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Abstract 

In this paper, we propose a new feature evaluation method that forms the basis for 

feature ranking and feature selection. The method starts by generating a number of fea-

ture subsets in a random fashion and evaluates features based on the derived subsets. It 

then proceeds in a number of stages. In each stage, it inputs the features whose ranks in 

the previous stage were above the median rank and re-evaluates those features in the 

same fashion as it did in the first stage. When the number of features is high, the method 

has a computational advantage over recursive feature elimination (RFE), a state-of-art 

method that ranks features by identifying the least valuable feature in each stage. It also 

achieves better results than RFE in terms of classification accuracy and some other meas-

ures introduced in this paper, especially when the size of the training data is small or the 

number of irrelevant features is large. 

Keywords: adaptive multiple feature subset method, correlation method, curse of 

dimensionality, essential feature, feature ranking, feature selection, random subset me-

thod, recursive feature elimination 

1. Introduction 

The performance of learning machines depends to a large extent on the quality of the 

training data. The presence of irrelevant features is a factor that can affect the test accura-

cy of trained classifiers significantly. Although some effective learning methods, such as 

support vector machines (SVMs), can tolerate a few redundant features, their generaliza-

tion power can be compromised by a large number of such features. This so-called “curse 
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of dimensionality” (COD) occurs because one needs to sample a lot more data points to 

gain insight into a high-dimensional space compared to a low-dimensional one. In the 

case of SVM learning, the insufficiency of training samples may trick the learning 

process into believing that a larger margin exists in an incorrect high-dimensional space 

than in the correct low-dimensional one. 

The selection of features is often based on a process that evaluates the usefulness of 

features. In some methods, the evaluation process determines the features that are se-

lected. In other methods, features are ranked before they are selected. We discuss the 

two selection methods in more detail at the end of this section. 

In this paper, feature selection is considered as a means of extracting a subset of fea-

tures from the set of full features. We do not address those methods that transform fea-

tures (as linear combinations or clusters of original features, for example) before reduc-

ing the number of them. Under this restriction, feature selection methods can be general-

ly categorized into three types: filters, wrappers, and embedded methods (Blum and 

Langley, 1997; Guyon and Elisseeff, 2003).  

Filters evaluate features individually according to some statistical criteria (Golub et 

al., 1999; Hall, 2000) or information-theoretic criteria (Lewis, 1992; Koller and Sahami, 

1996; Singh and Provan, 1996; Peng et al., 2005). Forman (2003) reviews and compares 

many such criteria for binary variables in text categorization applications. After evaluat-

ing the features, one can use some statistical methods to eliminate those that are irrele-

vant (Almuallim and Dietterich, 1991; Kira and Rendell, 1992; Konenko, 1994). An al-

ternative procedure is to use some classification methods to select a subset comprised of 

a number of top-ranked features (see, for example, Lewis, 1992; Forman, 2003).  

Wrappers (Kohavi and John, 1997) evaluate feature subsets using certain search 

strategies to find the locally best subset. They proceed in this manner until no better fea-

ture subset can be found. Various strategies can be used for the local search, e.g., sequen-

tial backward selection (Marill and Green 1963), branch-and-bound (Narendra and Fuku-

naga, 1977; Yu and Yuan, 1993), beam search and bidirectional search (Siedlecki and 

Sklansky, 1988), best-first (Xu et al., 1989), genetic algorithms (Vafaie and De Jong, 

1992; Vafaie and De Jong, 1993), sequential floating search (Pudil et al., 1994), and si-
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mulated annealing (Meiri and Zahavi, 2006). The evaluation is often performed with the 

help of a certain learning machine and some validation data sets. 

Embedded methods (Lal et al., 2006) rely on learning machines to evaluate the use-

fulness of features. Recursive feature elimination (RFE) is a well-known embedded me-

thod that uses either linear SVMs (Guyon et al., 2002), non-linear (i.e., kernel-based) 

SVMs (Rakotomamonjy, 2003), or penalized logistic regression (Zhu and Hastie, 2004) 

for learning. RFE determines the usefulness of a feature by estimating the change in the 

objective function. There are various ways to estimate such changes, e.g., finite differ-

ence calculation, quadratic approximation of the cost function, sensitivity of the objec-

tive-function calculation, and the generalization error bound (LeCun et al., 1990; Guyon 

and Elisseeff, 2003; Rakotomamonjy, 2003; Weston et al., 2003). In the original version 

of RFE, features are eliminated one at a time; they can also be eliminated one group at a 

time, as required by some applications (Lal et al., 2004). 

In addition to RFE, Bi et al. (2003), Perkins et al. (2003), and Weston et al. (2003) 

formulate feature selection as an optimization problem. This approach adds certain regu-

larization terms to the original hard-margin or soft-margin optimization problem. How-

ever, the proposed algorithms only work for problems with linear objectives. An alterna-

tive approach designed to handle non-linear objectives transforms the feature selection 

problem into a feature scaling problem by assigning a weight to each feature. In the latter 

approach, the selected features are those that attain significantly large weights (Jebara 

and Jaakkola, 2000; Weston et al., 2000; Chapelle et al., 2002; Grandvalet and Canu, 

2002). Note that, although feature selection can be formulated as an optimization problem, 

the problem is NP-hard (Amaldi and Kann, 1998) under such a formulation. Thus, in 

practice, some approximations or greedy algorithms have to be adopted to solve the prob-

lem.  

Rather than use SVMs as learning machines, some embedded methods use decision 

trees (Breiman et al. 1984; Quinlan, 1986; Cardie, 1993; Schlimmer, 1993), linear least-

square predictors (Chen et al., 1989), polynomial classifiers (Rivals and Personnaz, 2003; 

Stoppiglia, 2003), or perceptrons (Gentile, 2004) to evaluate the usefulness of features. 

Feature selection is a highly developed area. The above review only highlights some 

well-known methods. For further information, readers may consult Blum and Langley 
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(1997), Kohavi and John (1997), Guyon and Elisseeff (2003), Lal et al. (2006), and a 

special issue of the Journal of Machine Learning Research (Guyon and Elisseeff editors, 

2003). 

In this paper, we propose a method that evaluates features based on a number of fea-

ture subsets that are generated in an adaptive fashion. For this reason, we call our method 

the adaptive multiple feature subset (AMFES) method. AMFES adopts a very useful 

technique from the RFE method. RFE starts with the set of all features and eliminates the 

feature with the lowest score. A feature’s score is defined as the difference in the SVM’s 

objective function with and without the feature. RFE performs the same operation on the 

set of remaining features until it is left with only one feature. By so doing, it ranks all the 

features in the order they are eliminated during the procedure. 

AMFES performs feature ranking in a number of stages. In the initial stage, it gene-

rates several feature subsets. When a feature subset is given, AMFES assigns the same 

scores to the features as those allotted by RFE. It then ranks features according to their 

strengths, where the strength of a feature f is the sum of the scores assigned to f, re-scaled 

by the number of subsets that contain f. In each subsequent stage, AMFES inputs the fea-

tures whose ranks in the previous stage were above the medium rank. It then re-computes 

the ranks of those features in the same way as it does in the first stage. 

The random subset method (RSM), proposed by Lai et al. (2006), is a precursor to 

AMFES that ranks features in a non-adaptive fashion. Motivated by the methodology of 

random decision forests or random forests (Ho, 1995, 1998; Breiman, 2001), RSM gene-

rates feature subsets all at once and ranks features based on the scores computed on the 

subsets. Since RSM does not re-compute feature ranks, it behaves like AMFES in the ini-

tial stage. Our experiments demonstrate that ranking features in an adaptive fashion is 

more effective than a non-adaptive approach.  

AMFES performs well for the following reason. Initially, AMFES may encounter a 

huge number of redundant features. Because of the COD effect, it may require a huge 

number of training samples to obtain a good feature ranking. Despite the shortage of 

training data, AMFES can move most, if not all, essential features to the top ranks, there-

by reducing the number of irrelevant features in those ranks. In the next stage, AMFES 
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deals with the features that were top-ranked in the previous stage, so there are fewer irre-

levant features. Thus, it can improve the feature ranking by moving essential features 

closer to the top of the ranked list and pushing irrelevant features closer to the bottom. In 

subsequent stages, AMFES continues to enhance the feature ranking until the end of the 

procedure.  

Let d be the total number of features. In each stage of the feature ranking procedure, 

AMFES adjusts half of the features inherited from the previous stage and generates m 

feature subsets for the adjustment; hence, it generates mlog2d feature subsets and trains 

the same number of SVMs during the whole procedure. RFE, on the other hand, elimi-

nates one feature at a time and needs to train d SVMs during the whole procedure. The 

computational efficiency of AMFES over RFE for large values of d is thus very clear. 

In addition to the feature ranking procedure, we propose a feature selection proce-

dure that divides a data set into various pairs of training and validation components 

(called training-validation pairs hereafter). From these pairs, we derive a set of selected 

features that performs better than a set derived from only one training-validation pair. 

To evaluate the performance of AMFES and other methods, we adopt two ap-

proaches. The first examines the effect of each method’s feature ranking procedure. Spe-

cifically, we compute the accuracy rates of the classifiers that are built on k top-ranked 

features, where k runs from 1 to d. The second approach evaluates each method’s feature 

selection procedure. For this purpose, we compute the accuracy rate of the classifier that 

is built on a set of selected features. In both approaches, AMFES outperforms the com-

pared methods. 

To evaluate a feature ranking procedure, we use benchmark data sets; and to assess a 

feature selection procedure, we use synthetic data sets. Benchmark data sets are useful 

for evaluation purposes, but they have the following limitations. First, we do not know 

which features in the data sets are essential. Second, we cannot determine how the com-

pared methods cope with the COD effect. To compensate for these deficiencies, we de-

sign a few synthetic data sets in which the essential features are generated according to a 

multi-normal distribution. We then add some irrelevant features to the essential ones to 

complete the formation of our data points. The advantage of generating synthetic data is 

that we can control the number of samples and the number of features at our disposal. 
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On synthetic data sets, we can evaluate a method in terms of several measures, such 

as the test accuracy, the number of selected features, and the number of essential features 

captured by the selection procedure. We can also observe how these measures vary with 

the number of features and the number of training samples. 

In addition to AMFES and RFE, we also compare the performance of the correlation 

(CORR) method, which evaluates individual features in terms of the correlation between 

class labels (labels, for short) and feature values. Although CORR computes feature ranks 

rapidly, it is not as efficient as AMFES or RFE. Our experiments on synthetic data help 

explain why this is so. CORR can easily pick essential features that manifest a high corre-

lation with labels; however, it is not efficient in identifying features that correlate weakly 

with labels but strongly with other essential features. 

Although the compared methods can utilize both linear SVM (LSVM) and non-

linear SVM (NSVM) as learning machines, we only employ LSVM in our experiments 

because it is a lot more efficient than NSVM. Moreover, as Guyon et al. (2002) observed, 

the soft-margin version of SVM can find an adequate solution for LSVM. The soft-

margin assumption requires that the cost factor C has a low value. For this reason, we set 

the value of C at 1. 

At this point, we would like to remark on the two paths that lead to a set of selected 

features. On the first path, the search strategy starts from a feature subset and tries to find 

a more promising subset to rank above it. By contrast, on the second path, features are 

ranked first; then, a subset comprising the top-k ranked features is selected. The first path 

has 2d feature subsets to select from; thus, overfitting may be an issue (Ng, 1998). It has 

been shown, for example, that a more complicated search strategy may perform weakly 

compared to a simpler one, although the former yields a seemingly better feature subset 

(Reunanen, 2003). The second path has d nested subsets of ranked features to choose 

from; hence, it is more robust against overfitting (Guyon and Elisseeff, 2003).  

AMFES proceeds via the second path. From our experiment results on synthetic data, 

we observe that AMFES may fail to select some essential features when a training data 

set is small. This is an inevitable consequence of using a small amount of training data. 

However, although AMFES does not select some features, it places them before all irre-
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levant features on the ranked list. Moreover, it places more essential features towards the 

top of the ranked list than RFE and CORR. This is an encouraging result because, in 

many applications, users rely on machine learning to suggest potentially useful factors 

(features), rather than specify exactly what they are. Therefore, it is important that those 

useful factors are ranked higher than irrelevant ones. AMFES satisfies this requirement 

rather well, and is more effective than the compared methods in this respect. 

The remainder of the paper is organized as follows. In Section 2, we describe the ba-

sic components of AMFES, namely, the feature-strength measure, as well as the feature 

ranking and feature selection procedures, which are based on this measure. In Section 3, 

we present our experimental setting and the experiment results. There are a number of 

goals to accomplish in the experiments, so we divide this section into three subsections. 

We describe the experimental data sets in Subsection 3.1; we use the first approach to 

compare AMFES with the alternative methods in Subsection 3.2; and we use the second 

approach for comparison in Section 3.3. Section 4 contains some concluding remarks. 

2. The AMFES Method 

We assume that a set of training samples Xn = {(x1, y1), (xn, yn)} is given, where 

xi∈Rd is a data point and iy  is the label of xi for i = 1, n. In this section, we describe our 

feature ranking procedure followed by our feature selection procedure. The implementa-

tions of both procedures are available at 

http://ocrlnx03.iis.sinica.edu.tw/~dar/Download%20area/amfes.php3. 

2.1 The Feature Ranking Procedure 

The ranking procedure of AMFES proceeds in stages, as shown in Figure 1. In each 

stage, AMFES takes half of features from the previous stage and adjusts their ranks; the 

ranks of the remaining features are the same in all subsequent stages. In the initial stage, 

AMFES starts with the set of all d features, computes their strengths (defined below), and 

ranks them accordingly. At the end of this stage, AMFES outputs the features and their 

ranks. Let κt-1 be the number of features output in stage t-1. In stage t, AMFES takes the 

κt top-ranked features as input, where κt = κt-1/2 (if κt-1 is an odd integer, it is understood 

that κt will take the integer part of κt-1/2); it then computes the strengths of the κt features 

http://ocrlnx03.iis.sinica.edu.tw/~dar/Download%20area/amfes.php3�
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and ranks them accordingly. Finally, it outputs the κt features and their ranks. This proce-

dure stops in stage T when κT ≦ 3.  

…

1st Stage

2nd Stage

3rd Stage

 
Figure 1. In each stage, half of the features, depicted by a white box, are taken as input 
from the previous stage. The ranks of those features are adjusted based on 100 feature 
subsets. Each subset comprises half of the input features, depicted by a gray box. 

Next, we explain how to compute the strengths of features and how to rank the fea-

tures in each stage. Let κ be the number of features taken as input in a given stage. For 

convenience, we assume that the features are indexed from 1 to κ. We start by generat-

ing a number of feature subsets of size λ, where λ = κ/2. Each feature subset S induces a 

transformation; for example, if S = {2, 4, 6}, the transformation induced by S converts x 

= (x1, …, xκ) to z = (x2, x4, x6). The steps of the procedure are as follows. 

I. Generate m independent subsets S1, …, Sm, where each Si consists of λ elements 

drawn randomly and independently from the set of input features. To ensure 

that each input feature has a good chance of being included in several feature 

subsets, we set m = 100. 

II. Each Si induces a transformation that converts x1, …, xn to zi1, …, zin. We con-

struct an SVM Ci based on zi1, …, zin. Then, for each f∈Si, we compute the 

change in the Ci-objective function due to f (specified below), and assign that 

quantity, denoted as scorei(f), to f. 

III. We compute the strength of each input feature f by summing all the scores that 

have been assigned to f, and divide the sum by the number of times each score 

has been assigned to f. The result is denoted by θ(f): 
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where I is an indicator function such that Iprop = 1 if prop is true; otherwise, Iprop 

= 0. 

IV. Rank all the input features in descending order of θ(·). 

With regard to the score assigned to each feature f in Si in Step II, a classifier Ci is 

trained on zi1, …, zin and a score is assigned to each feature f as the change in the Ci-

objective function due to f. Ci is an SVM whose objective function is 

,
( , )j j k k j kj k

obj y y kα α=∑ x x , 

where xj and xk are support vectors in Ci, yj and yk are their respective labels, αj and αk  

are their respective weights, and k(xj, xk) is a kernel function that expresses the similarity 

relation between xj and xk. In the case of LSVM, the kernel function k(xi, xj) is reduced to 

the inner product of xi and xj. The change in the SVM’s objective function due to a fea-

ture f is 

( ) ( ) ( )
, ,

   ( , ) ( , ) f f f
j j k k j k j j k k j kj k j k

obj obj y y k y y kα α α α− = −∑ ∑x x x x  

(Rakotomamonjy, 2003). Here, if x is a p-dimensional feature vector, then x(f) is the (p-

1)-dimensional vector obtained from x by dropping the feature f. For example, if x = 

(x1, …, xp), then x(1) = (x2, …, xp). In the case of the LSVM,  

( ) 2  ,f
fobj obj w− =  

where wf  is the fth-component of the vector 

j j j
j

y α=∑w x  

(Guyon et al., 2002). 

We now summarize the parameters involved in the ranking procedure and assess 

their sensitivities. First, the cost factor C is set at 1, indicating that a soft-margin SVM is 
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used as the learning machine. Next, in each stage, AMFES inputs the κ features that were 

top-ranked in the previous stage. Moreover, it generates m subsets, each comprised of µ 

features. In our experiments, we set κ at half the number of input features in the previous 

stage, m at 100, and µ at κ/2. 

The soft-margin version of SVM plays an important role in AMFES. Our method 

has to generate various feature subsets in order to compute the strengths of the features, 

which are derived from the sizes of the margins. A soft-margin SVM makes it easy for 

AMFES to find a subset that produces a non-trivial soft margin. In fact, any subset com-

prised of some essential features has a good chance of producing such a margin. For this 

reason, AMFES’s performance is not very sensitive toµ, the size of each feature subset, 

so long as µ is not close to two bad values, 1 and κ. We set µ to κ/2, because this value is 

farthest from these two values. 

AMFES has to generate m feature subsets in each stage. Since the size of each sub-

set is a function of κ, m does not have to be related to κ. However, m must be large 

enough to ensure that each feature is sampled a sufficient number of times. This is the 

reason that we set m to 100. The probability that a given feature will fall in a subset is 0.5; 

therefore, the expected number of the subsets that contain a given feature is 50. 

In each stage, AMFES takes 1/2 of the features from the previous stage and re-ranks 

them. This is a surprisingly robust strategy. If we replace ‘1/2’ by a more conservative 

‘2/3’ or ’90%’, we do not gain any significant improvement in performance; in fact, it 

increases the computation time. We even replaced the ‘1/2’ strategy with a much more 

costly strategy that inputs a variable, rather than a constant, proportion of features in each 

stage, but there was still no significant improvement. On the other hand, replacing ‘1/2’ 

with a more radical ‘1/3’ of the features may cause the performance to deteriorate; hence, 

this strategy is not recommended. 

2.2 The Feature Selection Procedure 

To select features, we divide our data set into a training component and a validation 

component, which are then used to build SVMs and select a set of features respectively. 



 

 11 

Feature selection is difficult because of the small number of data points compared to 

the number of irrelevant features. As a result, the number of data points distributed 

among the training and validation components is also small, so the obtained validation 

accuracy may not be stable. In other words, if we vary the members of the validation 

component, we may change both the number and the content of selected features drasti-

cally.  

One solution to this problem is to divide the data set in more than one way. For ex-

ample, if we divide the data in Π ways, we can extract Π training-validation pairs. Each 

pair p, p = 1, …, Π, produces a feature ranking and a set {vp(k): k = 1, …, d}, where vp(k) 

represents the validation accuracy rates associated with the k top-ranked features. We 

then take the average of the accuracy rates to obtain 

1
( ) ( ) /pp

v k v kΠ

Π =
= Π∑ ,                                                (1) 

for k = 1, …, d. Based on vΠ(·), we define 

arg max ( )
k

v kσΠ Π= .                                                 (2) 

To obtain a set of features from the Π training-validation pairs, for p = 1, …, Π, we 

define 

arg max ( )p p
k

v kσ = , 

1,  if 's rank in the ranking list for ,
( )

0,  otherwise,
p

p

f p
credit f

σ ≥
= 


 

and 

1
( ) ( )pp

credit f credit fΠ

Π =
=∑ .                                        (3) 

We then rank all the features in descending order of creditΠ(·). Finally, we take the σΠ 

top-ranked features as the selected features. This procedure produces a single set, rather 

than Π sets, of selected features from the Π training-validation pairs. In the next section, 

we demonstrate the merits of the procedure via experiments. 
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3. Experiment Settings and Results 

In our experiments, we compare the performance of AMFES with that of other me-

thods. We also investigate the effect of COD on the compared methods and use it as a 

measure for comparison. Finally, we demonstrate the merits of the proposed feature se-

lection procedure. 

To compare AMFES with other methods, we adopt two approaches. The first as-

sesses the performance of each method on the benchmark data sets. We begin by extract-

ing Π training-validation pairs from each data set. Then, for each compared method, we 

compute vΠ(k) as defined in (1), where k runs from 1 to d. Finally, we form the curve {(k, 

vΠ(k)): k = 1, …, d}, called the v-curve hereafter.  

The above approach only examines the effect of a feature ranking procedure. To 

evaluate a feature selection procedure, we must use another approach. In this case, we 

conduct our experiment on synthetic data sets, instead of the benchmark data sets. There 

are two reasons for this. First, evaluation based the benchmark data sets is a lot more 

costly. Second, the synthetic data sets allow us to gain better insights into the feature se-

lection procedures we evaluate. We discuss these points further in Subsection 3.3. Under 

the second approach, we form Π training-validation pairs out of each synthetic data set 

and derive a set of selected features from those pairs. Then, we build a classifier on the 

selected features and compute its accuracy rate on an independent test data set. 

Next, we describe the data sets used in our experiments. 

3.1 Experimental Data Sets 

We use both benchmark data sets and synthetic data sets in the experiments. Each 

data point in a dataset is associated with one of two labels, denoted as 1 and -1 respec-

tively. Table 1 shows the benchmark data sets, their properties, and the sources. Note that 

the original “GINA”, “REGED”, “LUCAP”, and “MARTI” datasets in the source reposi-

tories contain some samples whose labels have not been disclosed to the public. There-

fore, we exclude those samples from our experiments. 
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Table 1. The benchmark data sets used in the experiments, where N1 = the number 
of features, and N2 = the number of samples. 
Dataset N1 N2 Source 

Colon 2,000 62 U. Alon et al., 1999; 
http://www.kyb.tuebingen.mpg.de/bs/people/weston/l0/ 

Lymphoma 4,026 96 A. A. Alizadeh et al., 2000; 
http://www.kyb.tuebingen.mpg.de/bs/people/weston/l0/ 

Leukemia 7,129 72 T. R. Golub, et al., 1999; http://www.broadinstitute.org/cgi-
bin/cancer/publications/pub_paper.cgi?mode=view&paper_id=43 

GINA 970 3,468 WCCI 2006, Model Selection workshop and performance predic-
tion challenge; http://clopinet.com/isabelle/Projects/modelselect 

REGED 999 500 
WCCI 2008, Causation and Prediction Challenge; 

http://www.causality.inf.ethz.ch/challenge.php LUCAP 143 2,000 
MARTI 1,024 500 

 

To construct synthetic data sets, we follow the experiment design described by 

Guyon (2003) closely. The synthetic data sets comprise data points x = (x1, …, xc, xc+1, …, 

xd), where x1, …, xc are essential features and xc+1, …, xd are irrelevant features. The latter 

are independent random variables that are uniformly distributed in the closed interval [-1, 

1]. The essential features x1, …, xc are generated by the following linear model. 

v = uW + µ                                                      (4) 

where v = (x1, …, xc), W is a c×c matrix whose entry at row i and column j is wij, u = 

(u1, …, uc), and µ = (µ1, …, µc). The vector u is composed of c independent unit normal 

random variables (i.e., their mean is 0 and the standard deviation is 1). The matrix W 

comprises entries wij, which are uniformly distributed in the closed interval [-1, 1]. The 

vector µ is composed of c random numbers whose value is 1 or -1 with a probability of 

1/2. In summary, v is a multi-normal random vector whose mean vector is µ and whose 

covariance matrix is WTW, where WT is the transpose of W. 

To avoid the generation of outliers by (4), we adjust the value of xi, i = 1, …, c, by 

the following truncation procedure: 

max(min( ,3), 3)i ix x − .                                            (5) 

Labeled data points are derived by generating two sets of matrices and mean vectors 

{Wi, μi}, i = 1, 2; the first set is associated with label 1 and the second set with label -1. 

http://www.kyb.tuebingen.mpg.de/bs/people/weston/l0/�
http://www.kyb.tuebingen.mpg.de/bs/people/weston/l0/�
http://www.broadinstitute.org/cgi-bin/cancer/publications/pub_paper.cgi?mode=view&paper_id=43�
http://www.broadinstitute.org/cgi-bin/cancer/publications/pub_paper.cgi?mode=view&paper_id=43�
http://clopinet.com/isabelle/Projects/modelselect�
http://www.causality.inf.ethz.ch/challenge.php�
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To obtain a data point with label 1, we generate c independent unit normal random va-

riables u1, …, uc, and then generate x1, …, xc by means of (4) and (5), where W = W1 and 

μ = μ1. The remaining xc+1, …, xd are generated independently and uniformly from the 

closed interval [-1, 1]. A data point with label -1 is generated in a similar fashion. We al-

so stipulate that, in each synthetic data set, there must be equal numbers of samples carry-

ing label 1 and label -1. 

In the experiments, we create two groups of synthetic data sets. The common di-

mensionality of Group I is 200 and that of Group II is 2,000; and the number of essential 

features in each group is 15. The data sets in each group are nested in the sense that if A1, 

A2, A3, … are the sets in a group that are ordered according to their sizes, then A1 ⊆ A2 ⊆ 

A3 ⊆ …, as shown in Table 2.  

Table 2. The synthetic data sets used in the experiments. 
Data Set I-1 I-2 I-3 II-1 II-2 II-3 

Number of Features 200 2,000 
Number of Essential Features 15 15 

Size of Data Set 500 1,000 1,500 500 1,000 1,500 
 

Finally, when building SVMs on a benchmark or a synthetic data set, we normalize 

all the feature values to a real number between 0 and 1. We do this by transforming each 

value v of a feature f into (v-fmin)/(fmax-fmin), where fmax and fmin are the maximum and min-

imum values of f respectively. 

3.2 Comparison of Methods: The First Approach 

In this sub-section, we compare the performance of a number of methods, using the 

v-curve as the means of comparison. In this experiment, we only use the benchmark data 

sets listed in Table 1. We begin by extracting Π training-validation pairs from each data 

set. All pairs are randomly and independently generated. In each pair, the ratio of the 

training component to the validation component is 4:1. Details are given in Table 3. 
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Table 3. For each benchmark data set, we show the size of the data set and the size 
of each training and validation component. 

 Colon Lymphoma Leukemia GINA REGED LUCAP MARTI 
Size of Data Set 62 96 72 3,468 500 2,000 500 

Size of Training Component 50 77 58 2,774 400 1,600 400 
Size of Validation Component 12 19 14 694 100 400 100 
 

To compute the v-curves, we use LSVM as the learning machine. The only parame-

ter involved in LSVM is the cost factor C. As mentioned earlier, we set C at 1 to allow a 

rather high degree of tolerance for training errors. For LSVM training, we adopt the li-

near version of LIBSVM (Fan et al., 2005). LIBLINEAR (Fan et al., 2008; Chang and 

Lin, 2008), a specialized tool kit for solving LSVM, may also be used. For the data sets 

in our experiments, we find that LIBSVM is as efficient as LIBLINEAR.  

Next, we describe how to find an appropriate Π for each data set. From the Π train-

ing-validation pairs, we want to derive vΠ(σΠ), where vΠ(·) and σΠ are defined in (1) and 

(2) respectively. Furthermore, we want Π to be sufficiently large so that vΠ(σΠ) is stable. 

For this reason, we require that Π ≥ Γ,  wh ere Γ is the smallest T such that |vΜ(σΜ) – 

vN(σN)| < 0.1% for any integers M and N in the interval [T, T+4]. Table 4 shows the size 

of Γ determined by AMFES and the size of Π that we choose for each benchmark data set. 

Table 4. The size of Γ determined by AMFES and the size of Π that we chose for 
each benchmark data set. 

 Colon Lymphoma Leukemia GINA REGED LUCAP MARTI 
Γ 64 62 53 16 8 13 36 
Π 100 100 100 20 20 20 40 

3.2.1 Adaptive Version versus Non-adaptive Version 

First, we compare the adaptive and non-adaptive versions of AMFES. The adaptive 

version is the method that we propose in this paper. Its algorithm is specified in Steps I to 

IV in Section 2.1. The non-adaptive version corresponds to the initial stage of the adap-

tive version. To ensure that the comparison is fair, we require that both versions contain 

the same number of feature subsets. Since the adaptive version must generate 100×log2d 

feature subsets, we let the non-adaptive version generate the same number of subsets. In 
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the adaptive version, the subsets vary in size, whereas all subsets in the non-adaptive ver-

sion comprise d/2 features. 

Figures 1 to 7 show the v-curves produced by the adaptive and non-adaptive ver-

sions of AMFES. Due to space limitations, we only display each v-curve in the range [0, 

k0], where k0 = min(d, 200). In each figure, the horizontal line that passes through the ver-

tical axis at the level vΠ(d) is called the baseline. Table 5 shows σΠ, vΠ(σΠ) and the stan-

dard deviation of vΠ(σΠ) derived by the two versions. The standard deviation of vΠ(σΠ) is 

defined as  

2

1
( ) ( ) /pp

std v vσ σΠ

Π Π Π Π=
 = − Π ∑ . 

Note that vΠ(σΠ) is the maximum accuracy rate and σΠ is the point at which the maximum 

occurs. We call σΠ the peak location and vΠ(σΠ) the peak value.  

 
Figure 1. The v-curves produced by the adaptive and non-adaptive versions for the “Co-
lon” data set. 
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Figure 2. The v-curves produced by the adaptive and non-adaptive versions for the 
“Lymphoma” data set. 

 
Figure 3. The v-curves produced by the adaptive and non-adaptive versions for the 
“Leukemia” data set. 
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Figure 4. The v-curves produced by the adaptive and non-adaptive versions for the 
“GINA” data set. 

 
Figure 5. The v-curves produced by the adaptive and non-adaptive versions for the 
“REGED” data set. 
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Figure 6. The v-curves produced by the adaptive and non-adaptive versions for the 
“LUCAP” data set. 

 
Figure 7. The v-curves produced by the adaptive and non-adaptive versions for the 
“MARTI” data set. 
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Table 5. The peak location σΠ, the peak value vΠ(σΠ), and the standard deviation 
stdΠ of the peak value derived by each approach, where vΠ(σΠ) and stdΠ are ex-
pressed in percentages. We also show the baseline accuracy rates for reference. 

  Colon Lymphoma Leukemia GINA REGED LUCAP MARTI 

Adaptive 
σΠ 7 89 170 135 14 26 29 

vΠ(σΠ) 88.17     96.05 97.73 87.04 99.40 93.41 97.05 
stdΠ 8.26 4.61 3.80 1.14 0.58 1.16 1.56 

Non-Adaptive 
σΠ 60 173 195 149 28 32 62 

vΠ(σΠ) 85.75 95.74 97.40 85.90 99.25 93.08 93.55 
stdΠ 9.30 4.92 4.41 1.25 0.70 1.19 2.46 

Baseline vΠ(d) 86.08 94.26 96.60 82.51 97.85 91.13 89.00 
 

The v-curves obtained by the adaptive and non-adaptive versions are denoted as A-

curves and N-curves respectively. We let σA and σN denote the peak of an A-curve and of 

an N-curve respectively. From Table 5 and Figures 1 to 7, we observe the following facts 

about each data set: (i) σA < σN, i.e., the peak of each A-curve occurs earlier than that of 

the corresponding N-curve; (ii) vΠ(σA) > vΠ(σN), i.e., the peak value of each A-curve is 

higher than that of the corresponding N-curve; and (iii) each A-curve lies above the cor-

responding N-curve before σA is reached. The above facts demonstrate the superiority of 

the adaptive version over the non-adaptive version. 

3.2.2 Comparing AMFES with RFE and CORR 

We now compare the performances of the three methods, AMFES, RFE, and CORR, 

on the benchmark data sets, using the v-curve as the means of comparison. The CORR 

method ranks features in descending order of the following score.  

[ ]

[ ]
,1

2 2
,1

( ) ( )
( )

( ) ( )

n
i f ii

n
i f ii

mean f y mean y
corr f

mean f y mean y

=

=
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∑
∑

x

x
, 

where xi,f is the value of a feature f for xi, mean(f) is the average value of f, yi is the label 

of xi, and mean(y) is the average value of the label. 

Figures 8 to 14 show the v-curves derived by the three methods based on the train-

ing-validation pairs listed in Table 6. The table also shows the peak location σΠ, the peak 

value vΠ(σΠ), and the standard deviation of vΠ(σΠ) produced by each method.  
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Figure 8 The v-curves derived by the three methods for the “Colon” data set. 

 
Figure 9. The v-curves derived by the three methods for the “Lymphoma” data set. 
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Figure 10. The v-curves derived by the three methods for the “Leukemia” data set. 

 
Figure 11. The v-curves derived by the three methods for the “GINA” data set. 
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Figure 12. The v-curves derived by the three methods for the “REGED” data set. 

 
Figure 13. The v-curves derived by the three methods for the “LUCAP” data set. 
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Figure 14. The v-curves derived by the three methods for the “MARTI” data set. 

Table 6. The peak location σΠ, the peak value vΠ(σΠ), and the standard deviation 
stdΠ of the peak value derived by each method; vΠ(σΠ) and stdΠ are expressed in 
percentages. We also include the baseline accuracy rates for reference. 

 Colon Lymphoma Leukemia GINA REGED LUCAP MARTI 

AMFES 
σΠ 7 89 170 135 14 26 29 

vΠ(σΠ) 88.17 96.05 97.73 87.04 99.40 93.41 97.05 
stdΠ 8.26 4.61 3.80 1.14 0.58 1.16 1.56 

RFE 
σΠ 192 103 117 55 16 19 23 

vΠ(σΠ) 85.25 95.90 97.67 86.31 99.30 92.84 95.45 
stdΠ 8.73 4.83 3.93 1.14 0.70 1.30 2.25 

CORR 
σΠ 4 179 134 193 39 35 105 

vΠ(σΠ) 87.33 94.89 97.33 86.28 99.25 92.71 90.30 
stdΠ 9.46 4.99 4.00 1.17 0.68 1.15 1.76 

Baseline vΠ(d) 86.08 94.26 96.60 82.51 97.85 91.13 89.00 
 

The results in Table 6 and Figures 8 to 14 show that, in terms of the peak values, 

AMFES outperforms the other two methods, and CORR performs rather weakly on all 

the data sets, except “Colon”. RFE’s performance is comparable to or weaker than that of 

AMFES on all the data sets. 
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Table 7. The average time (in seconds) required by each method to complete the 
ranking procedure.  

 Colon Lymphoma Leukemia GINA REGED LUCAP MARTI 
AMFES 1.92 6.62 10.88 1,586.22 24.01 96.98 794.34 

RFE 23.12 244.97 635.45 10,862.18 211.69 66.52 1797.32 
CORR 0.01 0.04 0.02 0.36 0.06 0.16 0.08 

 
Table 7 shows the time required by each method to complete the ranking procedure. 

All the experiments were conducted on an Intel Xeon E5345 CPU 2.33 GHz with a 2GB 

RAM. Since we extracted Π training-validation pairs from each data set, we conducted Π 

ranking procedures for each set. The table shows the average time that each method re-

quires for one ranking procedure. CORR involves the simplest calculation, so it is the 

fastest method; however, in most cases, its performance in terms of the peak values is not 

acceptable, as shown in Table 7. On the other hand, AMFES is much faster than RFE on 

all data sets, except for “LUCAP,” whose dimensionality is only 143. Hence, AMFES is 

more effective than the other two methods. 

3.3 Comparison of the Methods: The Second Approach 

In this sub-section, we examine the effect of the feature selection procedure. Since 

we demonstrated the advantage of the adaptive version of AMFES over the non-adaptive 

version in Section 3.2.1, we only consider the adaptive version in this subsection. Moreo-

ver, we use synthetic data sets to evaluate this version of AMFES as well as RFE and 

CORR. 

We use the two groups of synthetic data sets described in Table 2. Both groups 

comprise three nested data sets. From each data set, we extract Π training-validation pairs 

The ratio of the training component to the validation component is 4:1. To compute the 

accuracy rate of the classifier built on the selected features, we generate a test data set for 

each group that is independent of all the data sets in that group. Furthermore, Group I and 

Group II are generated Ω times so that we obtain an average result from Ω procedures. In 

each procedure, we generate nested data sets, perform feature selection on the sets, and 

compute the test accuracy of the selected features. We show all the relevant quantities in 

Table 8. 
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Table 8. The values of Ω and Π, and the sizes of the training components, valida-
tion components, and test data sets. 

Data Set I-1 I-2 I-3 II-1 II-2 II-3 
Total Number of Features 200 2,000 

Ω 20 20 
Π 20 20 

Size of Data Set 500 1,000 1,500 500 1,000 1,500 
Size of Training Component 400 800 1,200 400 800 1,200 

Size of Validation Component 100 200 300 100 200 300 
Size of Test Data Set 1,000 1,000 

 
By using synthetic data sets in the experiment, we can generate as many training, va-

lidation, and test samples as we wish. When we conduct the same experiment on the 

benchmark data sets, we have to employ a double-loop experiment design, where the in-

ner loop selects features and the outer loop computes their test accuracy. This design 

forces us to generate at least Γ2 training-validation pairs. As a result, we have to generate 

at least 642 such pairs for “Colon” and 622 such pairs for “Lymphoma” (cf. Table 4). Us-

ing synthetic data sets, on the other hand, allows us to generate Ω·Π training-validation 

pairs, which are 20×20 pairs, for all the data sets (cf. Table 8). The synthetic data sets ob-

viously incur a much smaller computational cost than the benchmark data sets. Another 

advantage of using synthetic data sets is that we can specify accurate ground truths for 

them. As a result, we can define many performance measures that we cannot define on 

benchmark data sets. We can then use those measures to compare AMFES with other me-

thods. 

As mentioned above, we repeat the procedure Ω times. In the following, we assume 

that the ωth procedure is being implemented. From the given data set, we derive a set of 

selected features. Let the number of selected features be σω. We then train a classifier on 

the data set using the σω selected features as its features and apply the classifier to the test 

data set in order to compute its test accuracy rate tω. Finally, let the number of essential 

features captured by the selection procedure be εω. We define 

1
/t tωω

Ω

Ω =
= Ω∑ , 
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1
/ωω

σ σΩ

Ω =
= Ω∑ , and 

1
/ωω

ε εΩ

Ω =
= Ω∑ . 

The above quantities are, respectively, the average test accuracy rate, the average number 

of selected features, and the average number of essential features captured by the selec-

tion procedure. 

In addition to these quantities, for p = 1, …, Ω, we define 

p

p
pP

ε
σ

= ,  

number of essential features
p
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. 

Pp and Rp are, respectively, the precision and recall rates of essential features captured by 

the selection procedure. Fp is the F1-measure (van Rijsbergen, 1979) for the captured es-

sential features for pair p. Finally, let PΩ, RΩ, and FΩ be the averages of Pp, Rp, and Fp 

respectively. 

Our feature selection procedure derives a set of selected features from Π training-

validation pairs. We compare this procedure with an alternative procedure that derives a 

set of selected features from each training-validation pair. There are Ω·Π such pairs. 

From each pair q, we derive a set of selected features and train a classifier on the learning 

component using the selected features as its features. We then apply the classifier to the 

corresponding test data set to obtain tq. We define 

1
/( )qq

t tΩ⋅Π

Ω⋅Π =
= Ω⋅Π∑ , 

1
/( )qq

σ σΩ⋅Π

Ω⋅Π =
= Ω⋅Π∑ , and 

1
/( )qq

ε εΩ⋅Π

Ω⋅Π =
= Ω⋅Π∑ . 
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For q = 1, …, Ω·Π, let Pq and Rq be the precision and recall rates respectively; and let Fq 

be the F1-measure for the captured essential features. Finally, let PΩ·Π, RΩ·Π, and FΩ·Π be 

the averages of Pq, Rq, and Fq respectively. 

We call the proposed feature selection procedure the Ω procedure and the alternative 

procedure the Ω·Π procedure. 

Next, we discuss the results of applying AMFES, RFE, and CORR to all the synthet-

ic data sets. Table 9 shows the average test accuracy rates of the Ω procedure and the     

Ω·Π procedure. We include the baseline test accuracy rates in the table for reference. For 

a synthetic data set D, we obtain the baseline test accuracy rate t as follows. First, we 

build a classifier on D by using all the features as its features, and then apply the classifi-

er to the test data set to compute t. Table 10 shows the average numbers of selected fea-

tures; Table 11 shows the average numbers of essential features captured by the selection 

procedure: and Table 12 shows the average F1-measures for the captured essential fea-

tures.  

Table 9. The results of applying the three compared methods to the synthetic data 
sets. The table shows the average test accuracy rates and their standard deviations 
(in parentheses), derived by the baseline method, the Ω procedure, and the Ω·Π 
procedure. 

 Baseline AMFES RFE CORR 
t tΩ tΩ·Π tΩ tΩ·Π tΩ tΩ·Π 

I-1 86.00 96.29 (0.35) 95.70 (0.67) 95.55 (0.69) 95.16 (0.81) 95.28 (0.22) 95.06 (0.58) 
I-2 94.10 97.02 (0.24) 96.61 (0.67) 96.90 (0.19) 96.40 (0.73) 95.37 (0.17) 95.31 (0.50) 
I-3 95.50 97.32 (0.22) 97.12 (0.41) 97.27 (0.20) 97.10 (0.35) 95.35 (0.22) 95.47 (0.48) 
II-1 55.30 95.04 (0.40) 94.79 (0.66) 94.88 (0.48) 94.58 (0.66) 94.94 (0.44) 94.72 (0.77) 
II-2 60.10 96.24 (0.62) 95.93 (0.67) 95.36 (0.15) 95.07 (0.49) 95.35 (0.16) 95.20 (0.46) 
II-3 63.60 97.31 (0.20) 97.09 (0.49) 95.89 (0.44) 95.47 (0.54) 95.26 (0.17) 95.15 (0.29) 
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Table 10. The results of applying the three compared methods to the synthetic data 
sets. The table shows the average numbers of selected features and their standard 
deviations (in parentheses), derived by the Ω procedure and the Ω·Π procedure. 

 AMFES RFE CORR 
σΩ σΩ·Π σΩ σΩ·Π σΩ σΩ·Π 

I-1 12.90 (2.88) 11.83 (7.98) 8.05 (1.43) 9.29 (4.61) 7.15 (0.36) 11.36 (10.53) 
I-2 16.45 (3.23) 17.09 (14.27) 11.60 (1.20) 12.90 (9.71) 7.15 (0.36) 19.05 (29.87) 
I-3 14.25 (1.81) 17.04 (11.17) 13.95 (1.75) 13.94 (5.93) 7.90 (1.26) 38.33 (45.21) 
II-1 7.60 (1.02) 8.62 (2.47) 7.35 (0.79) 7.47 (1.90) 7.75 (0.89) 9.21 (3.59) 
II-2 10.60 (1.77) 11.49 (5.03) 7.00 (0.00) 7.76 (2.24) 7.20 (0.51) 10.42 (7.79) 
II-3 14.05 (1.75) 14.74 (6.17) 7.95 (0.80) 9.10 (3.30) 7.25 (0.89) 12.13 (8.38) 

 

Table 11. The results of applying the three methods to the synthetic data sets. The 
table shows the average numbers of essential features captured by the selection 
procedure and their standard deviations (in parenthesis), derived by the Ω proce-
dure and the Ω·Π procedure. 

 AMFES RFE CORR 
εΩ εΩ·Π εΩ εΩ·Π εΩ εΩ·Π 

I-1 12.65 (2.65) 9.99 (10.90) 7.85 (1.06) 7.58 (1.21) 7.05 (0.22) 7.47 (0.95) 
I-2 14.40 (1.07) 12.45 (14.65) 11.15 (1.06) 10.07 (2.07) 7.10 (0.30) 8.15 (1.76) 
I-3 13.85 (1.39) 13.02 (2.27) 13.00 (1.14) 11.93 (1.90) 7.60 (0.73) 9.27 (2.31) 
II-1 7.15 (0.48) 7.31 (0.70) 6.85 (0.36) 6.65 (0.48) 7.00 (0.00) 7.05 (0.27) 
II-2 10.50 (1.57) 9.88 (2.22) 7.00 (0.00) 6.88 (0.38) 7.00 (0.00) 7.09 (0.38) 
II-3 13.70 (1.31) 12.79 (2.36) 7.95 (0.80) 7.46 (0.53) 7.00 (0.00) 7.30 (0.52) 

 

Table 12. The results of applying the three methods to the synthetic data sets. The 
table shows the F1-measure for the captured essential features and their standard 
deviations (in parentheses), derived by the Ω procedure and the Ω·Π procedure. 

 AMFES RFE CORR 
FΩ FΩ·Π FΩ FΩ·Π FΩ FΩ·Π 

I-1 89.60 (11.12) 73.72 (12.85) 67.82 (5.47) 62.88 (6.69) 63.66 (1.59) 59.52 (7.99) 
I-2 92.00 (6.47) 81.08 (15.38) 83.68 (4.73) 73.81 (10.74) 64.09 (1.92) 57.71 (12.53) 
I-3 94.49 (4.68) 84.46 (13.68) 89.67 (3.38) 83.11 (8.85) 66.25 (3.27) 48.87 (18.13) 
II-1 63.25 (2.19) 62.17 (5.03) 61.29 (2.30) 59.33 (3.83) 61.63 (2.32) 59.12 (6.02) 
II-2 81.57 (7.33) 74.43 (9.78) 63.64 (0.00) 60.74 (4.34) 63.09 (1.37) 58.24 (8.70) 
II-3 94.14 (4.25) 86.49 (10.48) 67.07 (2.67) 62.54 (6.04) 63.01 (2.19) 56.70 (9.83) 

 
Based on the test accuracy results shown in Table 9, we make the following obser-

vations: 
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(1) Under all three methods, tΩ and tΩ·Π increase with the size of the training data. 

Moreover, tΩ and tΩ·Π are generally higher for Group I compared to Group II; 

that is, tΩ and tΩ·Π for I-1 are higher than those for II-1, etc.  

(2) For AMFES and RFE, tΩ is uniformly better than tΩ·Π. For CORR, tΩ and tΩ·Π are 

about the same. 

(3) When we compare the three methods in terms of tΩ and tΩ·Π, we find that 

AMFES performs better than RFE, and significantly better than CORR. 

Next, we consider the feature selection results shown in Tables 10 to 12. It is rather 

difficult to compare the numbers of selected features and the numbers of captured essen-

tial features. This is because a method may select a lot of features, but it may only cap-

ture a few essential features. On the other hand, the F1-measure for the captured essential 

features provides a more balanced view. Thus, we focus on this measure, as shown in Ta-

ble 12. We make the following observations:  

(i)  For AMFES and RFE, FΩ and FΩ·Π increase with the size of the training data, al-

though there are exceptions due to statistical fluctuations; however, the increas-

ing trend does not exist in CORR. Furthermore, Group I has uniformly higher FΩ 

and FΩ·Π than Group II. 

(ii) For all three methods, FΩ is uniformly better than FΩ·Π.  

(iii)When we compare the three methods in terms of FΩ and FΩ·Π, we find that 

AMFES outperforms RFE by a significant margin, especially when the size of 

the training data is small or the number of irrelevant features is large; CORR is 

the weakest method among the three. 

The last result is as expected because CORR evaluates features according to their 

correlations with labels. From the way mean vectors are generated (cf. Section 3.1), we 

infer that µ1 differs from µ2 in about half of the features, which is 7.5. The number of es-

sential features found by CORR is close to this figure. 

We conclude this sub-section by examining another performance measure. For a 

given ranking procedure, we define φ to be the largest k such that all top-k features are 

essential features. This measure does not evaluate how many essential features have been 
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selected; instead, it considers how many of them are ranked above all irrelevant features. 

Once again, let φΩ and φΩ·Π be the average number of such features in the Ω procedure 

and the Ω·Π procedure, respectively. We show all the relevant results in Table 13. 

Table 13. Applying the three methods to the synthetic data sets, we show the 
number of essential features that are ranked above all irrelevant features, produced 
by the Ω procedure or the Ω·Π procedure. 

 AMFES RFE CORR 
φΩ φΩ·Π φΩ φΩ·Π φΩ φΩ·Π 

I-1 14.75 (0.62) 14.85 (0.48) 8.45 (0.59) 8.44 (0.62) 7.55 (0.50) 7.26 (0.47) 
I-2 15.00 (0.00) 15.00 (0.00) 11.50 (1.24) 11.23 (1.18) 7.45 (0.59) 7.26 (0.50) 
I-3 15.00 (0.00) 15.00 (0.00) 13.40 (0.49) 13.41 (0.69) 8.20 (0.40) 7.78 (0.55) 
II-1 7.10 (0.30) 7.63 (0.76) 7.00 (0.00) 7.00 (0.00) 7.00 (0.00) 7.01 (0.11) 
II-2 13.25 (0.77) 11.77 (1.28) 7.05 (0.22) 7.05 (0.21) 7.00 (0.00) 7.02 (0.15) 
II-3 15.00 (0.00) 14.98 (0.15) 8.05 (0.22) 7.59 (0.52) 7.40 (0.49) 7.17 (0.37) 

 
For all three methods, φΩ is comparable to φΩ·Π; therefore, we only discuss the re-

sults for φΩ. We observe that, for AMFES, φΩ > εΩ in all cases, although the gap gets 

smaller as the size of the data set increases. This means that AMFES places more essen-

tial features before irrelevant features than it actually takes as selected features. The same 

is true of RFE, although to a lesser degree. On the other hand, CORR places about the 

same number of essential features before irrelevant features as it takes as selected fea-

tures. Moreover, AMFES has generally higher φΩ than RFE and CORR, especially when 

the size of the training data is small or the number of irrelevant features is large. 

We summarize the findings in Tables 9 to 13 as follows. 

(a) The Ω procedure, which ranks and selects features according to Π training-

validation pairs, outperforms the Ω·Π procedure, in which features are ranked 

and selected based on only one training-validation pair. 

(b) AMFES’s feature selection procedure outperforms RFE and CORR in terms of 

the test accuracy rate and the F1-measure for the captured essential features. 

(c) The feature selection procedures of AMFES and RFE manifest the COD effect 

in that their performance measures increase with the training data size, and de-

crease with the number of irrelevant features. CORR’s performance measures 

are relatively invariant to the training data size, but they are usually inferior to 

those of AMFES and RFE. 
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(d) AMFES places more essential features in the top ranks (i.e., above all irrelevant 

features) than it actually takes as selected features. The same is true of RFE, al-

though to a lesser degree. CORR places about the same number of essential fea-

tures in the top ranks as it takes as selected features. Moreover, AMFES outper-

forms RFE and CORR in terms of the number of essential features placed in the 

top ranks. 

4. Conclusion 

The proposed feature evaluation method, AMFES, ranks features according to their 

strengths, which are derived from multiple feature subsets. Initially, AMFES ranks all the 

features; then, in each subsequent stage, it takes the features whose ranks in the previous 

stage were above the median rank and re-ranks them in the same fashion as it did in the 

first stage. The complexity of our method is thus O(log2d) This is lower than the com-

plexity of RFE, which is O(d). To cope with the COD effect, we propose a procedure that 

derives a set of selected features from various training-validation pairs, rather than from 

one pair. By so doing, we obtain a more stable and more effective set of selected features 

than those derived from a single pair. In the experiments conducted to compare AMFES 

with the other methods, AMFES outperformed RFE and CORR in terms of the feature-

ranking performance, as expressed in the v-curve. AMFES’s performance was also supe-

rior in terms of feature selection, as expressed in the test accuracy rate, the F1-measure 

for captured essential features, and the number of features ranked above all irrelevant fea-

tures. Finally, the superior performance of AMFES is particularly noticeable on data sets 

with a small number of training samples or a large number of irrelevant features, as mani-

fested in the experiments on synthetic data. 
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