
TR-IIS-08-011

Bi-objective Optimization : An Online

Algorithm for Job Assignment

Chien-Min Wang, Xiao-Wei Huang, and Chun-Chen Hsu

November 25, 2008 || Technical Report No. TR-IIS-08-011
http://www.iis.sinica.edu.tw/page/library/LIB/TechReport/tr2008/tr08.html

Bi-objective Optimization : An Online
Algorithm for Job Assignment

Chien-Min Wang1, Xiao-Wei Huang1, and Chun-Chen Hsu1,2

1 Institute of Information Science, Academia Sinica, Taipei, Taiwan
{cmwang,xwhuang,tk}@iis.sinica.edu.tw

2 Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan

d95006@csie.ntu.edu.tw

Abstract. We study an online problem that occurs when the capacities
of machines are heterogeneous and all jobs are identical. Each job is asso-
ciated with a subset, called feasible set, of the machines that can be used
to process it. The problem involves assigning each job to a single machine
in its feasible set, i.e., to find a feasible assignment. The objective is to
maximize the throughput, which is the sum of the bandwidths of the
jobs; and minimize the total load, which is the sum of the loads of the
machines. In the online setting, the jobs arrive one-by-one and an algo-
rithm must make decisions based on the current state without knowledge
of future states. By contrast, in the offline setting, all the jobs with their
feasible sets are known in advance to an algorithm. Let m denote the
total number of machines, α denote the competitive ratio with respect
to the throughput and β denote the competitive ratio with respect to the
total load. In this paper, our contribution is that we propose an online al-
gorithm that finds a feasible assignment with a throughput-competitive
upper bound α = O(

√
m), and a total-load-competitive upper bound

β = O(
√

m). We also show a lower bound αβ = Ω(
√

m), of the problem
in the offline setting, which implies a lower bound αβ = Ω(

√
m), of the

problem in the online setting.

Keywords: Online algorithms, job assignment, bi-objective optimiza-
tion, throughput, load.

1 Introduction

In the scenario where a number of machines with different positive capacities are
ready to provide services for a set of jobs, each job is associated with one non-
negative unit weight and a subset, called the feasible set, of the machines that
can be used to process it. The problem involves assigning each job to a single
machine in its feasible set, i.e., to find a feasible assignment. The objective is
to maximize the throughput, which is the sum of the bandwidths of the jobs;
and minimize the total load, which is the sum of the loads of the machines. We
consider the online problem in the following model. There are m machines with
different capacities, and n jobs. Each job i has the same weight and a feasible

set Fi. In the online setting, the job arrives with its weight and its feasible set.
An online algorithm must assign the job to a single machine in its feasible set
without knowledge of future states and the decision cannot be revoked at a later
stage. By contrast, in the offline setting, all the jobs and their feasible sets are
known in advance to an algorithm.

Given a feasible assignment, which is a mapping from the jobs to the ma-
chines, the load on a machine in the assignment is the sum of the number of the
jobs assigned to it divided by its capacity [1]. The amount of bandwidth allo-
cated to a job in an assignment, which represents the quality of service, depends
on the total weight of jobs that share the resource with it [6, 11]. Specifically, in
our model, if l jobs are assigned to the same machine with capacity c, then each
one will be allocated a bandwidth of c/l, since all jobs have the same weight.
We measure the assignment by the throughput as the utility, defined as the sum
of the bandwidths of all jobs, and the total load as the congestion, defined as
the sum of the loads of all machines. As mentioned earlier, our goal is to find
a feasible assignment in order to simultaneously maximize the throughput and
minimize the total load.

Our contribution in this paper is twofold. First we present an online algorithm
for the online job assignment problem when considering the throughput and the
total load. The algorithm has the throughput-competitive ratio α = O(

√
m) and

the total-load-competitive ratio β = O(
√

m), which will be equal to the ratio
with respect to the average of the loads. Our second contribution is that we show
a lower bound of this problem in the offline setting with αβ = Ω(

√
m), where α

is the competitive ratio with respect to the throughput and β is the competitive
ratio with respect to the total load. Note that the problem in the offline setting
must be easier than or equivalent to the problem in the online setting.

The remainder of this paper is organized as follows. Section 2 contains a
literature review. In Section 3, we define the problem formally. Section 4 presents
the proposed online algorithm and its properties, and Section 5 shows a lower
bound of the offline problem.

2 Related Work

Many approaches for measuring the quality of a job assignment have been pro-
posed. For example, a popular measure that minimizes the maximum load [1,
3], measures for minimizing the l2-norm or any other lp-norm of the machine
load vector [2, 8], measures that consider both fairness and balancing issues [6,
11], and some other quality measures are discussed in [16]. However, it is not
always clear how to properly measure the quality of an assignment in general.
Hence, it is desirable to find a solution that can approximate several measures
simultaneously [2, 4, 6, 7, 9–11, 13, 17]. In this work, we focus on a measure that
maximizes the throughput and minimizes the total load simultaneously.

In [1, 3], the authors studied the load balancing problem with the objec-
tive of minimizing the maximum load. The restricted assignment model was
studied with respect to this measure in [3]. In the restricted assignment model,

2

there are m identical machines and n jobs. Each job is associated with a non-
negative weight and a feasible set of machines to which it can be assigned. It
was showed that the maximum load generated by the greedy online strategy is
within O(log m) factor of the optimal load.

Kleinberg et al. [14] studied fairness issues in several routing and load balanc-
ing models in an offline setting. They defined the notion of prefix competitiveness
and a stronger notion of coordinate-wise competitiveness and considered several
offline problems in terms of these measures.

In [11], the authors studied the 1 − ∞ model in an online setting from the
fairness and load balancing perspective. Under the 1 − ∞ model, there are m
identical machines and n jobs. Each job is associated with the same weight and
with a feasible set of machines to which it can be assigned. The 1−∞ model is
a special case of the restricted model; the only difference is that in the 1 − ∞
model, all jobs have the same (one unit) weight. Goel et al. [11] proved that the
greedy strategy, which always assigns a job to the machine with the smallest
load in its feasible set based on the current state is globally O(log n)-fair and
globally O(log m)-balanced, where m is the number of machines and n is the
number of jobs. They also showed that any online algorithm must be globally
Ω(log m)-fair as well as globally Ω(log m)-balanced in [11]. Buchbinder and Naor
[6] solved the open problem in [11] and proved that the greedy strategy is globally
O(log m)-fair and globally O(log m)-balanced in the 1 −∞ model.

It is important to note that our model is different from the 1−∞ model in [6,
11], since the machines in the 1 −∞ model must be identical and the machines
in our model have different positive capacities. Clearly, the greedy strategy pro-
posed in [6, 11], which always assigns a job to the least loaded machine in the
feasible set, can not work well in our model. To illustrate this point, consider a
simple setting with only two machines with capacities c1 and c2, where c1 � c2,
and two jobs that can be processed by the both machines. After assigning the
first job to one machine, the greedy strategy assigns the second job to the other
machine whose loaded is zero and results in an assignment such that the total
load is 1

c1
+ 1

c2
. Since there exists another assignment such that the total load

is 2
c1

, we can see that the ratio is 1
2 + c1

2c2
and may be greater than any given

constant if c1 � c2.

3 The Problem Definition

In this section, we formally define our job assignment problem.

Definition 1 (A feasible assignment). Given the machines’ index set M =
{1, · · · ,m}, the jobs’ index set J = {1, · · · , n} and the non-empty feasible set
Fi ⊂ M of job i for all i ∈ J , a feasible assignment φ : J → M is a mapping
from J = {1, · · · , n} to M = {1, · · · ,m} subject to φ(i) ∈ Fi for all i ∈ J .

Given a feasible assignment, the bandwidth allocated to a job in the assign-
ment is the quality of service it gets depends on the total weight of jobs that
share the resource together with it [6, 11]. In our model, there are m machines

3

with different capacities and n jobs with the same (one unit) weight. Hence,
the amount of bandwidth allocated to a job depends on the number of jobs
that share the resource with it. We define the bandwidth vector of the feasible
assignment as follows:

Definition 2 (The bandwidth vector of a feasible assignment). Given
m machines with capacities c1, c2, · · · , cm, n jobs with their feasible sets, and a
feasible assignment φ : J → M, where J is the jobs’ index set and M is the
machines’ index set, the bandwidth of job i in the assignment is bi = cφ(i)

|Aφ(φ(i))| ,
where Aφ(k) is the set of jobs assigned to machine k in the assignment φ. The
bandwidth vector of the assignment Bφ = (b1, b2, · · · , bn).

The load on a machine in a feasible assignment is the sum of the number of
jobs assigned to it divided by its capacity [1]. We define the load vector of the
feasible assignment as follows:

Definition 3 (The load vector of a feasible assignment). Given m ma-
chines with capacities c1, c2, · · · , cm, n jobs with their feasible sets, and a feasible
assignment φ : J → M, where J is the jobs’ index set and M is the machines’
index set, the load of machine j in the assignment is lj = |Aφ(j)|

cj
, where Aφ(k)

is the set of jobs assigned to machine k in the assignment φ. The load vector of
the assignment Lφ = (l1, l2, · · · , lm).

We measure a feasible assignment φ of the job assignment problem by taking
the throughput as the utility function U(Bφ) =

∑n
i=1 bi and the total load as the

congestion function C(Lφ) =
∑m

i=1 li in the following model. Our goal is to find
a feasible assignment in order to simultaneously maximize the throughput and
minimize the total load. In multi-objective optimization problems, it is unlikely
that the different objectives could be optimized simultaneously by the same
alternative parameter choices, especially for some conflicting objectives. Hence,
to ensure that a design is satisfactory, there must be a trade-off between the
criteria.

Definition 4. [The job assignment problem envloves maximize the throughput
and minimize the total load in an offline setting] Given m machines with capac-
ities c1, c2, · · · , cm and n jobs with their feasible sets, the problem is to find a
feasible assignment φ : J → M such that

αU(Bφ) ≥ U(Bφ′) for all other feasible assignmets φ′,

and
C(Lφ) ≤ βC(Lφ′′) for all other feasible assignmets φ′′,

where the competitive ratio α, β are as small as possible simultaneously.

In the online setting, jobs arrive with their feasible sets one-by-one and the
algorithm must immediately assign job i to machine φ(i) when job i arrives.
This contrasts with the offline setting, where all the jobs and feasible sets are
given initially.

4

4 The Proposed Online Algorithm and Its Properties

In this section, we introduce the proposed online algorithm and its properties.
We begin by introducing notations. Let A(i, j) denote the set of the jobs assigned
to machine j when job i arrives, and A(i, j) ⊆ {1, 2, . . . , i−1}. Let Si denote the
index set of machines which no job is assigned to when job i arrives. Let max(i)
denote the index of the machine with the most capacity in the feasible set Fi

of job i, and un(i) denote the index of the machine with the most capacity in
Fi ∩ Si. In addition, let γk,i denote the number of times that the machine k is
regarded as the most powerful machine in the feasible sets of the first i jobs, i.e.,
γk,i = |{j|max(j) = k, 1 ≤ j ≤ i}|. The proposed online algorithm is detailed in
Algorithm 1.

Algorithm 1 The proposed online algorithm: When a job i arrives, the algo-
rithm assigns the job to a machine in its feasible set Fi.

Si := {j||A(i, j)| = 0, 1 ≤ j ≤ m}
if max(i) ∈ Si then

assign job i to machine max(i)
else if max(i) /∈ Si and Si ∩ Fi = ∅ then

assign job i to machine max(i)
else if max(i) /∈ Si and Si ∩ Fi �= ∅ then

if
√

γmax(i),icun(i) ≤ cmax(i) then
assign job i to machine max(i)

else if
√

γmax(i),icun(i) > cmax(i) then
assign job i to machine un(i)

end if
end if

4.1 The O(
√

m)-Competitive Ratio For the Total Load

Lemma 1. Given a feasible assignment φ, the total load is

C(Lφ) =
m∑

k=1

lk =
m∑

k=1

∑
i∈Aφ(k)

1
cφ(i)

=
n∑

i=1

1
cφ(i)

.

Proof. Since the load of machine k is lk = |Aφ(k)|
ck

=
∑

i∈Aφ(k)
1
ck

, we have

C(Lφ) =
m∑

k=1

lk =
m∑

k=1

∑
i∈Aφ(k)

1
ck

.

Note that i ∈ Aφ(k) means job i is assigned to machine k in the assignment φ,
i.e., φ(i) = k. Hence,

C(Lφ) =
m∑

k=1

∑
i∈Aφ(k)

1
ck

=
m∑

k=1

∑
i∈Aφ(k)

1
cφ(i)

=
∑

i∈Sm
k=1 Aφ(k)

1
cφ(i)

.

5

Moreover, all jobs in J = {1, 2, · · · , n} must be assigned to some machine k ∈ M
in the assignment φ; thus, we can see that

⋃m
k=1 Aφ(k) = J and

C(Lφ) =
∑

i∈Sm
k=1 Aφ(k)

1
cφ(i)

=
∑
i∈J

1
cφ(i)

=
n∑

i=1

1
cφ(i)

.

�

According to Lemma 1, we can find an optimal assignment φL for the total

load by assigning each job i to machine max(i). It is easy to see that φL has β =
1-competitive ratio for the total load. We refer to φL as the optimal assignment
for the total load. In the following, Lemma 2 shows the proposed online algorithm
has β = O(

√
m)-competitive ratio for the total load.

Lemma 2. The proposed online algorithm results in a feasible assignment φ
with β = O(

√
m) such that C(Lφ) ≤ βC(LφL), where Lφ is the load vector of

the assignment φ derived by the proposed algorithm and LφL is the load vector
of the optimal assignment φL for the total load.

Proof. First of all, we evaluate the total load of the assignment φL. By Lemma 1,
we calculate the total load of the assignment φL as follows:

C(LφL) =
m∑

k=1

∑
i∈AφL (k)

1
cφL(i)

=
m∑

k=1

|AφL

(k)|
ck

.

Then, we evaluate the total load of the assignment φ derived by the proposed
online algorithm. Observe the load, which is |Aφ(k)|

ck
, on the machine k in the

assignment φ, we have that |Aφ(k)| − |AφL

(k)| ≤ 1 for all k according to the
algorithm. Consider the upper bound of the ratio of the load on the machine k

for all k in the cases of |Aφ(k)| − |AφL

(k)| ≤ 0 and |Aφ(k)| − |AφL

(k)| = 1:

1. If |Aφ(k)| − |AφL

(k)| ≤ 0, the load on the machine k in the assignment φ is
equal to or less than the load on the machine k in the assignment φL, i.e.
|Aφ(k)|

ck
≤ |AφL

(k)|
ck

.
2. If |Aφ(k)| − |AφL

(k)| = 1 and |AφL

(k)| ≥ 1, we have the ratio

|Aφ(k)|
ck

|AφL (k)|
ck

= 1 +
1

|AφL(k)| ≤ 2.

3. If |Aφ(k)| − |AφL

(k)| = 1 and |AφL

(k)| = 0, we can see that the unique job
i, assigned to the machine k, in the set Aφ(k) must be assigned to some
machine k′ such that √

γk′,i
1

ck′ > 1
ck

in the assignment φL. Hence, the ratio
will be bounded by the load of the machine k′, i.e.

|Aφ(k)|
ck

|AφL (k′)|
ck′

=
1
ck

|AφL (k′)|
ck′

<

√
γk′,i

1
ck′

|AφL (k′)|
ck′

=
√

γk′,i

|AφL(k′)| .

6

Note that there are at most m − 1 jobs in this case since there are at most
m machines. Therefore, the ratio of the load of these machines in this case

will be bounded by
1

ck

P|AφL(k)|
i=|AφL(k)|−m+1

√
i

|AφL (k)|
ck

, for some machine k.

Let k∗ denote the machine’s index with

max
1≤k≤m

{
|AφL

(k)|
ck

+ |AφL
(k)|+1
ck

+ 1
ck

∑|AφL(k)|
i=|AφL(k)|−m+1

√
i

|AφL (k)|
ck

}.

We obtain that

β ≤ C(Lφ)
C(LφL)

=

∑m
k=1

|Aφ(k)|
ck∑m

k=1
|AφL (k)|

ck

≤
|AφL

(k∗)|
ck∗ + |AφL

(k∗)|+1
ck∗ + 1

ck∗

∑|AφL(k∗)|
i=|AφL(k∗)|−m+1

√
i

|AφL (k∗)|
ck∗

≤ 3 +
1

|AφL(k∗)|
|AφL(k∗)|∑

i=|AφL(k∗)|−m+1

√
i.

Consider the cases of that |AφL

(k∗)| ≤ m and |AφL

(k∗)| > m:

1. If |AφL

(k∗)| ≤ m, it follows that

β ≤ 3+
1

|AφL(k∗)|
|AφL(k∗)|∑

i=|AφL(k∗)|−m+1

√
i ≤ 3+c

|AφL(k∗)| 32
|AφL(k∗)| ≤ 3+c

√
m = O(

√
m),

where c is a constant.
2. If |AφL

(k∗)| > m, it follows that

β ≤ 3+
1

|AφL(k∗)|
|AφL(k∗)|∑

i=|AφL(k∗)|−m+1

√
i ≤ 3+

m
√
|AφL(k∗)|

|AφL(k∗)| ≤ 3+
√

m = O(
√

m).

�

4.2 The O(
√

m)-Competitive Ratio For the Throughput

In this subsection, we show our proposed algorithm has a O(
√

m)-competitive ra-
tio for the throughput by exploring the relation between our proposed algorithm
and an online greedy assignment algorithm.

The online greedy assignment algorithm works as follows. It assigns job i
to machine un(i) when Fi ∩ Si �= ∅ and assigns job i to machine max(i) when
Fi ∩ Si = ∅. We will show that the online greedy assignment algorithm has a 2-
competitive ratio for the throughput in Lemma 4. Before introducing Lemma 4,
we first introduce Lemma 3 used in Lemma 4.

7

Lemma 3 states that the throughput of an assignment φ can be calculated
as the sum of the capacities of those machines which there is at least one job
assigned to in the assignment φ.

Lemma 3. Given a feasible assignment φ, we can calculate the throughput of φ
as follows.

U(Bφ) =
n∑

i=1

bi =
∑
k∈T

ck,

where T denotes the set of machines with at least one job in the assignment φ,
i.e., T = {k||Aφ(k)| > 0, 1 ≤ k ≤ m},
Proof. By Definition 2,

U(Bφ) =
n∑

i=1

bi =
n∑

i=1

cφ(i)
|Aφ(φ(i))| =

∑
i∈J

cφ(i)
|Aφ(φ(i))| .

Since J =
⋃m

k=1 Aφ(k),

U(Bφ) =
∑

i∈Sm
k=1 Aφ(k)

cφ(i)
|Aφ(φ(i))|

=
∑

1≤k≤m,|Aφ(k)|�=0

∑
i∈Aφ(k)

cφ(i)

|Aφ(φ(i))| =
∑
k∈T

∑
i∈Aφ(k)

cφ(i)

|Aφ(φ(i))| .

Note that i ∈ Aφ(k) means that φ(i) = k,

U(Bφ) =
∑
k∈T

∑
i∈Aφ(k)

ck

|Aφ(k)| =
∑
k∈T

|Aφ(k)| ck

|Aφ(k)| =
∑
k∈T

ck.

�

Lemma 4 shows that the online greedy assignment algorithm results in a

feasible assignment with a 2-competitive ratio for the throughput.

Lemma 4. The online greedy assignment algorithm results in an assignment
with α1 = 2 such that α1U(Bg) ≥ U(Bφ∗), where Bg is the bandwidth vector of
the assignment g derived by the online greedy assignment algorithm and Bφ∗ is
the bandwidth vector of the optimal assignment.

The proof of Lemma 4 is deferred to Appendix A.
In Lemma 5, we show our proposed algorithm has a O(

√
m)-competitive ratio

with respect to the throughput by exploring the relation between the proposed
online algorithm and the online greedy assignment algorithm since the online
greedy assignment algorithm results in a feasible assignment with a constant
competitive ratio α1 = 2 with respect to the throughput.

Lemma 5. The proposed online algorithm results in a feasible assignment φ with
α2 = O(

√
m) such that α2U(Bφ) ≥ U(Bg), where Bφ is the bandwidth vector

of the assignment φ derived by the proposed algorithm and Bg is the bandwidth
vector derived by the online greedy assignment algorithm.

8

Proof. We begin by introducing notations. Let φ be the assignment derived by
the proposed algorithm, and g be the assignment derived by the online greedy
assignment algorithm. Let T denote the set of machines with at least one job in
the assignment φ, and U denote the set of machines with at least one job in the
assignment g. Let V = {max(i)|1 ≤ i ≤ n}. By Lemma 3, we have

U(Bg)
U(Bφ)

=

∑n
i=1

cg(i)

|Ag(g(i))|∑n
i=1

cφ(i)

|Aφ(φ(i))|
=

∑
p∈U cp∑
k∈T ck

.

Note that V ⊂ T and U ⊂ T ∪ (U\T),

U(Bg)
U(Bφ)

=

∑
p∈U cp∑
k∈T ck

≤
∑

p∈T cp +
∑

p∈U\T cp∑
k∈T ck

= 1 +

∑
p∈U\T cp∑

k∈T ck
.

For each job p ∈ U\T , the proposed algorithm assigns no job to p while the
greedy assigns at least one job to p. Let p be a machine in the set U\T , and ip
be a job in the set Ag(p). Job ip is assigned to p = un(ip) �= max(ip) in the online
greedy assignment algorithm due to Fip

∩Sip
�= ∅ while ip is assigned to max(ip)

in the proposed algorithm due to √
γmax(ip),ip

cp ≤ cmax(ip). Hence, cp ≤ 1√
γk,ip

ck

where k = max(ip) for some job ip ∈ Ag(p). Note that γmax(ip),ip
≥ 2 since

p = un(ip) �= max(ip), which implies that machine max(ip) has been regarded
as the most powerful machine in the feasible sets of at least two jobs when job
ip arrives. We have

U(Bg)
U(Bφ)

≤ 1 +

∑
p∈U\T cp∑

k∈T ck
≤ 1 +

∑
p∈U\T cp∑
k∈V ck

≤ 1 +

∑
p∈U\T

1√
γmax(ip),ip

Cmax(ip)∑
k∈V ck

≤ 1 +

∑
k∈V

∑γk,n

i=2
1√
i
ck∑

k∈V ck
=

∑
k∈V

∑γk,n

i=1
1√
i
ck∑

k∈V ck
.

Since there are only m machines,

U(Bg)
U(Bφ)

≤=

∑
k∈V

∑γk,n

i=1
1√
i
ck∑

k∈V ck
≤

∑
k∈V

∑m
i=1

1√
i
ck∑

k∈V ck
.

Furthermore, ∑m
i=1

1√
i
ck

ck
=

m∑
i=1

1√
i

= O(
√

m), for all k ∈ V.

That is, for all k ∈ V , there exist constant δ, n0 such that
∑γk,n

i=1
1√
i
ck ≤ δ

√
mck

for m ≥ m0. It follows that there exist constant δ′ = δ, m′
0 = m0 such that

U(Bg)
U(Bφ)

≤
∑

k∈V

∑γk,n

i=1
1√
i
ck∑

k∈V ck
≤

∑
k∈V δ

√
mck∑

k∈V ck
= δ′

√
m for m ≥ m′

0.

Therefore, we conclude that U(Bg)
U(Bφ) = O(

√
m). �

Finally, we can obtain Theorem 1.

9

Theorem 1. The proposed online algorithm for our problem results in a fea-
sible assignment φ with the bandwidth vector Bφ and the load vector Lφ such
that αU(Bφ) ≥ U(Bφ′) for the bandwidth vector Bφ′ of all other feasible as-
signments φ′ and C(Lφ) ≤ βC(Lφ′′) for the load vector Lφ′′ of all other feasible
assignments φ′′, where α = O(

√
m) and β = O(

√
m).

Proof. By Lemma 2, Lemma 4 and Lemma 5, we obtain Theorem 1. �

5 Lower Bounds

We now show a lower bound of our problem in the offline setting , where an
algorithm knows all the jobs with their feasible sets in advance. The problem in
the offline setting must be easier than or equivalent to the problem in the online
setting.

Theorem 2. If an algorithm for this problem in the offline setting results in
a feasible assignment φ with the bandwidth vector Bφ and the load vector Lφ,
such that αU(Bφ) ≥ U(Bφ′) for the bandwidth vector Bφ′ of all other feasible
assignments φ′, and C(Lφ) ≤ βC(Lφ′′) for the load vector Lφ′′ of all other
feasible assignments φ′′, then αβ = Ω(

√
m).

Proof. We first construct a problem instance P as follows:

1. There are n = m jobs with feasible sets F1 = {1} and Fi = {1, i} for
2 ≤ i ≤ n.

2. There are m machines with capacity c1 =
√

m and ci = 1 for 2 ≤ i ≤ m.

Given an algorithm D with α-competitive ratio for throughput and β-competitive
ratio for total load, let φD denote the assignment generated by algorithm D for
the constructed problem instance P , and x denote the number of machines that
are assigned at least one job in the assignment φD, i.e., x = |{k||AφD (k)| >
0, 1 ≤ k ≤ m}|.

We obtain the throughput U(BφD
) and total load C(LφD

) of φD as follows:

U(BφD
) =

√
m + (x − 1) and C(LφD

) ≥ m − x + 1√
m

+ (x − 1).

We also construct two assignments, φ′ and φ′′ as follows:

1. In φ′, each job i is assigned to machine i.
2. In φ′′, all jobs is assigned to machine 1.

The throughput U(Bφ′) of φ′ and the total load C(Lφ′′) of φ′′ are as follows:

U(Bφ′) =
n∑

i=1

ci =
√

m + (m − 1) and C(Lφ′′) =
m√
m

=
√

m.

It follows that

α ≥ U(Bφ′)
U(BφD

)
=

√
m + (m − 1)√
m + (x − 1)

10

and

β ≥ C(LφD
)

C(Lφ′′)
≥

m−x+1√
m

+ (x − 1)
√

m

=
m − x + 1

m
+

(x − 1)√
m

= 1 − x

m
+

1
m

+
√

m(x − 1)
m

= 1 +
√

mx + 1 − x −√
m

m
.

Since 1 ≤ x ≤ m = n, we consider two cases where 1 ≤ x <
√

m and√
m ≤ x ≤ m.

1. if 1 ≤ x <
√

m, we have

α ≥
√

m + (m − 1)√
m + (x − 1)

≥
√

m + (m − 1)
2
√

m − 1
≥ m

2
√

m
=

√
m

2

and

β ≥ 1 +
√

mx + 1 − x −√
m

m
≥ 1,

which implies that αβ = Ω(
√

m).
2. if

√
m ≤ x ≤ m, we have

α ≥
√

m + (m − 1)√
m + (x − 1)

≥
√

m + (m − 1)
2x − 1

≥ m

2x

and

β ≥ 1 +
√

mx + 1 − x −√
m

m
≥ 1 +

√
mx + 1 − m −√

m

m
≥

√
mx −√

m

m
.

Then

αβ ≥ m

2x

√
mx −√

m

m
=

√
m

2
−

√
m

2x
≥

√
m

2
− 1

2
,

which implies αβ = Ω(
√

m) also.
�

Note that Theorem 2 also implies a lower bound αβ = Ω(
√

m) of the problem
in the online setting.

References

1. J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts, “On-line routing of virtual
circuits with applications to load balancing and machine scheduling,” in Journal
of the ACM, Vol. 44, No. 3, pp. 486-504, May 1997.

2. Y. Azar, L. Epstein, Y. Richter and G. J. Woeginger, “All-norm approximation
algorithms,” in Journal of Algorithms, Vol. 52, No. 2, pp. 120-133, August 2004.

3. Y. Azar, J. Naor, and R. Rom, “The competitiveness of on-line assignments,” in
Journal of Algorithms, Vol. 18, No. 2, pp. 221-237, March 1995.

11

4. J.A. Aslam, A. Rasala, C. Stein, and N. Young, “Improved bicriteria existence the-
orems for scheduling,” in Proceedings of the 10th annual ACM-SIAM symposium
on Discrete algorithms, pp. 846-847, January 1999.

5. J.A. Bondy and U.S.R. Murty, “Graph Theory with Applications,” Elsevier North-
Holland, 1976.

6. N. Buchbinder and J. Naor, “Fair online load balancing,” in Proceedings of the
18th annual ACM symposium on Parallelism in algorithms and architectures, 2006.

7. N. Buchbinder and J. Naor, “Improved Bounds for Online Routing and Packing
Via a Primal-Dual Approach,” in 47th Annual IEEE Symposium on Foundations
of Computer Science, 2006.

8. I. Caragiannis, “Better bounds for online load balancing on unrelated machines,”
in Proceedings of the 19th annual ACM-SIAM symposium on Discrete algorithms,
2008.

9. S. Cho and A. Goel, “Pricing for fairness: distributed resource allocation for mul-
tiple objectives,” in Proceedings of the 38th ACM Symposium on Theory of Com-
puting, pp. 197-204, May 2006.

10. A. Goel and A. Meyerson, “Simultaneous optimization via approximate majoriza-
tion for concave profits or convex costs,” in Algorithmica, Vol. 44, No. 4, pp.301-
323, May 2006.

11. A. Goel, A. Meyerson, and S. Plotkin, “Approximate majorization and fair online
load balancing,” in ACM Transactions on Algorithms, Vol. 1, No. 2, pp. 338-349,
2005.

12. A. Goel, A. Meyerson, and S. Plotkin, “Combining fairness with throughput: online
routing with multiple objectives,” in Journal of Computer and System Sciences,
Vol. 63, No. 1, pp. 62-79, August 2001.

13. A. Goel and H. Nazerzadeh, “Price based protocols for fair resource allocation:
convergence time analysis and extension to Leontief utilities,” in Proceedings of
the 19th annual ACM-SIAM symposium on Discrete algorithms, 2008.

14. J. Kleinberg, E. Tardos, and Y. Rabani, “Fairness in routing and load balancing,” in
Proceedings of the 40th Annual Symposium on Foundations of Computer Science,
October 1999.

15. A. Kumar , J. Kleinberg, “Fairness measures for resource allocation,” in Proceed-
ings of the 41st Annual Symposium on Foundations of Computer Science, Novem-
ber 2000.

16. R. K. Lain, D.-M. Chiu, and W. Howe, “A quantitative measure of fairness and
discrimination for resource allocation in shared systems,” in DEC Res. Rep. TR-
301, 1984.

17. C. Stein and J. Wein, “On the existence of schedules that are near-optimal for
both makespan and total weighted completion time,” Technical Report TR96-295,
1996.

A Proof of Lemma 4

Before giving the proof of Lemma 4, we introduce some definitions about the
bipartite maximum-weight perfect matching problem (or matching problem for
simplicity) described in [5].

Definition 5. Given G = (V,E), a subset M of E is a matching in G if its
elements are links and no two are adjacent in G; the two ends of an edge in M
are said to be matched under M .

12

Definition 6. A matching M saturates a vertex v, which is said to be M -
saturated if some edge of M is incident with it; otherwise, v is M -unsaturated.

Definition 7. If every vertex of G is M -saturated, the matching M is perfect.

Definition 8 (the bipartite maximum-weight perfect matching prob-
lem). Consider a weighted complete bipartite graph with a bipartition (X, Y),
where X = {1, 2, · · · , n}, Y = {1, 2, · · · , n} and each edge (i, j) has weight
wij = w((i, j)). Find a maximum-weight perfect matching M in this weighted
graph, i.e., find an perfect matching M such that

UMP (M) ≥ UMP (M ′), where UMP (M) =
∑

(i,j)∈M

wij .

for all other matchings M ′. We refer to such a matching as an optimal matching.

Proof of Lemma 4.
We first show that any instance of the offline version of our problem can be
converted into an instance of the matching problem.

Given an instance of the offline version of our problem, i.e., the jobs’ index
set J = {1, 2, · · · , n} with a feasible set Fi for each job i ∈ J and the machines’
index set M = {1, 2, · · · ,m} with c1, c2, · · · , cm, we construct an instance of
the matching problem as follows: Construct a weighted complete bipartite graph
with a bipartition (X, Y), where X = {1, 2, · · · , n+m} and Y = {1, 2, · · · , n+m}
and each edge (i, j) with weight

wij =
{

cj , if i ≤ n and j ∈ Fi,
0, otherwise.

Next, we show how to construct a solution φM for our problem instance from
the solution M of the constructed matching problem instance. Given a perfect
matching M of the constructed bipartite graph, we define an assignment φM :
{1, 2, · · · , n} → {1, 2, · · · ,m} of the original job assignment problem instance as
follows:

φM (i) =

⎧⎨
⎩

j, if (i, j) ∈ M, j ≤ m and wij > 0,
max(i), if (i, j) ∈ M and j > m,
max(i), if (i, j) ∈ M and wij = 0,

where max(i) is the index of the machine with the most capacity in the feasible
set Fi of job i. In the first case, φM (i) = j is in the feasible set Fi since wij > 0,
and in the other cases, φM (i) = max(i) is also in the feasible set Fi. Therefore,
the constructed φM is feasible.

Note that wij = cj if i ≤ n and j ∈ Fi and wij = 0 else, in the con-
structed matching problem instance. We can see that U(BφM

) ≥ UMP (M) since
U(BφM

) ≥ ∑
(i,j)∈M,i≤n,j≤m cj and UMP (M) =

∑
(i,j)∈M wij =

∑
(i,j)∈M,i≤n,j∈Fi

cj .
Given an assignment φ, we now show how to construct a matching Mφ of the

constructed bipartite graph as follows:

1. Let Rφ = {(i, j)|φ(i) = j} initially.

13

2. If there is more than one edge incident with the same vertex j ∈ Y in Rφ,
we keep only one of them selected arbitrarily and remove the others from
Rφ.

3. Add edge (i, j) into Mφ if (i, j) ∈ Rφ.
4. Add edge (n + m + 1 − j, n + m + 1 − i) into Mφ if (i, j) ∈ Rφ.
5. Add edge (i, n + m + 1 − i) into Mφ for vertex i ∈ X is Mφ-unsaturated.

We show that the constructed Mφ is a perfect matching. It is not hard to
see that after steps 3-5, all i ∈ X are Mφ-saturated. We only need to show that
vertices j ∈ Y selected in steps 3-5 are not the same. It is clear that the vertex
j ∈ Y selected in step 3 will not be selected as vertex n + m + 1 − i in step 4
since j is ranged from 1 to m in step 3 and n + m + 1 − i is ranged from m + 1
to n + m in step 4.

Also, the selected n+m+1−i ∈ Y in step 4 cannot be selected as n+m+1−i ∈
Y in step 5. If n + m + 1 − i ∈ Y is selected in step 4 due to (i, j) ∈ Rφ, then
(i, j) must have been selected in step 3, which implies that vertex i is not M -
unsaturated at step 5. Therefore, n + m + 1 − i will not be selected in step
5.

Finally, the vertex j ∈ Y selected in step 3 will not be selected as vertex
n + m + 1 − i in step 5. If a vertex j selected in step 3 is also selected in step
5, i.e., j = n + m + 1 − i, i is n + m + 1 − j in step 5. However, n + m + 1 − j
must have been selected in step 4 since j is selected in step 3, which contradicts
to that i is Mφ-unsaturated in step 5. Therefore, the constructed matching Mφ

is a perfect matching.
Next, we show that UMP (Mφ) = U(Bφ). After step 3, Mφ = Rφ and we have

that UMP (Mφ) =
∑

(i,j)∈Mφ
wij =

∑
(i,j)∈Rφ

wij . By Lemma 3 and wij = cj if
i ≤ n and j ∈ Fi,

UMP (Mφ) =
∑

(i,j)∈Rφ

wij =
∑

(i,j)∈Rφ

cj =
∑
j∈T

cj = U(Bφ),

where T = {j||Aφ(j)| �= 0, 1 ≤ j ≤ m}.
Also the weight of the edges added in steps 4-5 are all 0. In step 4, the weight

of each added edge is 0, i.e., wn+m+1−j,n+m+1−i = 0 since, for all (i, j) ∈ Rφ,
1 ≤ j ≤ m, and n + 1 ≤ n + m + 1 − j ≤ n + m. In step 5, the weight of
each added edge is 0, i.e., wi,n+m+1−i = 0. This is because, if 1 ≤ i ≤ n, then
n+m+1−i > m and wi,n+m+1−i = 0. If n+1 ≤ i ≤ n+m, then wi,n+m+1−i = 0.
Therefore, UMP (Mφ) = U(Bφ).

Given an optimal matching M∗, we show that U(Bφ∗) ≥ U(Bφ) for all other
assignments φ, where the assignment φ∗ is constructed from M∗. We prove it
by contradiction. Assume there is an assignment φ resulting in a bandwidth
vector Bφ with U(Bφ) > U(Bφ∗). We have UMP (Mφ) = U(Bφ) > U(Bφ∗) ≥
UMP (M∗), which contradicts the fact that M∗ is an optimal matching. Hence,
we conclude that U(Bφ∗) is the maximum.

The throughput of the constructed assignment φ∗ is equal to the weight
of the optimal matching M∗. This is because if U(Bφ∗) > UMP (M∗), we can

14

construct a matching Mφ∗ from the assignment φ∗ with UMP (Mφ∗) = U(Bφ∗) >
UMP (M∗). It leads to a contradiction. Hence U(Bφ∗) = UMP (M∗).

We consider an online greedy matching algorithm which always chooses the
edge with the most weight that has not been chosen before. Let M ′ denote
the matching derived by the online greedy matching algorithm, and g denote
the assignment derived by the online greedy assignment algorithm. We show
that UMP (M ′) ≤ U(Bg). We first construct a feasible assignment φM ′ from the
perfect matching M ′ with UMP (M ′) ≤ U(BφM′). Recall that

φM ′(i) =

⎧⎨
⎩

j, if (i, j) ∈ M ′, j ≤ m and wij > 0,
max(i), if (i, j) ∈ M ′ and j > m,
max(i), if (i, j) ∈ M ′ and wij = 0.

In the first case, if (i, j) ∈ M ′, j ≤ m,wij > 0, and the online greedy matching
algorithm chooses the edge with the most weight wij = wiun(i) = cun(i), which
implies Fi ∩Si �= ∅ and φM ′(i) = j = un(i) = g(i). In the other cases, the online
greedy matching algorithm chooses the edge with the most weight wij = 0,
which implies that Fi ∩ Si = ∅ and φM ′(i) = j = max(i) = g(i). Hence, the
assignment g equals to φM ′ , i.e., g(i) = φM ′(i) for all 1 ≤ i ≤ n. Therefore, we
have UMP (M ′) ≤ U(BφM′) = U(Bg).

In the following, we show that UMP (M∗) ≤ 2UMP (M ′). If we consider M∗

as a permutation f∗ : {1, 2, · · · , n + m} → {1, 2, · · · , n + m}, defined as f∗(i) =
j, if (i, j) ∈ M∗, and M ′ as a permutation f ′ : {1, 2, · · · , n+m} → {1, 2, · · · , n+
m}, defined as f ′(i) = j, if (i, j) ∈ M ′, then we have

UMP (M∗) − UMP (M ′) =
∑

wif∗(i)>wif′(i)

(wif∗(i) − wif ′(i))

+
∑

wif∗(i)=wif′(i)

(wif∗(i) − wif ′(i))

+
∑

wif∗(i)<wif′(i)

(wif∗(i) − wif ′(i))

≤
∑

wif∗(i)>wif′(i)

(wif∗(i) − wif ′(i))

≤
∑

wif∗(i)>wif′(i)

(wif∗(i))

Recall that the greedy matching algorithm chooses the edge with most weight
that has not been chosen before. For each edge (i, f ′(i)) where wif∗(i) > wif ′(i),
there must be an edge (i′, f∗(i)) ∈ M ′ with the same weight as wif∗(i); otherwise,
the online greedy matching algorithm chooses the edge (i, f∗(i)) with wif∗(i) >
wif ′(i) instead of (i, f ′(i)). Therefore,

UMP (M∗) − UMP (M ′) ≤
∑

wif∗(i)>wif′(i)

(wif∗(i))

≤ UMP (M ′).

15

We then obtain
UMP (M∗) ≤ 2UMP (M ′)

and
U(Bφ∗) = UMP (M∗) ≤ 2UMP (M ′) ≤ 2U(Bg)

as required. �

16

