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Abstract 

The prediction of transmembrane (TM) helix and topology is an important field of bioinformatics owing to the difficulties in 

obtaining high-resolution structures of membrane proteins. Many methods have been developed and several evaluations have 

compared the performance of individual methods using benchmarks from various sources. We present an analysis of a popular 

evaluation method by Kernytsky and Rost, which is created using data sets from more than six years ago. Our analysis shows that

the benchmark contains data that have substantial disagreements in comparison with the current annotations in SwissProt Release

54.1. Furthermore, the benchmark also contains issues such as annotations of low reliability, sequence redundancy, and presence of 

signal peptides. We perform updating and cleansing of the above issues in the benchmark, and evaluate eleven widely used 

methods, including SVMtop, a hierarchical classification method based on support vector machines (SVM). The results show that 

SVMtop is ranked highly among the top-performing methods for helix prediction, correctly predicting the location of helices for 

more than 80% of the updated benchmark. Given the discrepancies and noises in the original benchmark, it should be used with 

discretion for assessing the performance of TM helix predictions. The analysis also implies that there is an urgent need for creating 

a new benchmark for an accurate and objective comparison. The updated benchmark is available for public use at 

http://bio-cluster.iis.sinica.edu.tw/~bioapp/SVMtop/dataset.htm.
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I. INTRODUCTION

Integral membrane proteins constitute a wide and important class of biological entities that are crucial for life, 

representing about 25% of the proteins encoded by several genomes [1-3]. They also play a key role in various 

cellular processes including signal and energy transduction, cell-cell interactions, and transport of solutes and 

macromolecules across membranes [4]. Despite their biological importance, the proportion of available 

high-resolution structures is exceedingly limited at about 0.5% of all solved structures [5], compared to that of 

globular proteins deposited in the Protein Data Bank (PDB) [6]. In the absence of a high-resolution structure, an 

accurate structural model is important for the functional annotation of membrane proteins. A membrane protein 

structural model defines the number and location of transmembrane helices (TMHs) and the orientation or topology 

of the protein relative to the lipid bilayer. However, experimental approaches for identifying membrane protein 

structural models are time-consuming [7]. Therefore, bioinformatics development in sequence-based prediction 

methods is valuable for elucidating the structural genomics of membrane proteins. 

Many different methods have been developed to predict structural models of TM proteins. Earlier approaches 

relied on physico-chemical properties such as hydrophobicity [8-10] to identify TMH regions. Recently, more 

advanced methods using hidden Markov models [3, 11], neural networks [12] and support vector machines (SVM) 

[13] have been developed, and they have achieved significant improvements in prediction accuracy.  

* Corresponding author.   
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Concurrently, several evaluation studies have examined the performance of different methods [14-18]. However, 

no method is consistently ranked as the top-performing method because 1) the data sets used for evaluation are quite 

different; and 2) no consistent criteria for measuring performance are used. One evaluation, in particular, assesses the 

TM helix prediction accuracy and is available as an online server [17]. For a total of 2247 proteins, this benchmark 

consists of four groups of data sets including high- and low-resolution TM proteins, signal peptides, and soluble 

proteins. It offers a static evaluation by allowing users to upload their predictions onto the server, and the results will 

be benchmarked against other methods. Essentially, this evaluation is the first of its kind, and it is valuable for 

benchmarking purposes when developing a new method given its timeliness and usability. However, since the TM 

protein data sets are compiled from more than six years ago, it is very likely that they have undergone substantial 

modifications [19]. Therefore, we design this study to evaluate the suitability of the benchmark. 

First, we use the benchmark to evaluate a method of our previous work, SVMtop, and the initial results appear to be 

contradictory to the results of our own assessment [13, 20]. The poor results achieved by SVMtop, particularly in the 

TM helix prediction, prompted us to carry out a detailed analysis. As the first step, we question the validity and 

correctness of the data sets by checking if the annotations are updated with the current annotations in SwissProt 

Release 54.1 [21]. If the data sets are indeed updated, they should have very high agreement with the current 

annotations, and the annotations evaluated by the benchmark should in turn, achieve very high performance. Since 

the original benchmark is used, the identity of each protein (high- or low- TM protein, signal peptide, or soluble 

protein) is not given. We identify each of the 2247 proteins in the benchmark by matching it with a data set from Chen 

et al. [16] and using the BLASTP program [22]. Next, the annotation of each TM protein is extracted from SwissProt 

Release 54.1. The TM proteins of current annotation are then uploaded to the server to test for consistency. In the 

second step, we also re-assess SVMtop, among other existing methods for comparison using the updated annotations. 

The results indicate that 1) the original benchmark does contain a substantial amount of inconsistencies with the 

current annotations (>20%), in addition to sequence redundancy and signal peptides; and 2) the performance of 

SVMtop is under-estimated using the original benchmark due to the issues outlined above. The prediction accuracy 

for helix location of SVMtop is well over 80% when evaluated using the updated data sets for both high- and 

low-resolution TM proteins, and it compares favorably with ten other methods. This agrees well with our previous 

work of evaluations from two benchmarks consisting of high- and low-resolution TM proteins. An important 

implication is that evaluations containing old annotations should be used with caution and the results should be 

carefully interpreted, if not avoided entirely. This also calls for a new benchmark of updated annotations for a fair 

assessment of TM prediction methods.  

II. METHODS

A. SVMtop methodology

SVMtop represents a support vector machine method for transmembrane helix and topology prediction, using 

two-stage hierarchical classification. The task of helix and topology prediction is separated into two stages in a 

hierarchical framework, thus the complexity of each stage is reduced and relevant input features can be applied 

separately. For helix prediction in the first stage, we select and integrate multiple input features based on both the 

sequence and the structure of a TM helix for the first SVM classifier. In the second stage, topology (sidedness of the 

N-terminus) prediction is accomplished by the second classifier and a new scoring function called the Alternating 
Geometric Scoring Function (AGSF). Figure 1 shows the system architecture of the method. Detailed feature 

selection and encoding as well as the calculation of AGSF are described in Lo et al. [13, 20]. 

B. Evaluating SVMtop using the original benchmark

We evaluated SVMtop using the original benchmark as published online by Kernytsky and Rost [17] by uploading 

the prediction of SVMtop onto the server at http://cubic.bioc.columbia.edu/tmh_benchmark. The benchmark 

contains four different types of proteins: high-resolution TM proteins, low-resolution TM proteins, signal peptides, 

and soluble proteins. Therefore, this benchmark also assesses the power to discriminate signal peptides and soluble 

proteins in addition to helix predictions.The prediction is accepted in two formats: 1) helix start and end numbers after 

the protein number (e.g. >0 11, 35 denotes that the helix starts at 11
th

 position and ends at the 35
th

 amino acid); and 2) 

per-residue prediction (e.g. >1 LLHHHHLL), where L stands for loop residues and H represents helix residues after 

the protein number. We uploaded the prediction in Format 1 onto the server and the results are returned with a 
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comparison with other methods as shown in Section III-A. 

C. Identifying the proteins in the benchmark and retrieving the current annotations 

Each of the proteins in the original benchmark must first be identified before we can retrieve their annotations in 

the SwissProt. Therefore, we performed extensive work to decode the identity of all 2247 proteins by first matching it 

with another data set used in Chen et al. [16] which is available at 

http://cubic.bioc.columbia.edu/papers/2002_htm_eval/data/. We will refer to this data set as Chen-2002. It contains 

sequences and protein IDs for 36 high-resolution TM proteins, 165 low-resolution TM proteins, 616 soluble proteins, 

and 1418 signal peptides. We tried to first identify each of the 2247 proteins in the benchmark by one-against-all 

matching with the sequences given in Chen-2002. If a protein sequence matched 100% with the sequence as given in 

Chen-2002, it was assigned as one of the high/low/soluble/signal proteins as labeled in Chen-2002. If it was not 

matched, we used blastp searching against SwissProt v.54.1 to identify them. Each of the 2247 proteins was identified 

according to its category and Protein Name or PDB ID. Examples identified by matching with Chen-2002, are shown 

in the order of protein number in benchmark, group, database|protein name or PDB ID:  

>1 HIGH_RES,PDB|1afo_A;   >36 LOW_RES,SWISS|1b27_human; 

>201 SIGNAL,11S3_HELAN;  >1620 SOLUBLE,1a1d; 

An example of a protein identified by BLASTP, is shown in the order of protein number in benchmark, 

blastp-identified, group of protein, database|protein name or PDB ID: 

>25 BLASTP,SOLUBLE,SWISS|MEL_APICE; 

M V T L I A L T P F V S R K

M V T L I A L T P 

STAGE 1: Helix Prediction 

peptide extraction 

sliding window w1

SVM classifier 
(H/~H)

TMH TMH TMH 

predicted TMH 

STAGE 2: Topology Prediction

predict i/o residues 
in the non-helical 
segments 

testing 
oio TMH TMH TMH iiio oo iio

TMH TMH TMH 

sliding window w2

Input feature:  
Position specific scoring 
matrix (PSSM) 

SVM classifier
(i/o)

Alternating Geometric 
Scoring Function 

predicted TMH
(from STAGE 1)

identify
non-helical

segments

peptide
extraction

feature encoding
and scaling

testing

ooo TMH TMH TMH iiii oo iii

TMH and topology are predicted

feature encoding
and scaling

Input features:  
1. Amino acid composition (AA) 
2. Di-peptide composition (DP) 
3. Hydrophobicity scale (HS) 
4. Amphiphilicity (AM) 
5. Relative solvent accessibility (RSA)

predict H/~H residues and
determine TMH candidates 

query protein

Fig. 1.  Flowchart of SVMtop. The left panel describes Helix Prediction of Stage 1 in the order of: peptide extraction by sliding   

windows; feature encoding and scaling; prediction of helix (H) and non-helix (~H) residues; determination of TMH candidates. 

The right panel describes Topology Prediction of Stage 2 in the order of: identify non-helical segments; peptide extraction by 

sliding windows; feature encoding and scaling; prediction of inside (i) and outside (o) residues; applying AGSF to obtain the 

final topology. 
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Figure 2 shows the flowchart of the abovementioned procedure. For each of the low- and high-resolution TM 

proteins, we obtained their PDB IDs or SwissProt protein names. We then downloaded the corresponding annotations 

from SwissProt Release 54.1 and obtained the topology information from the FT lines of the raw text format. Some 

high-resolution TM proteins do not have complete SwissProt topology annotations, thus we took the annotations 

from MPtopo database (Last update, Aug. 30, 2007) [23]. The high-resolution TM proteins with MPtopo annotations 

are 1bgy_C, 1bgy_D, 1bgy_G, 1bgy_J, 1bl8_A, and 1ehk_A. The TM proteins with updated annotations were then 

uploaded as predictions onto the server, to test for any inconsistency with the server’s annotation. The results are 

shown in Section III-C. 

Fig. 2. The procedure taken to identify the proteins in the benchmark.  

D. Performance evaluation using the updated benchmark 

After we updated the benchmark using the current annotations from SwissProt Release 54.1, we re-evaluated 

SVMtop and also ten other popular TM helix prediction methods, including TMHMM2 [3], HMMTOP2 [11], 

PHDhtm v1.96 [12], MEMSAT3 [24], TopPred 2 [25], SOSUI 1.1 [26], SPLIT4 [27], ConPred II [28], Phobius [29], 

and PolyPhobius [30]. We used the default settings for each online server compared, wherever applicable. 

E. Evaluation metrics 

To assess the prediction accuracy, we followed the evaluation measures as described by Chen et al. [16]. There are 

three types of measures: per-protein, per-segment, and per-residue accuracy as listed in Table I. For per-residue 

measures, we also used Matthew’s correlation coefficient (MCC), which is a more robust measure than using recall or 

precision alone [31]. In addition, we have used an overlap of at least 9 residues for a correctly predicted TMH 

segment, whereas many other methods have used a more relaxed criterion of 3 overlapping residues [3,11,12]. A 

correctly predicted TMH segment is defined as a one-to-one overlap with the true TMH segment.  
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TABLE I

EVALUATION METRICS USED IN THIS WORK 

We only evaluate the per-protein measure, Qok for helix prediction because no topology information can be retrieved for some 

proteins. Per-segment measures include %obs
htmQ and % prd

htmQ . Per-residue measures include Q2,
%

2

obs
TQ , %

2

prd
TQ , and MCC. Nprot is the 

number of proteins in a data set; TP: true positive; TN: true negative; FP: false positive; FN: false negative. 

III. RESULTS AND DISCUSSION

A. Performance of SVMtop evaluated by the original benchmark 

The performance of SVMtop assessed by the original benchmark for high- and low-resolution TM proteins is listed 

in Table II and Table III, respectively. From the first glimpse of the results, although SVMtop (indicated as “YOU”) 

achieves relatively good per-residue accuracy for both data sets, it does not perform favorably against other methods 

such as HMMTOP, TMHMM, and PHDhtm in per-protein score. Particularly, the Qok (percentage of proteins with all 

helices predicted correctly) score is very low for low-resolution set, at 57%. This is significantly lower than that of 

TMHMM, at 75%. These results are very different from our previous evaluations using more expanded data sets [13, 

20]. Another peculiar observation is that, SVMtop has the best Q2, good per-segment recall %obs
htmQ and 

precision % prd
htmQ (>90%), but the Qok score is significantly lower (57%) than that of Q2 (92%) in the low-resolution set. 

Therefore, we decided to examine the benchmark more closely. Since SVMtop was trained on an updated version of 

Möller’s data set [19] using SwissProt, we already found a lot of modifications (unpublished results). We suspected 

Symbol Formula Description 

Qok
% %

1, 100% for protein
100%, with

0, otherwise

prot

obs prd

htm htm

i

prot

N

i
i if Q Q i

N

percentage of proteins in which all its 

TMH segments are predicted 

correctly 

%obs
htmQ number of correctly predicted TM in data set

100%
number of TM observed in data set

TMH segment recall 

% prd
htmQ number of correctly predicted TM in data set

100%
number of TM predicted in data set

TMH segment precision 

Q2
100%

number of residues predicted correctly in protein

number of residues in prtoein

prot

prot

N

i

N

i
i

averaged percentage of correctly 

predicted TMH residues of all 

proteins 

%

2

obs
TQ number of residues correctly predicted in TM helices

number of residues observed in TM helices
100% TMH residue recall 

%

2

prd
TQ number of residues correctly predicted in TM helices

number of residues predicted in TM helices
100% TMH residue precision 

MCC

-
, where

( )( )( )( )

: number of correctly predicted helix residues 

: number of correctly predicted non-helix residues

: number of incorrectly predicted helix residues

: number of incorr

TP TN FP FN

TP FP TP FN TN FP TN FN

TP

TN

FP

FN ectly predicted non-helix residues

Matthew’s correlation coefficient for 

TMH residues 
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that the benchmark which also used Möller’s data set would likely contain some old information. Hence, we 

identified each of the 2247 proteins, and downloaded their annotations from SwissProt. 

In Table IV, SVMtop’s performance on soluble proteins is listed. It is clear that SVMtop achieves the best 

discrimination among all methods compared by achieving 0% false positive and negative rates. In addition, SVMtop
is also assessed in terms of signal peptide discrimination in Table V. Since SVMtop was not trained to discriminate 

signal peptides, it is expected that many of the signal peptides could be wrongly predicted as TM helices (93%). From 

this preliminary evaluation, we decided to examine the TM proteins more closely, by addressing the poor 

performance in Qok.

TABLE II

     HIGH-RESOLUTION ACCURACY OF SVMtop BEFORE UPDATING THE BENCHMARK 

The raw output of the benchmark server is shown. The question mark (?) denotes a hyperlink for  

explanation in the original output. SVMtop is indicated as “YOU”. (Sorting on column 1 - highlighted) 
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TABLE III 

     LOW-RESOLUTION ACCURACY OF SVMtop BEFORE UPDATING THE BENCHMARK 

The raw output of the benchmark server is shown. The question mark (?) denotes a hyperlink for  

explanation in the original output. SVMtop is indicated as “YOU”. (Sorting on column 1 - highlighted) 



8

TABLE IV 

     CONFUSION WITH SOLUBLE PROTEINS BEFORE UPDATING THE BENCHMARK 

The raw output of the benchmark server is shown. 

SVMtop is indicated as “YOU”. (Sorting on column 1 - highlighted) 
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TABLE V

     CONFUSION WITH SIGNAL PEPTIDES BEFORE UPDATING THE BENCHMARK 

The raw output of the benchmark server is shown. 

SVMtop is indicated as “YOU”. (Sorting on column 1 - highlighted) 
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B.  Issues of the original benchmark 

In the process of updating the topological information using the annotations from the latest version of SwissProt 

Release 54.1, we discovered that there are many issues with the original benchmark:  

1. It contains protein annotations of low reliability: This benchmark contains 49 proteins that are taken from Trust 

Level D of Möller’s data set. According to the original publication by Möller [19], “annotations assigned the trust 

level D should not be used for training or testing purposes.” These proteins annotated with low reliability level 

may lead to a biased evaluation. The 49 proteins are (identified by the protein number as given in the benchmark): 

37, 40, 42, 48, 49, 54, 55, 56, 58, 59, 71, 81, 85, 86, 87, 89, 94, 99, 100, 101, 103, 104, 105, 110, 111, 112, 113, 

117, 118, 119, 120, 122, 132, 137, 139, 146, 149, 151, 152, 156, 163, 164, 165, 171, 173, 178, 180, 184, and 191. 

2. Signal peptides are not removed from some low-resolution TM proteins: When we closely examined the TM 

proteins individually, we found 28 proteins that have sequences containing signal peptides as annotated by 

SwissProt Release 54.1. They should have been removed for testing purposes to avoid biases. The proteins that 

contain signal peptides are (identified by the protein number as given in the benchmark): 36, 41, 43, 57, 69, 74, 86, 

87, 96, 98, 100, 101, 102, 103, 117, 118, 119, 122, 139, 145, 146, 149, 152, 154, 160, 173, 180, and 191. We kept 

the signal peptides (SPs) to evaluate the agreement between the benchmark and the annotations from SwissProt to 

test for consistency between the two. However, we removed the SPs for a fair evaluation of all methods in the 

updated benchmark.  

3. It contains redundant proteins: We found two pairs of proteins that have 100% sequence identity (high-resolution 

TM proteins: 21 and 2243; soluble proteins: 2078 and 2079). This contradicts with the paper by Kernytsky and 

Rost, in which the authors claimed that all redundant proteins were filtered out [17].  

4. Others: Incorrect protein IDs; Two protein IDs were incorrect when we matched the sequences using Chen-2002. 

According to Chen-2002, protein 166 is PTMA_ECOLI, but the correct ID should be PTM3C_ECOLI. Similarly, 

protein 36 should be 1B27_HUMAN, not 1B14_HUMAN. 

C. Inconsistency with SwissProt Release 54.1 

We identified 38 high-resolution and 165 low-resolution TM proteins from the original benchmark and retrieved 

their respective annotations from SwissProt. To evaluate the consistency between the benchmark’s annotations and 

the SwissProt’s, we uploaded the annotations from SwissProt as our own prediction onto the server 

(http://cubic.bioc.columbia.edu/tmh_benchmark.). If there is a high agreement between the two, the accuracy should 

be very high. If not, it is very likely that the annotations in the benchmark is not consistent with the SwissProt, and 

could be out of date. We kept all the redundant proteins and signal peptides in this evaluation; signal peptides were 

treated as ‘loops’ when we uploaded the SwissProt annotations. The results for high- and low-resolution TM proteins 

are listed in Table VI and Table VII, respectively. 

From the results of Table VI and Table VII, it is clear that there is some significant disagreement between the 

annotations in SwissProt Release 54.1 and that of the benchmark. The Qok of both data sets are around 77-78%, and 

this means that there is more than 20% in each data set that has some inconsistencies. This means that more than 20% 

of the data sets contain outdated information. Furthermore, given the many issues discovered while updating the data 

set described above, it is of no surprise that the original benchmark could be biased. Therefore, we not only found the 

original benchmark full of unreliable information and noises, but also outdated annotations. 

D. Comparison of SVMtop with other methods using the updated benchmark 

We updated the benchmark using the current annotations from SwissProt, and removed the issues such as 

redundancy and signal peptides. This resulted in a total of 37 high-resolution and 165 low-resolution proteins. We 

re-evaluated ten top-performing approaches using the updated benchmark. The results are shown in Table VIII and 

Table IX. 

From the results of the evaluation using the updated benchmark, SVMtop performs competitively against other 

methods in terms of all of the per-protein, per-segment, and per-residue scores. A dramatic improvement is seen in 

Qok by evaluating using the updated benchmark; low-resolution data set before updating (57%) and after (83%). Since 

the number of samples in high-resolution is small (37), it is probably not convincing by drawing conclusion based on 

it. However, we also observed some improvement in Qok as well, from 75% (before updating) to 86% (after updating). 

The improvement is likely a result of removing the noises and updating the correct topological information in the 
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benchmark. Since SVMtop was trained on a more recent version of SwissProt, its performance is less likely to suffer 

from data inconsistency when evaluated by benchmarks of updated annotations. This could also mean that for those 

methods that were trained using Möller’s data set but did not renew the topological annotations, the assessment may 

not truly reflect the predictive power of individual methods. Another highly ranked method, MEMSAT3, obtains 

89% in Qok for high-resolution data set, and 78% for low-resolution set. Phobius and its homologous version, 

PolyPhobius, also rank as the top methods in both data sets. These results are consistent with our evaluations [13, 20]. 

TABLE VI 

     HIGH RESOLUTION ACCURACY OF SWISSPROT RELEASE 54.1 

The raw output of the benchmark server is shown. The question mark (?) denotes a hyperlink for  

explanation in the original output. SwissProt Release 54.1 is indicated as “YOU”. (Sorting on column 1 - 

highlighted) 
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TABLE VII 

     LOW RESOLUTION ACCURACY OF SWISSPROT RELEASE 54.1 

The raw output of the benchmark server is shown. The question mark (?) denotes a hyperlink for  

explanation in the original output. SwissProt Release 54.1 is indicated as “YOU”. (Sorting on column 1 - 

highlighted) 
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TABLE VIII 
ACCURACY OF HIGH-RESOLUTION TM PROTEINS BASED ON UPDATED BENCHMARK

Method 
 Per-protein (%)  Per-segment (%) Per-residue (%) 

Qok
%obs
htmQ % prd

htmQ Q2
%

2

obs
TQ %

2

prd
TQ MCC

SVMtop 86.4865 (32/37)  94.6565 99.2000 93.4627 88.3428  94.0309 0.8399 

TMHMM2 78.3784 (29/37)  90.8397 98.3471 84.8769 76.1185  89.5146 0.6984 

HMMTOP2 78.3784 (29/37)  92.3664 96.0317 83.6246 73.8500  87.0082 0.6569 

PHDhtm v1.96 59.4565 (22/37)  85.4962 94.9153 79.8252 63.5161  90.0402 0.6109 

MEMSAT3 89.1892 (33/37)  95.4198 98.4252 86.5978 81.3170  88.8468 0.7317 

TopPred2 75.6757 (28/37)  89.3130 97.5000 84.0827 71.0775  89.7018 0.6626 

SOSUI 1.1 75.6757 (28/37)  91.6031 97.5610 82.3361 76.2445  86.0597 0.6650 

SPLIT4 83.7838 (31/37)  93.1298 93.3871 84.4134 80.8759  86.1409 0.7007 

ConPred II 81.0811 (30/37)  93.1298 96.8254 86.2441 74.9842  90.3569 0.6979 

Phobius 78.3784 (29/37)  92.3664 98.3740 84.4991 77.6938  89.1218 0.7065 

PolyPhobius 83.7838 (31/37)  94.6565 97.6378 86.1955 80.2773  90.5151 0.7402 

The total number of high-resolution proteins is 37; one redundant protein (protein number: 2243; PDB ID: 1prc_h) is removed. 

TABLE IX 
ACCURACY OF LOW-RESOLUTION TM PROTEINS BASED ON UPDATED BENCHMARK

Method 
 Per-protein (%)  Per-segment (%) Per-residue (%) 

Qok
%obs
htmQ % prd

htmQ Q2
%

2

obs
TQ %

2

prd
TQ MCC

SVMtop 83.0303 (137/165)  96.3989 98.0282 94.8582 92.8303  89.0381 0.8810 

TMHMM2 75.1515 (124/165)  90.5817 94.6454 91.0567 83.8260  83.9784 0.7904 

HMMTOP2 76.3636 (125/165)  94.3213 92.4016 91.4575 84.5456  84.1148 0.7958 

PHDhtm v1.96 61.8182 (102/165)  90.4432 90.4432 89.5834 77.1295  84.8826 0.7552 

MEMSAT3 77.5758 (128/165)  92.7978 94.4993 90.4748 85.6217  80.9363 0.7800 

TopPred2 51.5152 (085/165)  87.1191 89.8571 89.6116 78.0954  81.9970 0.7418 

SOSUI 1.1 61.8182 (102/165)  87.2576 93.7500 88.6461 79.9430  80.2708 0.7411 

SPLIT4 76.3636 (125/165)  93.3518 93.0939 89.6165 88.1628  77.6921 0.7717 

ConPred II 76.3636 (125/165)  94.4598 93.8102 92.1497 85.2716  86.0076 0.8132 

Phobius 75.1515 (124/165)  91.8283 95.3957 90.6124 84.5845  84.8375 0.8010 

PolyPhobius 72.1212 (119/165)  93.0748 92.6897 91.2168 87.1321  84.2010 0.8122 

The total number of low-resolution proteins is 165.
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IV. CONCLUSION

From our analysis of the benchmark by Kernytsky and Rost [17], it is evident that there are some critical issues 

about the benchmark that would adversely affect how the results are interpreted for an objective comparison. A large 

portion of low-resolution TM proteins (49/165) contains annotations of low reliability and signal peptides (28/165). 

Another issue with this benchmark is its annotations that are inconsistent with the current information in SwissProt 

Release 54.1. We have shown that, by updating the annotations and removing the critical issues inherent in the 

original data, a more objective evaluation that agrees with previous results can be obtained. In summary, the original 

benchmark should not be used for a fair comparison; if used, the results should be carefully interpreted because the 

results may be affected to a large extent due to the existing biases in the data. With the continual updates in SwissProt, 

we believe that it is of utmost importance to update the topological information whenever possible. This has a 

significant impact on developing TM topology prediction methods because the training and testing data must be 

updated in order to achieve better performance. In addition, the results also suggest a strong need for development of 

a new benchmark of annotations, free of inconsistencies and noises (manuscript in preparation). We also provide the 

updated benchmark for public use. It is available at http://bio-cluster.iis.sinica.edu.tw/~bioapp/SVMtop/dataset.htm.
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