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Abstract—In this paper, we propose an effective scheme for enhancing the visual details of digital images 

with the minimal amount of user adjustment. Digital archives are becoming increasingly popular due to the 

development of convenient and powerful digitizing techniques. However, a substantial number of digital 

images suffer from loss of detail because they were captured with old-fashioned equipment. Thus, an 

automatic tone reproduction technique is needed. We attempt to solve the above issues by combining a 

novel local normalization concept with an adaptive contrast assessment process. The proposed tone 

reproduction scheme effectively enhances poor quality regions, while simultaneously preserving good 

quality regions with default parameter settings. As the proposed scheme eliminates most of the manual 

effort required to adjust the parameters, it can be considered as nearly automatic. The results of 

experiments demonstrate that the scheme outperforms many existing algorithms when applied to restoring 

digital images for a national digital archive program. 

 

Index Terms—Detail preserving, tone reproduction 
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1. INTRODUCTION 

 

The lack of sufficient dynamic range and proper shading conditions remain challenging issues for modern sensor 

technology and photography. Under different lighting conditions, a digital sensor can only capture a limited 

dynamic range because it is not as sensitive as the human eye. Brightness that falls beyond the sensor’s linear 

dynamic range will be compressed and become imperceptible to humans. In recent years, a number of tone 

reproduction algorithms have been developed to compensate for a digital sensor’s inability to genuinely reproduce 

images that the human eye can see [1-7]. Depending on the strategies employed, existing techniques can be 

classified into two categories: global tone reproduction and regional tone reproduction methods. Several global 

tone reproduction approaches have been developed. For example, Fattal et al. [3] proposed a method that 

suppresses the magnitude of large luminance gradients and preserves fine details by identifying changes in 

intensity. Then, by solving a Poisson equation on the modified gradient field, the larger gradients are reduced and 

an image with low dynamic range is produced. In [2], Durand et al. proposed a bilateral filter that decomposes an 

image into two layers: a large-scale variation base layer and a visibility preserving detail layer. The two layers are 

produced by applying bilateral filtering, and the relative contrast is subsequently reduced in the large-scale 

variation layer. Pattanaik et al. [1] developed a computational model of human adaptation and spatial vision for 

realistic tone reproduction. In contrast, Drago et al. [4] proposed a method based on the logarithmic compression 

of luminance values that produces images with well-preserved details and satisfactory contrast levels. 

Unfortunately, the drawback of all existing global approaches is that they inevitably suppress high contrast 

regions.  

For regional tone reproduction, Krawczyk et al. [6] proposed decomposing an image into areas of consistent 

luminance and calculating the local brightness values; while Chen et al. [7] developed another region-based 

method that applies bilateral techniques on different image regions to obtain better quality images. Since region 

contrast reproduction schemes process each image region differently, the main limitation of such approaches is 

that they tend to produce unnatural boundaries. Moreover, a common problem with global and regional tone 

reproduction approaches is that the quality of their results depends to a large extent on how the parameters are set. 
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To resolve the above-mentioned issues, we propose a method that uses two primary components—local 

normalization and adaptive contrast assessment. For local normalization, our approach starts by identifying an 

image’s local maximum and minimum surfaces. By considering an image as a 3D surface, the local maxima and 

local minima surface patches can enclose the entire image’s 3D surface from above and below. Then, by 

normalizing the image toward the local maxima and minima, we can expand the image signal to increase the 

utilization of its dynamic range. After local normalization, our scheme implements an adaptive contrast 

assessment process that adaptively blends each pixel of the locally normalized image into the original image. 

Combining local normalization and adaptive contrast assessment allows us to enhance poor quality regions 

directly, while simultaneously preserving good quality regions—just as photographers do in manual image 

enhancement. In addition, since the set of parameters in our scheme are pre-determined (discussed in Section 2.4), 

users do not need to adjust the parameter settings further. This feature is especially important when applying our 

algorithm to digital archiving tasks that deal with huge amounts of data. 

The remainder of this paper is organized as follows. In the next section, we introduce the proposed method 

and elaborate on our scheme’s design. Section 3 details our experiment results and evaluations, and Section 4 

contains some concluding remarks. 

 

2. THE PROPOSED METHOD 

 

In this section, we introduce the primary concepts and the algorithm of the proposed method. We consider the 

characteristics and the goal of our general tone reproduction method in Section 2.1 and discuss the design of the 

algorithm in Section 2.2. The methods used to evaluate the effectiveness of our tone reproduction scheme are 

presented in Section 2.3. Then, in Section 2.4 we analyze our tone reproduction scheme. 
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2.1. The  Design Concepts 

We start by analyzing the effect and purpose of general image enhancement and tone reproduction in order to 

devise our novel tone reproduction algorithm. An image model ),( yxI is commonly regarded as a product of the 

reflectance ),( yxR and the luminance ),( yxL of a pixel ),( yx , i.e.,                                           

),(),(),( yxLyxRyxI 
. (1) 

Thus, the enhanced image ),(' yxI can be represented as 

),('),('),(' yxLyxRyxI  . (2) 

When enhancing an image, by using use homomorphic filtering for example, the filter suppresses the 

luminance part of the image such that the overall contrast is reduced and the corresponding histogram converges 

toward the center of a dynamic range. To verify this phenomenon, we also manually enhanced over 250 poorly 

captured images to determine whether such a characteristic meets human expectations. Through both the 

mathematical model and observations of manual enhancements, we found that, generally, the set of enhanced 

images exhibited low distributions at both extremes of a histogram. We express this characteristic as follows:  

  maxmin ),(' GyxLG , (3) 

where minG and maxG are the respective minimum and maximum values of a dynamic range; and and are two 

positive constants that show ),(' yxL  will not become extreme luminance values of the dynamic range. On the 

other hand, using homomorphic filtering to enhance image details increases the ratio of reflectance ),( yxR to 

luminance ),( yxL . Again, by examining the set of manually enhanced images, we found that the resultant 

contrasts were larger in the enhanced images than in the originals. Weber’s Law and many other just noticeable 

difference (JND) profiles also allude to a similar phenomenon; i.e., a contrast is only perceivable when it is 

greater than a certain threshold. Therefore, it is reasonable to assume that an image’s details are only visible when 

its local contrast is large enough. Formally, the above-mentioned characteristics can be expressed as follows: 

),(

),(

),('

),('

yxL

yxR

yxL

yxR
 , 

(4) 

thresholdyxIContrast )),(( , (5) 
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where the contrast between details is larger than the threshold constrained by Weber’s Law or JND profiles to 

ensure that it is perceivable by the human eye. Taken together, Equations (3), (4), and (5) can function as 

guidelines for designing image enhancement algorithms. To extend the range of reflectance ),( yxR , we utilize the 

dynamic range as much as possible to ensure simultaneous satisfaction of Equations (4), and (5). Based on this 

concept, we include a normalization algorithm in our scheme to increase the usage of the dynamic range. 

Furthermore, the constraint in Equation (3) can be satisfied by modifying the normalization stage into a local 

normalization stage. For example, a signal can be considered as having S piecewise densely connected line 

segments, which can be expressed as follows: 

)(),(

     }, ..., ,2 ,1  ),,({),(

min, kkkk

k

RandIyxI

SkyxIyxI




. (6) 

For each line segment kI , kImin, is the local minimum of kI , and )( kkRand  is a random variable that represents how 

much a small part of a signal varies between 0 and k . Hence, after applying local normalization (.)LN , kImin,  will 

be significantly reduced and the normalized signal can be expressed as follows: 

}) ..., ,2 ,1  ),(({

}) ..., ,2 ,1  ),,(({)),((

SkRandLN

SkyxILNyxILN

kk

k






. (7) 

Therefore, the mean of )),(( yxILN can be derived by: 

,/})) ..., ,2 ,1  ),(({(

))),(((

SSkRandLNSum

yxILNMean

kk  
 (8) 

where (.)Sum represents the summation process. According to the central limit theorem, if S is large,
 

})) ..., ,2 ,1  ),(({( SkRandLNSum kk  will be normally distributed. Therefore, the mean of the normalized 

signal )),(( yxILN will be close to the center of a dynamic range. On the other hand, since ),(' yxL can be considered 

a low-pass filtered version of the normalized signal )),(( yxILN , ),(' yxL will definitely satisfy the constraint set by 

Equation (3). Note that, although )),(( yxILN can satisfy the constraints set in Equations (3), (4), and (5), 

components that have larger gradient values in an image ),( yxI , expressed as ),( yxL , are removed 

simultaneously. Since this situation is definitely undesirable, we introduce an additional attenuation ratioT  to 

multiply the lower bound intensity kImin,  in the local normalization process. This ensures that ),( yxL can be 
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preserved, but it will be compressed to T1 . The effect of adding the ratio T is that the value of 

))),((( yxILNMean will be shifted slightly away from the center of the dynamic range. However, as the shift will 

not move ))),((( yxILNMean to either of the extreme values of the dynamic range, the constraint set by Equation (3) 

still holds. 

In order to ensure the image quality, we also introduce an adaptive contrast assessment mechanism to preserve 

or enhance visual details. This is done by adjusting the original good contrast and the enhanced contrast 

adaptively. To build the mechanism, we need to compute an exponent factor. We describe how to determine this 

factor in the next subsection. With the above mentioned mechanism, we can ensure that the contrasts of the 

processed image are better defined than those of the original image. 

 

 

2.2. The Proposed Tone Reproduction Scheme 

 

Based on the concepts described in the previous section, we propose the following tone reproduction scheme: 

),(),(),(),(' yxCyxEyxIyxI  , (9) 

where ),(' yxI is an enhanced image signal. ),(),( yxEyxI  is the locally normalized version of ),( yxI ; 

hence ),( yxE is the local normalization ratio kernel. In our design, for an image ),( yxI , ),( yxE is derived by the 

following equation: 

),(

),(
),(

minmax

min

yxI

G

TII

TIyxI
yxE 







. (10) 

As mentioned earlier, we modify the normalization equation by adding an attenuation ratio T (ranging from of 0 

to 1) to our tone reproduction scheme. maxI and minI are the respective local maxima and minima of an image 

signal; G is the full size of the dynamic range; and  is an offset to avoid the divide-by-zero situation. In our 

scheme, an exponent factor is added to balance the original good contrast and the contrast enhanced by our 
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method. By applying the adaptive contrast assessment mechanism introduced in the previous subsection, we 

have ),( yxC , an adaptive contrast assessment factor, which is defined as follows: 

)})'(),((arg{),( ILapILapGaussianyxC  , (11) 

where babababa   when 1},arg{ and , when 0},arg{ ; (.)Lap is the Laplacian operator: 

2

2

2

2

)(
y

I

x

I
ILap









 ; 

and (.)Gaussian denotes the Gaussian operator. Let the width of a filter be 1/10 of the longest side of an image and 

its corresponding standard deviation be 1/5 of the width (which results in a flat Gaussian filter) to ensure that 

),( yxC  will change smoothly. With ),( yxC , our proposed mechanism can enhance the low contrast regions of an 

image, while preserving the details of high contrast regions. Since the local normalization process normalizes an 

image toward its local maxima and local minima surfaces, we can think of it as partitioning an image into densely 

connected piecewise segments, and then normalize those segments. We can expand the expression shown in 

Equation (6) and express it mathematically as } ..., ,2 ,1  ),,({),( SkyxEyxE k  .Combining Equations (1) and (10) 

we have:
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where TIIG kkkL  min,max,, .  Let ),( yxk be the intensity difference between ),( yxIk and kImin, ; then we have  

),(),( min, yxIyxI kkk  , (13) 
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Next, we consider the following three cases of ordinary target regions for enhancement: Case 1: a region with 

low local contrast and high local luminance; Case 2: a region with low local contrast and medium local luminance; 

and Case 3: a region with low local contrast and low local luminance. In the first case, the local luminance is high, 

so kImin, can be much larger than ),( yxk ; therefore,

        

.}
)1(

{
),(

),(
),(

),(

,1

'
1'

1
yxC

kLCase

Case
Case

k

G

TG

yxI

yxI
yxV




  (15)

 

In the second case, kImin, is comparable to ),( yxk ; therefore, 
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
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  
(16) 

In the third case, ),( yxk is more dominant than kImin, ; therefore, 

.)(
),(

1),(
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 
 


 (17)
 

 
 

By carefully selecting T and  , our proposed algorithm can guarantee that V will be greater than 1 in all cases. 

In the scheme,  is a small constant offset to ensure that the divided-by-zero situation will not arise. For example, 

we set T = 0.8 and  =3. When V > 1, the above three cases can be interpreted as follows. In the first case, since 

the local luminance is high, L1(x,y) tends to decrease. However, as V’case1 > 1, R1(x,y) tends to be greater than 1. In 

the second case, the resulting V’case2 will be quite large with our settings. Even with a medium local luminance, 

V’case2/L2(x,y)= R2(x,y) would still be much larger than 1. The third case is similar. Since a 

dominating ),( yxk would make V’case3 a large value compared to 1, it is reasonable that L3(x,y)>1 and R3(x,y)>1 

to ensure a large V’case3. To sum up, the proposed image enhancing process clearly satisfies the constraints set in 

Equations (3), (4), and (5), i.e., it preserves the details and restores the visibility of a processed image. More 

supporting details and figures are provided in Section 2.4. 

 

2.3 Quality Evaluation  
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To evaluate the performance of our tone reproduction scheme, we introduce a visual detail assessment mechanism 

based on the JND profile. In [8], Chou and Li proposed a way to estimate the JND profile of the human visual 

system. With the JND profile, we can determine the regions in which the image details are visible to a human 

observer and thereby obtain the percentage of perceptible visual details. Note that in our estimation of the 

perceptible percentage, we do not consider the effect of spatial masking. Instead, we only consider the 

relationship between the visibility threshold and the background luminance, which is an underlying technique 

described in the JND profile. The visibility threshold is expressed in Equation (18), while the curve of the 

visibility threshold is depicted by the blue curve in Figure 1. We use the Laplacian operator to calculate the 

contrast value of all the pixels in an image, and then use the curve of the visibility threshold to determine whether 

they are visible or not. With this JND profile, we can quantitatively compute the proportion of an image that is 

actually restored. The JND profile we adopted from [8] is expressed as follows:  














,
127),(for 3)127),((

127for 3)))127/),((1(

)),((),(

2/1
0

yxbgyxbg

bg(x,y)yxbgT

yxbgfyxJND



 (18) 

where ),( yxbg is the average background luminance, and 0T and  are set at 17 and 1/2, respectively. 

To further explain how the parameter set is determined and how the quality of an image is improved after 

applying our tone reproduction algorithm, we synthesize a test image by combining different image intensities to 

produce possible contrasts. As shown in Figure 2 (a), the synthesized test image consists of a vertical base 

gradient with the background luminance ranging from 0 to 255 (top to bottom) and randomly generated details 

whose intensity ranges from 0 to 255(left to right). The purpose of applying local normalization to this image is to 

determine if our algorithm can enhance various levels of contrast under different background luminance levels. As 

Figure 2 (b) demonstrates, the visual clarity is significantly enhanced, and the parts of the smooth gradient are 

also preserved. In the next section, we apply the quality evaluation scheme on this synthetic image to perform 

quantitative analysis. 
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Figure 1. JND profile of the human visual system. 

 

 

 

 

 
(a) Test image 

 

 
(b) Resulting image 

Figure 2. (a) The synthesized test image; and (b) the resulting image after applying local normalization 

(b). 
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2.4 Scheme Design Details 

 

In this subsection, we provide further details about how we systematically determine a good parameter set based 

on two primary guidelines: increasing the degree of detail visibility and reducing the effect of artifacts, such 

as the effect of noise, the effect of gradient reversal, and the halo effect.   

By Equation (18), we can clearly define an approximate JND profile of the human visual system. Therefore, 

by varying the two parameters T and  mentioned in the previous section (Equation (10)), we hope to achieve a 

high estimated perceptible percentage of an image. On the other hand, to preserve a better visual impression, we 

want to reduce the amount of perceived noise. Although the noise will inevitably be amplified through our local 

normalization process, we choose the parameters carefully to ensure the amplified noise will always be below the 

level in the JND profile. This concept is similar to the idea used in transparent coding. 

 

2.4.1 Noise Reduction 

Noise reduction is considered a crucial step in image quality improvement. To achieve it, we first locate the 

average noise level of various digital camera models (ranging from high-end digital single-lens reflex cameras to 

popular compact units). Based on the statistics reported in [9], we set the average noise level as 3 for an 8-bit 

imaging system, and consider an image’s visual details that fall below this level as noise. As shown in Figure 3 

(a), the vertical line represents this average noise level. Thus, we consider that the region to the right of this 

boundary contains valuable visual details, while the region to the left contains unwanted noise. Then, we adopted 

the JND profile to estimate the perceptible percentages of the above two regions (as shown in Figure 3). In this 

way, we can determine an appropriate set of parameters to maximize the visual details of an image and 

simultaneously ensure that noise in the image is minimized or imperceptible. 

To determine the percentage of the perceptible details of an image, we perform the following experiments. 

First, we vary T in Equation (10) to observe the change in the percentage of visual detail. As shown in Table 1, 

when T  varies between 0.1 and 0.9, the percentage of visual detail of regions with intensity values higher than the 

JND profile level increases by about 0.2%. However, for those regions whose intensity values are lower than the 
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JND profile level, the percentage increases by about 7%. Hence, the amount of undesirable noise increases faster 

than the amount of restored details when we try to maximize the visual details by varying T  between 0.1 and 0.9. 

As perceptions of visual pleasantness are closely related to the SNR of an image, we would rather make T  small 

so that an image is more visually pleasing. Hence, we set T  at 0.1. 

Resulting Image 

 
 

 
(a) 

Perceptible Details (estimated by JND profile) 

 
 

 
(b) 

Figure 3. (a) The enhanced result; and (b) the estimation of perceptible details (the green regions indicate 

imperceptible areas).  

 

Having explained the general principle of how to determine T , we now consider the offset  . In our scheme, 

we make  adaptive: 

)1),(/(1     ,1.0))min((  yxIswheressv k . (19) 

As a result,  will be dominant when ),( yxIk is low. This setting also helps reduce visible noise artifacts. For 

now,  becomes a function of v . We illustrate the difference between using constant and adaptive  in Figure 4.  

In the figure, the green curves are the gradients of the average luminance using the signals sampled when the 

intensity level of added detail is equal to 3 (as shown in Figure 3 (a)); the blue curves are the enhanced signals; 

the brown curves are the average luminance levels of the enhanced signals; and the red curves are the gradients of 

the average luminance. In Figure 4 (a), as a constant   is used, the gradients of the average luminance (the red 

Sampling along original detail level = 3 Sampling along original detail level = 3 



-13- 

 

curve) decrease from the maximum value to smaller values as the average luminance level increases from 

extremely low to higher levels (along the x axis in Figure 4 (a)). However, in Figure 4 (b), the gradient of the 

average luminance using adaptive  can be controlled to generate a totally different curve. That is, the gradient’s 

value starts from zero and rises to a maximum value when the average luminance level is extremely low (red 

dotted box in Figure 4 (b)). The magnified views of Figures 4 (a) and (b) are shown in (c) and (d) respectively. In 

other words, using adaptive   effectively suppresses noise when the average luminance level is very low. In 

Figures 4 (e) and (f), the blue curve depicts the JND profile curve and the red curve (with magnitude fluctuation) 

is the absolute magnitude obtained by subtracting the enhanced signal (blue curves in Figures 4 (a) and (b)) from 

its corresponding average luminance (red curves in Figures 4 (a) and (b)). From the curves enclosed by the red 

dotted boxes shown in Figures 4 (e) and (f), it is clear that using a constant   cannot suppress the perceptible 

noise when the average luminance level is low (Figure 4 (e)). On the other hand, an adaptive  can effectively 

reduce such noise in those low average luminance regions (Figure 4 (f)). 

Table 1. Perceptible details of different regions by varying the parameter values.  

Regions whose intensity is above the JND profile level (the higher, the better) 

Perceptible Details (%) T=0.1 T=0.3 T=0.5 T=0.7 T=0.9 

v=1 99.6629           99.6693 99.7374   99.8006 99.8622 

v=10 99.6126    99.6548 99.7423 99.7990 99.8622 

v=100    99.6061    99.6888 99.7488 99.7553 99.8703 

v=1000    99.5802 99.6483 99.6985 99.7553 99.8104 

Regions whose intensity is below the JND profile level (the lower, the better) 

Perceptible Details (%) T=0.1 T=0.3 T=0.5 T=0.7 T=0.9 

v=1 91.0156 92.8906 94.8698 96.2760 98.2552 

v=10    90.8854 93.1771 95.1302 97.0313 98.9063 

v=100 90.7552 92.2656 94.4531 96.2500 98.2031 

v=1000    90.3646    91.6667 93.3854 94.5573 95.9896 

 

As mentioned in Section 2.4, although it is inevitable that noise will be amplified through our local 

normalization process, if we choose the parameter values carefully the noise will be invisible/imperceptible (by 

always keeping the amplified noise below the level in the JND profile). Thus, as T is already decided, we vary v  

from 1 to 10000 and sample along the vertical line where the added detail intensity level is 3. Then, we calculate 

the signal fluctuation after the enhancement process is finished.  
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(a) 

 

 
(b) 

 
(c) 

 
(d) 

 

 
(e) 

 

 
(f) 

Figure 4. Comparison of the noise suppression effect using a constant  : (a), (c) and (e), and using an 

adaptive  : (b), (d) and (f). (c) and (d) are magnified version of (a) and (b), respectively. 
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As the allowed fluctuation in amplitude should be confined by the JND profile to ensure that all noise falling 

below the JND profile remains imperceptible, we find that the threshold for v  should be greater than 400, as 

shown in Figures 5 (a) and (b). Significantly, we also find that the lower the threshold of v , the greater amount of 

visual details that can be preserved. Thus, setting v  as 400 is reasonable because it achieves a balance between 

detail visibility and noise reduction. Moreover, in Figures 5 (c) and (d), it is clear that the enhanced signal will be 

perceptible (as the signal fluctuation is higher than the JND profile) when the randomly generated detail level is 8 

or higher. However, when dealing with certain kinds of images (such as photographs captured by a phone camera), 

the noise could still be perceptible in some regions because the noise level is actually higher than our assumed 

average. 

 
(a) v =10 

 
(b) v =400 

 
(c) 

 
(d) 

Figure 5. Noise reduction using different v . (a) Perceptible noise occurs in the low brightness region when v =10 

(added detail intensity=3). (b) Perceptible noise suppressed in the low brightness region when v =400 (added 

detail intensity=3). (c) Details are enhanced and become perceptible when v =400 (added detail intensity=8). (d) 

Details are enhanced and become perceptible when v =400 (added detail intensity=20). 
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Figures 6 and 7 demonstrate the effect of noise reduction. In our test image set of more than 250 images, using 

the above two pre-determined parameters (T and v ), our tone reproduction algorithm recovered more than 84% of 

the visual details of an image on average. 

 

2.4.2 Non-Gradient Reversal and Human Visual System Similarities 

From Figure 5, it is clear that the processed signal exhibits gamma function-like responses. Since the perceptual 

response of the human visual system is also a gamma function-like, such a characteristic demonstrates that our 

proposed tone reproduction scheme can produce enhanced images close to how humans actually perceive images. 

Moreover, in our experience, it is very common for people to feel intuitively that information is hidden in the dark 

regions, rather than the bright regions of an image. People are more interested in exploring the visual details in 

low brightness regions, because it is natural to think that such regions are imperceptible. As the gamma function 

increases monotonically, the gradient of the processed signal will follow that of the original signal and the effect 

of gradient reversal will not be evident in our scheme.  

 

2.4.3 Reducing the Halo Effect 

In addition to the above artifacts, we also consider the halo effect, which often occurs in existing tone 

mapping/reproduction algorithms and degrades the quality of an image. Although there is still no firm conclusion 

about how the halo effect occurs, we found that it usually occurs when the image enhancement process involves 

low-pass filtering.  A low-pass filter is usually introduced to either ―smooth‖ the region boundaries or perform a 

process locally. This explains why the halo effect occurs along the boundaries between a processed region and a 

non-processed region. However, the halo effect is minimized in our results because our local normalization 

scheme does not employ low-pass filtering. Furthermore, to suppress possible causes of the halo effect, we also 

consider non-linear image processing techniques [10, 11] to implement the smoothing process in order to reduce 

noise. 
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(a) 

   
(b) 

Figure 6. Noise reduction using different v . (a) Perceptible noise occurs in the low brightness region when 

v =10. (b) Perceptible noise is significantly suppressed in the low brightness region when v =400. 

 

   
(a) 

   
(b) 

Figure 7. Noise reduction using different v . (a) Perceptible noise occurs in the low brightness region when 

v =10. (b) Perceptible noise is significantly suppressed in the low brightness region when v =400. 
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3. EXPERIMENT RESULTS 

 

To test the effectiveness of our method, we conducted experiments on a set of images acquired under various 

shading/lighting conditions. All the image results demonstrated in this paper were processed with two default 

parameters (T=0.1 and v =400). Figures 8 (a), (b), (c), and (d) show four test images in which the lighting 

conditions range from simple to complex; and Figures 8 (e), (f), (g), and (h) show the respective tone reproduced 

results. Clearly, the details of the tone reproduced images in Figures 8 (f) and (g) are greatly enhanced. Figures 8 

(e) and (h) show that it is possible to recover the visual details of the heavily shaded areas in the tone reproduced 

images. Note that the halo effect was substantially reduced because we did not use a low-pass filter in the local 

normalization process.  

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 8. Test images and results with lighting/shading conditions ranging from simple (left) to complex 

(right). (a)-(d), original images; (e)-(h), enhanced images. 

 

Figures 9 (c)-(f) show some tone reproduced results after applying a variety of existing algorithms to the 

original image in Figure 9 (a). Figure 9 (b) shows the result obtained after applying our algorithm, while Figures 9 

(c), (d), (e), and (f) are the results obtained by applying the tone reproduction algorithms proposed by Reinhard 

(2004), Fattal (2002), Pattanaik (2000), and Drago (2003), respectively. Since the compared algorithms require 

the selection of a good parameter set to obtain visually pleasing results, we fine tuned each algorithm's parameters 
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to obtain a near optimal set of results in the experiment. In contrast, our method does not require manual 

parameter selection. 

The results obtained after applying a perceptibility test to various contrast reduced images are shown by the 

images with blue labels in Figure 9. The higher percentage means that greater amounts of an image’s details are 

perceptible. For example, in this set of experiments, our method restores the details in the image such that 90.58% 

of the image is visible to human eye. This result yields the highest number of image detail regions, and the highest 

percentage among the compared methods.  

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 9. Comparison of various tone reproduction algorithms. (a) Original, (b) our method, (c) Reinhard 

(04), (d) Fattal (02), (e) Pattanaik (00), and (f) Drago (03). 

 

In terms of perceptibility, among the above evaluation metrics, Fattal et al.’s method generally yielded the 

second best results on all our test sequences, which contained more than 250 images. Figure 10 provides a more 

detailed comparison of our results and those of Fattal et al.'s method. From the perceptible details, the contrast 

distributions, and the difference in contrast distribution shown in the figure, it is clear that our algorithm can 

restore a much larger percentage of an image’s details. 

The images in Figure 11 demonstrate the efficacy of our smart tone reproduction scheme. In many of the 

enhanced images of the test image set, the percentage of perceptible detail of the restored regions is as high as 

93% using the default parameter set described earlier. The results show that our tone reproduction scheme is 

robust and accurate. 

Reinhard04 

Fattal02 Drago03 

74.2257% 

Ours 

47.5933% 

Pattanaik00 

72.9871% 56.4864% 

54.2168% 90.5781% 

Original 
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It should be noted that no single tone reproduction algorithm can be applied to all images. The proposed 

scheme simply emphasizes the effectiveness of preserving the visual information of an arbitrary image. Even so, 

the experiment results show that, overall, the performance of our algorithm is superior to that of existing 

approaches.  

Resulting Image 

Perceptible Detail  

(Green: pixel-wise contrasts  

that fall below the JND 

profile) 

Contrast  

Distribution 

(The red curve 

is the JND 

profile) 

Contrast 

Distribution 

Difference 

(Our method and 

Fattal’s method) 

Perceptible 

Detail % 

   

 

72.9871% 

   

90.5781% 

Figure 10. Comparison of the percentage of perceptible details processed by the proposed tone reproduction 

algorithm and Fattal’s algorithm. Note that the contrast distribution of our method spreads significantly wider 

than that of Fattal’s method. 

 

4. CONCLUSION 

 

We have proposed a robust tone reproduction scheme based on image model and image enhancement concepts 

to obtain a more balanced visual representation. When applied to our test data, which includes a range of lighting 

conditions and shading effects, our tone reproduction algorithm achieves excellent detailed reproductions without 

the need for further user parameter adjustments (if the default settings are used). For most images, the proposed 

tone reproduction scheme is precise and robust, and the parameters used in our algorithm do not have to be 

adjusted. Moreover, the enhanced images processed by our intuitive scheme are close to the quality that most 

people expect in a natural photograph. (Please see Fig. 11.) 

 

 

Ours 

Fattal02 
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Original Image and  

Perceptible Details (red regions) 

Result Image and  

Perceptible Details (red regions) 

 

 

 

 
Perceptible Detail: 64.3343% Perceptible Detail: 90.4098% 

  
Perceptible Detail: 55.3543% Perceptible Detail: 92.1788% 

  
Perceptible Detail: 36.7549% Perceptible Detail: 94.6199% 

  
Perceptible Detail: 53.0243% Perceptible Detail: 94.6000% 

  
Perceptible Detail: 28.6945% Perceptible Detail: 93.0743% 

  
Perceptible Detail: 33.1167% Perceptible Detail: 82.7706% 

 

Figure 11. Comparison of the original images and the enhanced images. 
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