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Abstract

Visual analysis of human behavior has generated considerable interest in the field of computer 
vision because it has a wide spectrum of potential applications.  A human behavior analysis system 
must address three main tasks: object detection, human tracking, and understanding behavior.  In 
this paper, we propose a language modeling framework for handling the third task.  The 
framework is comprised of two modules: a posture labeling module, and an atomic action learning 
and recognition module.  A posture template selection algorithm is developed based on a modified 
shape context matching technique. The posture templates form a codebook that is used to convert 
input posture sequences into training symbol sequences or recognition symbol sequences.  Finally, 
a variable-length Markov model technique is applied to learn and recognize the input symbol 
sequences of atomic actions. Experiments on real data demonstrate the efficacy of the proposed 
system. 

1. Introduction 

In recent years, visual analysis of human behavior has generated considerable interest in the 
field of computer vision because it has a wide spectrum of potential applications, such as smart 
surveillance [5], human computer interfaces [18], content-based retrieval [12], and virtual reality 
[21].  Comprehensive surveys of related work can be found in [1, 8, 20].  Wang et al. pointed out 
that a human behavior analysis system needs to address two low-level processes, namely human 
detection and tracking, and a high-level process of understanding human behavior [20].  While the 
low-level processes have been studied extensively, the high-level process has received less attention.  
Since the human body is an articulated object with many degrees of freedom, inferring a body 
posture from a single 2-D image is usually an ill-posed problem.  Providing a sequence of images 
might help solve the ambiguity of behavior recognition.  However, to integrate the information 
extracted from the images, it is essential to find a model that can effectively formulate the 
spatial-temporal characteristics of human actions.  Note that if a continuous human posture can be 



2

quantized into a sequence of discrete postures, each one can be regarded as a letter of a specific 
language.  Consequently, an atomic action composed of a short sequence of discrete postures, 
which indicates a unitary and complete human movement, can be regarded as a verb of that 
language.  Sentences and paragraphs that describe human behavior can then be constructed, and 
the semantic description of a human action can be determined by a language modeling approach. 

In a natural language, the most informative word of a sentence is usually its verb.  Because an 
atomic action acts the verb of a sentence in a natural language, it is vital to recognize each atomic 
action in order to transform an input video sequence into semantic-level descriptions.  Therefore, 
understanding human behaviors involves two key issues: 1) how to segment the input video into 
clips of atomic actions; and 2) how to recognize each segmented atomic action.  Automatic 
segmentation of atomic actions is a popular research topic; a detailed survey of related research can 
be found in [4].  In this paper, we focus on the problem of automatic action recognition by using a 
language modeling approach to bridge the semantic gap between an atomic action sequence and a 
verb.

Language modeling [11, 17], a powerful tool for dealing with temporal ordering problems, has 
been applied in many fields, such as speech recognition [11], handwriting recognition [19], and 
information retrieval [6]. In this paper, we consider its application to the analysis of human behavior. 
A number of approaches have been proposed thus far. For example, Bobick and Ivanov [3] and 
Ogale et al. [13] used context-free grammars to model human actions, while Park et al. employed 
hierarchical finite state automata to recognize human behavior [14].  In [22, 23], hidden Markov 
models (HMM) were applied to human action recognition.  This particular language modeling 
technique is useful for both human action recognition and human action sequence synthesis.  
Galata et al. utilized variable-length Markov models (VLMM) to characterize human actions [7], 
and showed that VLMMs trained with motion-capture data or silhouette images can be used to 
synthesize human action animations. Existing language modeling approaches for behavior analysis 
can be categorized into two classes: deterministic algorithms [3, 13, 14] and stochastic algorithms 
[7, 22, 23].  Since the latter have higher degrees of freedom than the former, they are suitable for a 
wider range of applications.  Currently, the HMM is the most popular stochastic algorithm for 
language modeling because of its versatility and mathematical simplicity.  However, since the 
states of a HMM are not observable, encoding high-order temporal dependencies with this model is 
a challenging task.  There is no systematic way to determine the topology of a HMM or even the 
number of its states.  Moreover, the training process only guarantees a local optimal solution; thus, 
the training result is very sensitive to the initial values of the parameters.  On the other hand, since 
the states of a VLMM are observable, its parameters can be estimated easily given sufficient 
training data.  Consequently, a VLMM can capture both long-term and short-term dependencies 
efficiently because the amount of memory required for prediction is optimized during the training 
process.  However, thus far, the VLMM technique has not been applied to human behavior 
recognition directly because of two limitations: 1) it cannot handle the dynamic time warping 
problem, and 2) it lacks a model for observing noise. 

In this research, we propose a hybrid framework of VLMM and HMM that retains the models 
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advantages, while avoiding their drawbacks.  The framework is comprised of three modules: a 
posture labeling module, a VLMM atomic action learning module, and a recognition module.  
First, a posture template selection algorithm is developed based on a modified shape context 
technique.  The selected posture templates constitute a codebook, which is used to convert input 
posture sequences into discrete symbol sequences for subsequent processing.  Then, the VLMM 
technique is applied to learn the symbol sequences that correspond to atomic actions.  This avoids 
the problem of learning the parameters of a HMM.  Finally, the learned VLMMs are transformed 
into HMMs for atomic action recognition.  Thus, an input posture sequence can be classified with 
the fault tolerance property of a HMM. 

The remainder of this paper is organized as follows.  In Section 2, we introduce the theory of 
VLMM.  The proposed approach is described in Section 3, and the experiment results are detailed 
in Section 4.  Then, in Section 5, we present our conclusions. 

2. Variable Length Markov Model 

A variable length Markov model technique [7, 10, 16] is frequently applied to language 
modeling problems because of its powerful ability to encode temporal dependencies.  As shown in 
Fig. 1, a VLMM can be regarded as a probabilistic finite state automaton (PFSA) 

),,,,( πγτVS=Λ [16], where 
S denotes a finite set of model states, each of which is uniquely labeled by a symbol string 
representing the memory of a conditional transition of the VLMM, 
V denotes a finite observation alphabet, 

SVS →×:τ  is a state transition function such that ji svs →),(τ ,

]1,0[: →×VSγ  represents the output probability function with ,1),(,
∈

=∈∀
Vv

vsSs γ  and 

]1,0[: →Sπ  is the probability function of the initial state that will satisfy 
∈

=
Ss

s 1)(π .

Figure 1. An example of a VLMM Figure 2. The PST for constructing the PFSA 
shown in Figure 1 

The topology and the parameters of a VLMM can be learned from training sequences by 
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optimizing the amount of memory required to predict the next symbol.  Usually, the first step of 
constructing a PFSA involves constructing a prediction suffix tree (PST) [16].  A prediction suffix 
tree T over V is a tree of degree |V|.  Figure 2 depicts the PST constructed from an observation 
sequence generated by the VLMM shown in Fig. 1.  Except for the root node, each node of the 
PST represents a non-empty symbol string, and each parent node represents the longest suffix tree 
of its child nodes.  In addition, )|( svP  is the output probability distribution of the next symbol 

v  of each node s that satisfies 
∈

=
Vv

svP 1)|( .  The output and prior probabilities can be derived 

from the training symbol sequences as follows 

)(
)()|(

sN
svNsvP = ,               (1) 

0

)()(
N

sNsP = ,                (2) 

where )(sN  is the number of occurrences of string s in the training symbol sequences, and 0N
denotes the size of the training symbol sequences. 

To optimize the amount of memory required to predict the next symbol, it is necessary to 
determine when the PST growing process should be terminated.  Assume that s is a node with the 
output probability )|( svP , and sv'  is its child node with the output probability )'|( svvP .  We 
choose a termination criterion in order to avoid degrading the prediction performance of the 
reconstructed VLMM.  Note that if the child node’s output probability )'|( svvP  used to predict 
the next symbol, v, is significantly better than the output probability )|( svP  of the parent node, 
the child node is a deemed better predictor than the parent node; therefore, the PST should be grown 
to include the new child node.  However, if the inclusion of a new child node does not improve the 
prediction performance significantly, the new child node should be discarded.  Usually, the 
weighted Kullback-Lievler (KL) divergence is applied to measure the statistical difference between 
the probabilities )'|( svvP  and )|( svP  as follows: 

=Δ
v svP

svvPsvvPsvPssvH
)|(
)'|(log)'|()'(),'( .          (3) 

If ),'( ssvHΔ  is greater than a given threshold, the node sv'  is added to the tree.  In addition to 
the KL divergence criterion, a maximal-depth constraint of the PST is imposed to further limit the 
PST’s size.  The PST contains all the information required to construct a PSFA, as shown in 
Figures 1 and 2.  The procedure for transforming a PST into its corresponding VLMM is described 
in [16].  After a VLMM has been trained, it is used to predict the next input symbol according to a 
variable number of previously input symbols.  In general, a VLMM decomposes the probability of 
a string of symbols, ToooO ...21= , into the product of conditional probabilities as follows: 

∏
=

−− Λ=Λ
T

j
jdjj oooPOP

j
1

1 ),|()|( ,           (4) 

where oj is the j-th symbol in the string and dj is the amount of memory required to predict the 
symbol oj.

The goal of VLMM recognition is to find the VLMM that best interprets the observed string of 
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symbols, ToooO ...21= , in terms of the highest probability.  Therefore, the recognition result can 
be determined as model *i  as follows: 

).|(maxarg*
ii

OPi Λ=               (5) 

This method works well for natural language processing.  However, since natural language 
processing and human behavior analysis are inherently different, two problems must be solved 
before the VLMM technique can be applied to atomic action recognition.  First, as noted in 
Section 1, the VLMM technique cannot handle the dynamic time warping problem; hence VLMMs 
cannot recognize atomic actions when they are performed at different speeds.  Second, the VLMM 
technique does not include a model for observing noise, so the system is less tolerant of image 
preprocessing errors.  We describe our solutions to these two problems in the next section. 

3. The Proposed Method for Atomic Action Recognition 

The proposed method comprises two phases: 1) posture labeling, which converts a continuous 
human action into a discrete symbol sequence; and 2) application of the VLMM technique to learn 
and recognize the constructed symbol sequences.  The two phases are described below. 

3.1 Posture labeling 

To convert a human action into a sequence of discrete symbols, a codebook of posture 
templates must be created as an alphabet to describe each posture.  Although the codebook should 
be as complete as possible, it is important to minimize redundancy.  Therefore, a posture is only 
included in the codebook if it cannot be approximated by existing codewords, each of which 
represents a human posture.  In this work, a human posture is represented by a silhouette image, 
and a shape matching process is used to assess the difference between two shapes.  Figure 3 shows 
the block diagram of the proposed posture labeling process.  First, a low-level image processing 
technique is applied to extract the silhouette of a human body from each input image.  Then, the 
codebook of posture templates computed from the training images is used to convert the extracted
silhouettes into symbol sequences.  Shape matching and posture template selection are the most 
important procedures in the posture labeling process.  These are discussed in the following 
subsections.

Figure 3. Block diagram of the proposed posture labeling process 
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3.1.1 Shape matching with a modified shape context technique 

We modified the shape context technique proposed by Belongie et al. [2] to deal with the shape 
matching problem.  In the original shape context approach, a shape is represented by a discrete set 
of sampled points, },...,,{ 21 npppP = .  For each point Ppi ∈ , a coarse histogram hi is computed 
to define the local shape context of pi.  To ensure that the local descriptor is sensitive to nearby 
points, the local histogram is computed in a log-polar space.  An example of shape context 
computation and matching is shown in Fig. 4. 

Figure 4. Shape context computation and matching: (a) and (b) show the sampled points of two 
shapes; and (c)-(e) are the local shape contexts corresponding to different reference points. A 
diagram of the log-polar space is shown in (f), while (g) shows the correspondence between points 
computed using a bipartite graph matching method. 

Assume that pi and qj are points of the first and second shapes, respectively. The shape context 
approach defines the cost of matching the two points as follows: 

= +
−

=
K

k ji

ji
ji khkh

khkh
qpC

1

2

)()(
)]()([

2
1),( ,            (6) 

where hi(k) and hj(k) denote the K-bin normalized histograms of pi and qj, respectively. Shape 
matching is accomplished by minimizing the following total matching cost: 

=
i

ii qpCH ),()( )(ππ ,              (7) 

where π is a permutation of 1, 2, …, n.  Due to the constraint of one-to-one matching, shape 
matching can be considered as an assignment problem that can be solved by a bipartite graph 
matching method. 

Although the shape context matching algorithm usually provides satisfactory results, the 
computational cost of applying it to a large database of posture templates is so high that is not 
feasible.  To reduce the computation time, we only compute the local shape contexts at certain 
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critical reference points, which should be easily and efficiently computable, robust against noise, 
and critical to defining the shape of the silhouette.  Note that the last requirement is very important 
because it helps preserve the informative local shape context.  In this work, the critical reference 
points are selected as the vertices of the convex hull of a human silhouette.  Shape matching based 
on this modified shape context technique is accomplished by minimizing the total cost of the 
matching modified in Equation (7) as follows: 

∈

=
Aj

jj qpCH ),()(' )(ππ ,              (8) 

where A is the set of convex hull vertices. An example of convex hull-shape contexts matching is 
shown in Fig. 5. There are three important reasons why convex hull-shape contexts (CSC) can deal 
with the posture shape matching problem effectively. First, since the number of convex hull vertices 
is significantly smaller than the number of whole shape points, the computation cost can be reduced 
substantially. Second, convex hull vertices usually include the tips of human body parts; hence they 
can preserve more salient information about the human shape, as shown in Fig. 5(a). Third, even if 
some body parts are missed by human detection methods, the remaining convex hull vertices can 
still be applied to shape matching due to the robustness of computing the convex hull vertices, as 
shown in Fig. 5. 

Figure 5. Convex hull-shape contexts matching: (a) and (b) show the convex hull vertices of two 
shapes; (c) shows the correspondence between the convex hull vertices determined using shape 
matching. 

3.1.2 Posture template selection 

Posture template selection is used to construct a codebook of posture templates from training 
silhouette sequences.  Here, we propose an automatic posture template selection algorithm (see 
Algorithm 1), based on the CSC discussed in Section 3.1.1. In the method, the cost of matching two 

shapes, see Equation (8), is denoted by ( )jicp abC , .  We only need to empirically determine one 
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threshold parameter Cτ  in our posture template selection method.  This parameter determines 
whether a new training sample should be incorporated into the codebook. 

Algorithm 1: Posture Template Selection 
Codebook of posture templates: { }MaaaA ,...,, 21=
Training sequence: { }NtttT ,...,, 21=
for each Tt ∈ do { 

if ( φ=A  or ( ) CcpAa
atC τ>

∈
,min ) { 

{ }tAA ∪=
1+← MM

}
}

3.2 Human action sequence learning and recognition 

Using the posture templates codebook, an input sequence of postures { }nbbb ,...,, 21  can be 

converted into a symbol sequence },,...,{ )()1( nqq aa  where ( )
{ }

( )jicpMj
abCiq ,minarg

,...,2,1∈
= .  Thus, 

atomic action VLMMs can be trained by the method outlined in Section 2.  These VLMMs are 
actually different order Markov chains.  For simplicity, we transform all the high order Markov 
chains into first-order Markov chains by augmenting the state space.  For example, the probability 
of a di-th order Markov chain with state space S is given by 

),,,|( 1111 −−+−+−−− ==== iididididiii rXrXrXrXP
iiii

,        (9) 

where Xi is a state in S.  To transform the di-th order Markov chain into a first-order Markov chain, 

a new state space is constructed such that both )(),,( 111 −−−−− == idiidii rrXXY
ii

 and 

),,(),,( 11 11 idiidii rrXXY
ii −−−− ++

==  are included in the new state space.  As a result, the high 

order Markov chain can be formulated as the following first-order Markov chain [9] 

)).(|)((

),,,|(

111

1111

1 −−−+−

−−+−+−−−

===

====

+ idiiidii

iididididiii

rrYrrYP

rXrXrXrXP

ii

iiii         (10) 

Hereafter, we assume that every VLMM has been transformed into a first-order Markov model. 
As mentioned in Section 2, two problems must be solved before the VLMM technique can be 

applied to the action recognition task, namely, the dynamic time warping problem and the lack of a 
model for observing noise.  Note that the speed of the action affects the number of repeated 
symbols in the constructed symbol sequence: a slower action produces more repeat symbols.  To 
eliminate this speed-dependent factor, the input symbol sequence is preprocessed to merge repeated 
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symbols.  VLMMs corresponding to different atomic actions are trained with preprocessed symbol 
sequences similar to the method proposed by Galata et al. [7].  However, this approach is only 
valid when the observed noise is negligible, which is an impractical assumption.  The recognition 
rate of the constructed VLMMs is low because image preprocessing errors may identify repeated 
postures as different symbols.  To incorporate a noise observation model, the VLMMs must be 

modified to recognize input sequences with repeated symbols.  Let ija  denote the state transition 

probability from state i to state j.  Initially, 0=old
iia  because repeated symbols are merged into 

one symbol.  Then, Equation (1) is used to update the probability of self-transition, 

)(
)(

)|(
i

ii
ii

new
ii vN

vvN
vvPa == , and the other transition probability is updated as ( )new

ii
old
ij

new
ij aaa −= 1 .

For example, if the input training symbol sequence is “AAABBAAACCAAABB,” the preprocessed 
training symbol sequence becomes “ABACAB.”  The VLMM constructed with the original input 
training sequence is shown in Fig. 6(a); while the original VLMM and modified VLMM 
constructed with the preprocessed training sequence are shown in Figures. 6(b) and 6(c), 
respectively.

(a)                     (b)                            (c) 
Figure 6. (a) the VLMM constructed with the original input training sequence. (b) the original 
VLMM constructed with the preprocessed training sequence. (c) the modified VLMM, which 
includes the possibility of self-transition. 

Next, a noise observation model is introduced to convert a VLMM into a HMM.  Note that 
the output of a VLMM determines its state transition and vice versa because the states of a VLMM 
are observable.  However, due to the image preprocessing noise, the symbol sequence 
corresponding to an atomic action includes some randomness.  If, according to the VLMM, the 
output symbol is tq  at time t, then its posture template ta  can be retrieved from the codebook.  
The extracted silhouette image to  will not deviate too much from its corresponding posture 
template ta  if the segmentation result does not contain any major errors.  Therefore, the CSC 

distance ( )ttcp aoC ,  between the image and the template will be close to zero.  In this work, we 

assume that the CSC distance has a Gaussian distribution, i.e., 
( )

22

,

2
1),|( σ

σπ

ttcp aoC

tt eqoP
−

=Λ .
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Note that the VLMM has now been converted into a first-order Markov chain.  If the VLMM’s 
observation model is detached from the symbol of the state, then the VLMM becomes a standard 
HMM.  The probability of the observed string of symbols, ToooO ...21= , for a given model Λ
can be evaluated by the HMM forward/backward procedure with proper scaling [15].  Finally, the 
category *i  that maximizes the following equation is deemed to be the recognition result: 

)]|(log[maxarg*
ii

OPi Λ= .             (11) 

4. Experiments 

We conducted a series o f experiments to evaluate the effectiveness of the proposed method. 
The training data used in the experiments was a real video sequence comprised of approximately 
900 frames with ten categories of action sequences.  Some typical image frames are shown in Fig. 
7.  Using the posture template selection algorithm, a codebook of 75 posture templates (see Fig. 
8), was constructed from the training data.  The data was then used to build ten VLMMs, each of 
which was associated with one of the atomic actions shown in Fig. 7. 

Action sequence 1 

Action sequence 2 

Action sequence 3 

Action sequence 4 

Action sequence 5 

Action sequence 6 

Action sequence 7 

Action sequence 8 

Action sequence 9 

Action sequence 10 

Figure 7. The ten categories of atomic actions used for training 
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Figure 8. Posture templates extracted from the training data 
The average log-likelihood of the training error computed with the training data is shown in 

Table 1.  The results indicate that the proposed action recognition method can deal with the 
problem of human action recognition effectively.  Next, a test video was used to assess the 
effectiveness of the proposed method.  The test data was obtained from the same subject.  Each 
atomic action was repeated four times, yielding a total of 40 action sequences.  The proposed 
method achieved a 100% recognition rate for all the test sequences. 

Table 1. The results of atomic action recognition using the training data 
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In the second experiment, test videos of nine subjects (see Fig. 9) were used to evaluate the 
performance of the proposed method.  Each person repeated each action five times, so we had five 
sequences for each action and each subject, which yielded a total of 450 action sequences.  For 
comparison, we also tested the performance of the HMM method in this experiment. The HMMs 
we used were fully connected models.  The number of states for each HMM was assigned as the 
number of states of the corresponding learned VLMM.  Table 2 compares our method’s 
recognition rate with that of the HMM method computed with the test data from the nine subjects.  
Our method clearly outperforms the HMM method.  Note that the recognition rate of action 4 is 
the worst of the group.  Figure 10(a) shows some typical incorrectly-labeled input postures of a 
subject exercising action 4.  The computed incorrect posture templates are shown in Fig. 10(b).  
Comparison of the posture template sequences of the incorrectly recognized action with those of 
actions 1 and 2 in Fig. 7 shows the cause of the recognition error: the way this subject exercise 
action 4 are different from the training sample.  To cope with this subject-dependent motion 
pattern discrepancy, we will have to use more training data of different subjects to train the 
recognition system to improve the recognition rate. 

Figure 9. Nine test subjects 
Table 2. Comparison of our method’s recognition rate with that of the HMM computed with the test 

data from the nine subjects 

(a)

(b)
Figure 10. One of the sequences has been recognized incorrectly: (a) some typical incorrectly 

labeled postures, (b) the corresponding incorrect posture templates
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5. Conclusion 

We have proposed a framework for understanding human atomic actions using a language 
modeling approach. The framework comprises two modules: a posture labeling module, and a 
VLMM atomic action learning and recognition module. We have developed a simple and efficient 
posture template selection algorithm based on a modified shape context matching method.  A 
codebook of posture templates is created to convert the input posture sequences into discrete 
symbols so that the language modeling approach can be applied. The VLMM technique is then used 
to learn and recognize human action sequences. Our experiment results demonstrate the efficacy of 
the proposed system. 
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