, the total worst-case execution times of software activity chains on both CPUs are equal 
to 100 ms, and worst-case time required to transmit data (when there is no contenting traffic) is 
200 ms. This means that the end-to-end slack time for this application is 600 ms. Algorithms for 
end-to-end scheduling range from simple ones that simply divide the end-to-end slack time 
evenly (i.e., 200 ms each) or in proportion to their total worst-case execution times (i.e., 150 ms, 
300 ms, and 150 ms) to complicated schemes make use of the load conditions on the CPUs and 
the network, costs of communication between processors, etc. Depending on the algorithms 
chosen by the developer when the workflow management system is configured, the end-to-end 
scheduler does this division accordingly. 

As Figure 10 shows, both low-level schedulers (activity scheduler for CPU scheduling) and 
message scheduler (for scheduling network traffic) support fixed priority scheduling. Given the 
slack times of individual activities or sub-chains, the low-level activity scheduler and message 
scheduler may compute the relative deadlines of the activities or sub-chains and assign priorities 
to them accordingly. The schedulers may intentionally hold ready activities for some time before 
queuing them. The delay thus introduced is called release guard [32]. This action delays the 
execution of some activities in order to improve the response times of others. The two-level 
scheduler in the EMWF real-time extension will enable us to experiment with these schemes.   

 (C) Service Interfaces 

We introduced the term Service Interfaces earlier in Figures 3 and 8 without explaining 
what it means, what the components bearing this name do and why EWMF 2.0 needs to support 
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them. Simply put, from the point of view of a workflow-based application, each service interface 
(e.g., StateMachine or GenericComm interface in Figure 3) is a set of interface functions defined 
by the developer of the application. Workflow instances in it communicate with non-workflow 
component(s) and with each other using these interface functions.  

Service interfaces resemble closely local services supported by Window WF. The kind of 
assistant EMWF 2.0 will provide to service interfaces is similar to what Window WF does for 
local services [16]: In particular, similar to WF local services, each service interface is identified 
by its type. After the developer has declared a service interface type, implemented a service 
interface of the type and have the application created and registered the service interface with the 
workflow management runtime during initialization time, workflow instances in the application 
can query the workflow manager for functions provided by the service and make use of the 
functions for communication and invocation.  

Figure 11 illustrates ways workflow instances and non-workflow components communicate 
and interact making use of service interfaces. Rectangular shapes represent service interfaces, 
host applications and non-workflow components. Polygons represent workflow instances of the 
same or different type. Bold arrows represent callbacks while arrows of various line styles 
represent raises and deliveries of events.  

Service Interface(s)

Host application

Service Interface(s)

 

Figure 11 Interaction via service interfaces 

   The left half of the figure says that workflow instances invoke each other and deliver results 
to each other by raising events. In essence, the system of service interfaces serves as a router, 
routing each event raised by a workflow instance to one or more workflow instances as specified 
by the parameters of the raise-event interface function. In a distributed system, the workflow 
manager helps to track the locations of all workflow instances and thus relieves the developer 
from the burden of this work.  
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The right half of Figure 11 says that in addition to events, workflow instances can 
communicate with the host application and other non-workflow components via callbacks. This 
is indeed how workflow instances deliver results to UI in iNuC. (This single-threaded UI is the 
host. It creates and starts the workflow engine, creates and registers local services and creates 
and starts all workflow instances during initialization).  

We note that when a caller raises an event to invoke a workflow instance, the event handler is 
executed by the thread dispatched to execute the instance. When the workflow instance responds 
to a caller via a callback function, the function is also executed by this thread. It is important to 
follow the principle of this pattern when the caller must be responsive. This is the case of the 
host in iNuC. The host application contains a single thread. After initialization, it becomes the UI 
thread. Using the communication pattern depicted by Figure 11, the UI thread is never tied up 
doing time consuming work. By doing so, it stays free and ready to respond to user action.  

5 SUMMARY 

   This report describes the current status and future plans for EMWF. The workflow 
management system is specifically for embedded applications, ranging from small housekeeping 
devices like automatic vacuum cleaners to fairly complex devices and systems like iNuC, service 
robots and other personal and home automation devices. The middleware enables such embedded 
devices to be built from activities and workflows components. Its light-weight engine integrates 
the components at runtime by executing the components in manners specified by the developer. 
Configurability is one of primary factors that motivated us to build EMWF. Illustrative examples 
in previous sections and case studies done today indeed demonstrate this merit 

EMWF 1.0, the current version of the embedded workflow framework, provides light-weight 
engines on Microsoft Windows CE and XP Embedded platforms. A Linux engine is nearly 
complete. Workflows defined in terms of the small but extensible language SISARL-XPDL is 
first translated into standard XPDL and then compiled into binary, executable workflow scripts.  

EMWF 1.0 is released under GPL license. Being a proof-of-concept prototype, this version 
has many limitations. We are working to remove them while adding features and capabilities and 
maturing the middleware into EMWF 2.0. Below are examples of on-going and future work 
towards this goal.  

 EMWF 1.0 is intended for small devices in which all software components fit on a 
processor. Anxious to minimize runtime overhead and keep memory footprint reasonably 
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small, we made some code design choices that limit configuration and customization be 
done at compile and build times, but not at runtime. We are now working to remove this 
limitation without sacrificing runtime performance. 

 EMWF 1.0 has no messaging facility needed to support push and pull data built-ins. While 
it provides the mechanism needed to support priority-driven CPU scheduling strategies, it 
lacks supports for message scheduling and end-to-end scheduling, resource allocation and 
admission control capabilities needed by time-critical embedded applications that run on 
multiple CPUs and microcontrollers and over various networks. Extensions needed to 
remove some of these limitations are now available in the Window XP Embedded engine. 

 EMWF 1.0 together with the above mentioned extensions are necessary but not sufficient 
for end-to-end workflow management of applications that have many modules, may have 
real-time requirements, and need to evolve and change over their lifecycle. Services that 
support workflow to workflow communication and interaction and their interaction with 
the host application are essential and will be supported by EMWF 2.0. Their design and 
implementation are among our top-priority future tasks. 

 We also want to extend the SISARL-XPDL parser to produce intermediate workflow 
scripts in C with annotations and extensions. The SISARL-XPDL parser now translates 
workflows definitions directly into binary workflow scripts executable by EWMF engines. 
For relative simple applications, this suffices. We anticipate, however, that workflow scripts 
in C-like programming language can give developers of large complex workflow-based 
applications an added convenience: During debugging, experimentation and evaluation, the 
developer will have the choices between using SISARL-XPDL, taking advantage of the 
XPDL 2.0 GUI editor, or directly program the workflow in C programming language. 
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