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Method for Accelerating the EM Algorithm
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Abstract The Expectation-Maximization (EM) algorithm is one of the most popular
algorithms for parameter estimation from incomplete data, but its convergence can
be slow for some large-scale or complex machine learning problems. Extrapolation
methods can effectively accelerate EM, but to ensure stability, the learning rate of
extrapolation must be compromised. This paper describes the TJ 2aEM algorithm, a
targeted aggressive extrapolation method that can make much more aggressive ex-
trapolations without causing instability problems. We show that for a wide variety
of probabilistic models, TJ2aEM can converge many times faster than other accel-
eration methods under different data distributions and initial conditions. In addition
to EM, TJ2aEM can also be applied to other bound optimization methods, including
generalized iterative scaling, non-negative matrix factorization and concave-convex
procedure.
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1 Introduction

The Expectation-Maximization (EM) algorithm (Dempster et al., 1977; McLachlan
and Krishnan, 1997) is one of the most popular algorithms for parameter estimation
of probabilistic models from incomplete data. Suppose we want to estimate the pa-
rameter vector θ of a probabilistic model to maximize the log-likelihood L(θ ) from
an incomplete data set. The EM algorithm solves the problem by iteratively search-
ing for a local optimal solution θ ∗ on the data likelihood surface with the guarantee
that the likelihood of the estimates increases monotonically.

When applied to complex machine learning problems with large data sets and
a large number of parameters to estimate, the EM algorithm may converge slowly.
If the data sets also contain a large proportion of missing data or there are a large
number of hidden variables in the model to be imputed, the convergence of EM
can be even slower. Previously, Bauer et al. (1997) proposed the parameterized EM
(pEM) algorithm to accelerate EM for Bayesian Networks, and Luis and Leslie
(1999) applied pEM for Mixtures of Gaussians. The pEM algorithm accelerates the
convergence of the EM algorithm by extrapolating along the direction to the EM es-
timate with a fixed learning rate η . They showed that pEM converges faster than EM
and the convergence is guaranteed when 1 < η < 2. But pEM with a learning rate
within this range is usually too conservative to gain significant speedup. Hammerlin
and Hoffmann (1991) derived an optimal learning rate for pEM-like extrapolation
but in practice it is difficult to obtain this learning rate because it depends on the
maximal and minimal eigenvalues of the Jacobian of the EM mapping.

Compared to other numerical optimization methods, conservative extrapolation
methods have the advantage that it is easy to implement for any complex probabilis-
tic models and easy to integrate with any existing software package, but is slow due
to the lack of informative guidance. In fact, the extrapolation can be made more ag-
gressive to further accelerate the EM algorithm (Salakhutdinov and Roweis, 2003;
Hesterberg, 2005; Kuroda and Sakakihara, 2006; Berlinet and Roland, 2007). How-
ever, since a large learning rate may lead to likelihood decreasing and thus failure
of convergence, an aggressive extrapolation must be interleaved with conservative
ones to keep the search stable. Therefore, aggressive extrapolation methods must
dynamically adjust their learning rates. Also, to avoid incurring too much overhead,
the adjustment must be efficient. Salakhutdinov and Roweis (2003) proposed adap-
tive overrelaxed EM (aEM), which increases η by a constant ratio at every iteration
if the pEM extrapolation increases the likelihood and resets η to one otherwise. Hes-
terberg (2005) proposed staggered EM, which estimates the maximal eigenvalue of
the Jacobian of the EM mapping to obtain the upper bound of η and then rotates
among learning rates within the bounded range in a predefined order or at random.
Since these methods confine the range of the adjustment, their extrapolation may
not be aggressive enough to achieve substantial speedup in some cases.

An alternative to aggressive extrapolation is targeted aggressive extrapolation
methods, which at each iteration compute an informed aggressive extrapolation that
targets the local optimum directly. Usually this is achieved by combining two or
more consecutive EM estimates. A well-known method is to use estimated eigen-
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values as the learning rates based on two consecutive EM estimates (Schafer, 1997).
To be precise, we will call this method the triple jump EM method (TJEM) (Huang
et al., 2005) in this paper and will describe it in details in Section 3. TJEM can be
derived from Aitken acceleration and is aimed at approximating the Jacobian by
the eigenvalue of its slowest dimension, which dictates the global rate of conver-
gence (Dempster et al., 1977). Since eigenvalues are scalars, both estimation and
extrapolation can be computed as efficiently as pEM and aEM. Staggered EM is
an extension of TJEM. More recently, Kuroda and Sakakihara (2006) proposed the
ε-accelerated EM based on the vector ε algorithm (Wynn, 1962), which was orig-
inally designed to accelerate a slowly convergent sequence. Varadhan and Roland
(2004) proposed the SQUAREM algorithm. The idea is to extrapolate to a parame-
ter vector on the straight line across two consecutive EM estimates in the parameter
space such that this parameter vector is estimated to be the closest to the local opti-
mum. Though these methods can make very aggressive extrapolations, they share a
common disadvantage that they favor the acceleration of slow dimensions but may
drift away from the optimum along the dimensions already close to the optimum.
In contrast, aEM and staggered EM have an advantage here because by applying
large and small learning rates by turns, both fast and slow dimensions can be cov-
ered. Section 6.1 explains why aEM can be effective. Favoring slow dimensions too
much may also cause instability. Therefore, addenda to keep the search stable, such
as the restarting test for SQUAREM (Berlinet and Roland, 2007), are required.

This paper describes the TJ2aEM algorithm, a targeted aggressive extrapolation
method with no stability problem. Unlike previous targeted extrapolation methods,
TJ2aEM rotates its extrapolations to cover all dimensions and applies double extrap-
olation that proves to stabilize the impact of aggressive extrapolation on fast dimen-
sions. As a result, extrapolations can be made very aggressive to achieve substantial
acceleration for the EM algorithm. Experimental results show that TJ 2aEM extrap-
olates more aggressively and converges faster than other acceleration methods. In
many cases, two- to three-fold or even higher speedup over other acceleration meth-
ods can be achieved for a wide variety of probabilistic models under different data
distributions and initial conditions. Furthermore, since TJ2aEM is derived from the
fixed-point iteration and Aitken acceleration, TJ2aEM can be directly applied to all
of the bound optimization methods defined in (Salakhutdinov and Roweis, 2003),
including EM, generalized iterative scaling, non-negative matrix factorization and
concave-convex procedure.

This paper is organized as follows. Section 2 reviews pEM and aEM and their
convergence properties. Section 3 reviews the TJEM algorithm, which serves as
the baseline algorithm for us to derive TJ2aEM. From Section 4 to 6, we describe
our step by step derivation of TJ2aEM. Section 4 describes the TJpEM algorithm,
which substitutes the EM mapping in TJEM with the pEM mapping. We identify
conditions when TJpEM will outperform TJEM, but the conditions also imply that
when we choose a large learning rate, TJpEM may converge slower than TJEM. Our
solution to the issue is described in Section 5 and is materialized in the TJ2pEM al-
gorithm. The idea is to apply the double extrapolation method to stabilize the ill
effect due to a large learning rate. Finally, in Section 6, we describe the TJ 2aEM
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algorithm, a variant of TJ2pEM with dynamically adjusted learning rates. We show
that dynamically adjusting the learning rate can outperform sticking with a fixed op-
timal learning rate, which also explains why aEM can outperform pEM. We present
experimental verifications of our analytical results and report experimental compar-
isons of the acceleration performance of the above algorithms in Section 7. In the
last section, we summarize the conclusions.

2 Accelerating EM by Extrapolation

This section reviews the pEM algorithm and the aEM algorithm. We also present a
generic algorithmic framework that can integrate many extrapolation based variants
of EM while guarantee convergence. Meanwhile, we introduce the notation in this
paper. See Appendix A for the complete notation convention used.

2.1 Parameterized EM

The EM algorithm updates a given parameter vector of a probabilistic model with
the guarantee that the data likelihood will be monotonically increased. Let Ω be
a parameter space of a probabilistic model, and θ be a n-dimensional parameter
vector over Ω . An EM mapping M : Ω →Ω ensures that L(M(θ ))≥ L(θ ). Starting
from an initial parameter, say θ (0), the EM algorithm applies M to θ (0) iteratively
until convergence. Let θ (t) denote the output of EM at iteration t, we have θ (t) =
M(θ (t−1)) = · · · = Mt(θ (0)), where Mt (θ (0)) denotes applying the EM mapping to

θ (0) for t times. We will abbreviate M(θ (t−1)) as θ (t−1)
EM . Note that θ (t) and θ (t−1)

EM
are the same in the EM algorithm, but may be different in EM variants. When t→∞,
the EM algorithm converges to a local optimum θ ∗ that satisfies θ ∗ = M(θ ∗).

The parameterized EM (pEM) algorithm (Bauer et al., 1997) accelerates the EM
algorithm by using the pEM mapping Mη : Ω →Ω at each iteration:

Mη (θ )≡ θ + η(M(θ )−θ ). (1)

That is, pEM extrapolates along the direction from θ to M(θ ) with a learning rate
η . Then, the parameter vector at iteration t of pEM is:

θ (t) = Mη(θ (t−1)) = θ (t−1) + η(θ (t−1)
EM −θ (t−1)). (2)

Similar to EM, we abbreviate Mη(θ (t−1)) as θ (t−1)
η . If η = 1, θ (t−1)

η is equivalent to

θ (t−1)
EM .

The choice of η affects the rate of convergence of pEM. We summarize some
convergence properties of EM and pEM in Section 2.2 to show the acceleration of
EM by pEM.



TJ2aEM for Accelerating the EM Algorithm 5

2.2 Convergence Properties of EM and pEM

Suppose that we apply the EM algorithm from θ (t) in the neighborhood of θ ∗ and
EM converges at θ ∗. Assuming that the EM mapping M is differentiable. Then we
can apply a linear Taylor expansion of M around θ ∗ so that

θ (t+1) = M(θ (t))≈ θ ∗+M′(θ ∗)(θ (t)−θ ∗) = θ ∗+ J(θ (t)−θ ∗), (3)

where J abbreviates M ′(θ ∗), the Jacobian of EM at θ ∗. We can apply M to θ (t)

consecutively for h times to obtain θ (t+h). From Equation (3), we have

θ (t+h) ≈ θ ∗+ Jh(θ (t)−θ ∗). (4)

The eigen decomposition of the Jacobian J at θ ∗ is

J = Q

⎛
⎜⎝

λ1 . . . 0

0
. . . 0

0 . . . λn

⎞
⎟⎠Q−1 = QΛQ−1, (5)

where Q = [v1, . . . ,vn] contains the eigenvectors corresponding to eigenvalues λ 1, . . . ,λn,
respectively. Then, Jh in Equation (4) becomes:

Jh = Q

⎛
⎜⎝

λ h
1 . . . 0

0
. . . 0

0 . . . λ h
n

⎞
⎟⎠Q−1 = QΛhQ−1.

Since θ (t+h)→ θ ∗ when h→ ∞ in EM, it is required that limh→∞ Jh = 0 to ensure
convergence. It follows that limh→∞ λ h

i = 0, and thus, −1 < λi < 1 for all i.
The rate of convergence of M is determined by the largest eigenvalue of J, which

is the slowest one among all eigenvalues to converge to 0. More generally, the rate
is determined by the spectral radius ρ of J when the eigenvalues can be negative.
The spectral radius ρ is defined by max{|λmax|, |λmin|}, where λmax and λmin are the
greatest and smallest eigenvalues of J. In previous works, the following assumption
on the eigenvalues of J is usually expected to be true, which implies that ρ = λ max:

Assumption 1 The eigenvalues of the Jacobian of an EM mapping lie in [0,1)(Dempster
et al., 1977; McLachlan and Krishnan, 1997).

The convergence rate of pEM can be expressed in terms of the eigenvalues of
EM. The relation between the eigenvalues of EM and pEM can be derived by dif-
ferentiating Mη(θ ∗) with respect to θ . By Equation (1), we have

Jη ≡M′η(θ ∗) = I + η(M′(θ ∗)− I)
= (1−η)I + ηJ

= Q[(1−η)I + ηΛ ]Q−1, (6)
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where Jη denotes the Jacobian of M ′η at θ ∗, and I the n× n identity matrix. We
describe the results from Equation (6) in Lemma 1.

Lemma 1. The i-th eigenvalue of Jη , denoted by ληi, is a linear combination of 1.0
and λi, the eigenvalue of J (Hesterberg (2005), for example):

ληi = (1−η)∗ 1.0+ ηλi. (7)

Besides, the eigenvectors of J and Jη are the same.

EM and pEM have the same set of local optima. Although EM and pEM share
the same θ ∗, not every θ ∗ can be reached. This is also a convergence issue of the
fixed point iteration methods (Burden and Faires, 1988).

Next, we derive the range of η that ensures convergence of pEM based on
Lemma 1. The range is determined by the minimal eigenvalue of J η .

Proposition 1. Let ληmax and ληmin denote the maximal and minimal eigenvalue of
Jη . The pEM algorithm with η converges if 0 < η < 2

1−λmin
.

The Jacobian is not the same for different local maxima, neither are the eigenval-
ues. For each θ ∗ that EM can converge to, pEM with a large learning rate η might
only converge to some of them. The next corollary describes a strict range for η
such that convergence is guaranteed for pEM.

Proposition 2. Within the neighborhood of θ ∗, the pEM algorithm must converge
to θ ∗ if 0 < η < 2.

The bound in Proposition 2 is too tight because pEM might converge with η > 2
when λmin > 0. For example, suppose that the smallest eigenvalue among all Jaco-
bians is 0.1, the upper bound can be relaxed to 2.22, greater than the upper bound
given in Proposition 2.

Proposition 3. The optimal learning rate η ∗ for pEM is 2
2−λmax−λmin

(Hammerlin
and Hoffmann, 1991).

Although the mapping and Jacobian of pEM can be expressed via those of EM,
we still assign new symbols like Mη and Jη for pEM. That is because pEM is also a
fixed point method, and we can directly use Mη to replace M in Aitken acceleration.

2.3 Adaptive Overrelaxed EM

An example of dynamic learning rate methods is the adaptive overrelaxed EM
(aEM) algorithm(Salakhutdinov and Roweis, 2003). The aEM algorithm dynami-
cally adjusts the learning rate in pEM by η (t) = 1.1η (t−1) for iteration t if the like-
lihood is increased more than a threshold at iteration t− 1. Otherwise, aEM resets
η(t+1) = 1.0 to guarantee convergence.
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The motivation of aEM is that dynamically adjusting η increases the chance of
using the optimal learning rate of pEM. In fact, our experimental results in Sec-
tion 7.6 show that aEM is superior than pEM with even the optimal learning rate
because of aggressive extrapolation.

The staggered EM is another aggressive extrapolation method proposed by Hes-
terberg (2005). The difference of staggered EM and aEM is that, staggered EM
estimates the possible range of η every ten iterations, and then choose ten values
within the range as the next ten learning rates. We have empirically compared stag-
gered EM and aEM, and found that they are competing with each other. Therefore,
we will only use aEM as the representative in our experiments.

2.4 Backtracking for Convergence Guarantee

Accelerating EM by extrapolation with dynamically adjusted learning rates is not
guaranteed to converge because the learning rates may exceed the upper bound
given in Proposition 1. To ensure convergence, the aEM algorithm applies a simple
yet effective method, which drops the resulting parameter vector of the extrapola-

tion θ (t+1) if it fails to improve the likelihood and replaces it with θ (t)
EM , the result

obtained by the original EM algorithm. Since we must obtain θ (t)
EM in order to com-

pute the extrapolation, this method incurs tiny overheads while achieves monotone
increasing of the likelihood. Therefore, the aEM algorithm is guaranteed to con-
verge.

This backtracking method can be generalized to integrate many EM variants
based on extrapolation. The aEM algorithm can be considered as integrating two
EM variants, EM (for abbreviation, EM variants include the original EM algorithm)
and pEM with dynamic learning rates (Salakhutdinov and Roweis, 2003). The pEM
algorithm is the default approach. When pEM fails to improve the likelihood, the
result of the EM algorithm is used instead.

When there are many EM variants, we can use Algorithm 1, which searches
for a parameter vector that satisfies the condition of monotone increasing of the

likelihood. Suppose that there are K variants that generate K candidates θ̂ (t)
1 . . . θ̂ (t)

K
at iteration t. Candidates are ordered by the aggressiveness of their extrapolation

methods. θ̂ (t)
K with the largest K is always generated by the original EM mapping

because it is the least aggressive one. Then, the likelihood L( θ̂ (t)
k ) for each θ̂ (t)

k is

computed one by one with the E-step in the order of k. The first θ̂ (t)
k that successfully

increases the likelihood more than a threshold δ becomes the final θ (t), and the M-
step is performed to compute θ (t)

EM . At last, θ (0), . . .θ (t) and θ (t)
EM are used to generate

θ̂ (t+1)
1 . . . θ̂ (t+1)

K , the candidates for the next iteration. It is clear that Algorithm 1 is
guaranteed to converge because it ensures monotone increasing of the likelihood.

The worst case computational cost of Algorithm 1 is O(TKE), where T is the
iteration times, K is the number of EM variants, and E is the computational cost to
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compute the extrapolation and perform an E-step. In the best case, the most aggres-
sive extrapolation always leads to a parameter vector that improves the likelihood
and thus at each iteration, only one E-step will be performed. In the worst case,
however, all extrapolation methods fail to improve the likelihood and the algorithm
reduces to the original EM algorithm. In this case, K extrapolations and K E-steps
will be performed for each extrapolation method. Therefore, integrating an addi-
tional variant must be justified by its effectiveness of reducing the number of re-
quired iterations, that is, improving the convergence rate. Usually we only consider
to have K ≤ 3. The triple jump methods to be presented in this paper will be inte-
grated with EM or pEM in Algorithm 1 as step 5 to generate new parameter vectors
by extrapolation.

Algorithm 1 Integrating EM Variants

1: Randomly initialize θ̂ (0)
K , LL =−∞.

2: repeat at iteration t (starting from 0)

3: θ (t) = θ̂ (t)
k with the minimal k such that L(θ̂ (t)

k )−LL > δ (use E-step to compute the likeli-
hood).

4: LL = L(θ̂ (t)
k ), and use M-step to compute θ(t)

EM .

5: Generate θ̂ (t+1)
1 , . . ., θ̂ (t+1)

K from θ (0), . . .,θ (t) and θ (t)
EM for the next iteration.

6: until no θ̂ (t)
k satisfies L(θ̂ (t)

k )−LL > δ .

3 TJEM: Baseline Targeted Aggressive Extrapolation Algorithm

In this section, we start by reviewing Aitken acceleration for the EM algorithm, then
we present the triple jump EM method (TJEM) as the baseline method to be im-
proved. Note that TJEM is not brand-new: it follows the work of Schafer (1997) and
Hesterberg (2005) for targeted extrapolation, and follows Algorithm 1, the generic
algorithmic framework of Salakhutdinov and Roweis (2003), to discard estimates
that fails to improve enough likelihood. We named this method as triple jump be-
cause its search path is similar to the hop, step and jump phases in triple jump.

3.1 Aitken Acceleration for EM

The EM algorithm is equivalent to solving θ ∗ by a fixed-point iteration method (Bur-
den and Faires, 1988). That is, EM looks for a parameter vector that satisfies
θ = M(θ ) by iteratively substituting θ on the RHS with that on the LHS until con-
vergence. Therefore, we can use the Aitken acceleration method to speed up EM.
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The multivariate version of Aitken acceleration (Louis, 1982; McLachlan and
Krishnan, 1997) for EM can be derived as follows. We can express θ ∗ as

θ ∗ = θ (t) +
∞

∑
h=0

(θ (t+h+1)−θ (t+h)). (8)

Suppose that θ (t) is in the neighborhood of θ ∗. Based on Equation (4), θ (t+h+1)−
θ (t+h) can be written as:

θ (t+h+1)−θ (t+h)≈
[
θ ∗+ Jh(θ (t+1)−θ ∗)

]
−

[
θ ∗+ Jh(θ (t)−θ ∗)

]
= Jh(θ (t+1)−θ (t)).

(9)
Applying Equation (9) in Equation (8) gives the multivariate Aitken acceleration:

θ ∗ ≈ θ (t) +
∞

∑
h=0

Jh(θ (t+1)−θ (t))

= θ (t) + (I− J)−1(θ (t)
EM−θ (t)), (10)

since the eigenvalues of J are between 0 and 1, from Assumption 1. In Equation (10),

we replace θ (t+1) with θ (t)
EM to emphasize that θ (t+1) is obtained by applying an EM

mapping to θ (t) here.
The multivariate version of Aitken acceleration requires to compute the Jacobian

of the EM mapping matrix, which can be intractable for complex models with a high
dimensional parameter space. Aitken acceleration also has drawbacks including that
it may not always converge and that it may be numerically unstable (Jamshidian and
Jennrich, 1997).

3.2 Estimating Eigenvalues of Slowest Dimension

Targeted aggressive extrapolation updates a new estimate based on previous EM
estimates. We start from Equation (10) of Aitken acceleration. We substitute J with
Equation (5), and then (I− J)−1 in Equation (10) becomes:

(I− J)−1 =
[
Q [I−Λ ]Q−1]−1

= Q[I−Λ ]−1Q−1

= Q

⎛
⎜⎝

1
1−λ1

. . . 0

0
. . . 0

0 . . . 1
1−λn

⎞
⎟⎠Q−1. (11)

With the eigen decomposition of J, we can map θ ∗ in Equation (10) from the origi-
nal parameter space to the eigenspace spanned by Q:
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ψ∗ = Q−1θ ∗ ≈ Q−1θ (t) +Q−1(I− J)−1(θ (t)
EM−θ (t))

= Q−1θ (t) + [I−Λ ]−1 Q−1(θ (t)
EM−θ (t))

= ψ(t) + [I−Λ ]−1 (ψ(t)
EM−ψ(t)).

The relation between ψ ∗ and θ ∗ can also be written as:

θ ∗ = ψ∗1 v1 + · · ·+ ψ∗n vn,

where ψ∗i with i = 1, . . . ,n denotes the i-th transformed parameter vector ψ ∗ in the
eigenspace. Along with Equation (11), we can observe that the multivariate Aitken
acceleration is in fact a series of univariate Aitken acceleration along the direction
of vi:

ψ∗i ≈ ψ(t)
i +

1
1−λi

(ψ(t)
EMi−ψ(t)

i ). (12)

The global rate of convergence of the EM algorithm is defined as the limit of
the ratio of the difference between the next estimated parameter vector to the local
maximum and the difference between the current estimated parameter vector to the
local maximum:

R = lim
t→∞

R(t) ≡ lim
t→∞

‖θ (t+1)−θ ∗‖
‖θ (t)−θ ∗‖ (13)

Dempster et al. (1977) have shown that R = λmax, the largest eigenvalue of J. There-
fore, instead of computing the Jacobian, we can simplify Aitken acceleration for
EM by replacing every eigenvalue λ i with a single value γ (t) such that γ (t) is an
approximation of λmax at the t-th iteration:

θ (t+1) = θ (t) + (1− γ (t))−1(θ (t)
EM−θ (t)). (14)

Note that (1− γ (t))−1 in Equation (14) can be written as Qdiag(1− γ (t))−1Q−1.
Compared with Equation (11), we can observe that the extrapolation assumes λ i =
γ(t) for all i and performs Aitken acceleration accordingly.

We can estimate γ (t) as follows. Let θ (t) = M(θ (t−1)) and θ (t+1) = M(θ (t)). We
have, by Equation (9):

J(θ (t)−θ (t−1))≈ θ (t+1)−θ (t) = θ (t)
EM−θ (t).

Then, we substitute J with γ (t). Let γ (t)(θ (t)−θ (t−1)) = θ (t)
EM−θ (t), we have

|γ(t)| = ‖θ (t)
EM−θ (t)‖

‖θ (t)−θ (t−1)‖ . (15)

Since λi’s are non-negative in the EM algorithm by Assumption 1, our estimation
of γ (t) is defined by (Hesterberg, 2005):
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γ(t) ≡ ‖θ (t)
EM−θ (t)‖

‖θ (t)−θ (t−1)‖ . (16)

γ(t) is primarily dominated by the eigenvalues of the slowest dimension in terms
of distance to ψ ∗. It can be shown that as t → ∞, γ (t) ≤ λmax asymptotically in the
neighborhood of θ ∗(Hesterberg, 2005). However, when θ (t) is not in the neighbor-
hood of θ ∗, γ(t) could be greater than 1.0 and results in unstable extrapolation. We
will show how to handle it in Section 7.1.

3.3 The TJEM algorithm

The instantiation of Algorithm 1 that integrates the estimation of γ (i.e., Equa-
tion (14)) and the original EM algorithm will be referred to as the TJEM algorithm.
Other variants to be described later in this paper will be named in a similar manner.

Since our estimation applies two previous estimates of the EM algorithm to ob-
tain γ (t), the TJEM algorithm invokes Equation (16) at every other iteration, if all
extrapolations successfully improve the likelihood. Starting from θ (0) in the neigh-

borhood of θ ∗, we need to apply EM to obtain θ (0)
EM = θ (1), again to obtain θ (1)

EM ,
and then we can apply Equation (14), the triple jump extrapolation, to obtain θ (2).

To apply the extrapolation again, we cannot simply use θ (1), θ (2) and θ (2)
EM in Equa-

tion (16) to obtain γ (2), because in Equation (16), θ (t) must be obtained by the EM
algorithm too so that the ratio is a reasonable estimate of the eigenvalue. There-

fore, to apply the extrapolation again, we need to apply EM to obtain θ (2)
EM = θ (3),

again to obtain θ (3)
EM , and then we can apply the extrapolation to obtain θ (4), and so

on. Therefore, the TJEM algorithm applies the extrapolation at the 2i-th iteration,
i = 1,2, . . ., assuming that all extrapolations successfully improve the likelihood.

If the improvement is less than a threshold, the extrapolation result will be dis-
carded and the result of EM will be used as the current estimate θ (t). The triple jump

extrapolation can be resumed using θ (t−1), θ (t) and θ (t)
EM , or postponed for another

iteration.

4 TJpEM: Accelerating TJEM by pEM Mapping

One idea to accelerate TJEM is that, since TJEM performs EM mapping and tar-
geted extrapolation by turns, we may have faster convergence if the EM mapping is
replaced by the pEM one because pEM can converge faster than EM. The idea can
be implemented by replacing M with Mη in the derivation of TJEM, resulting in the
triple jump parameterized EM (TJpEM) algorithm.
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Let θ (t)
η ≡Mη (θ (t)). Following the derivation in Section 3.2, we have the estima-

tion of the eigenvalue γ (t)
η for the slowest dimension based on the pEM mapping:

γ(t)
η ≡

‖θ (t)
η −θ (t)‖

‖θ (t)−θ (t−1)‖ . (17)

In this way, we obtain the targeted extrapolation in TJpEM as:

θ (t+1) = θ (t) + (1− γ (t)
η )−1(θ (t)

η −θ (t)). (18)

The TJpEM algorithm is an instantiation of Algorithm 1 described in Section 2.4,

with K = 3 EM variants. In the TJpEM algorithm, θ̂ (t)
1 is computed by the targeted

extrapolation, θ̂ (t)
2 by pEM with a fixed learning rate η , and θ̂ (t)

3 by the original EM
algorithm.

4.1 Convergence Properties of TJpEM

During its execution, the TJpEM algorithm usually switches between the targeted
extrapolation and pEM extrapolation. Therefore, the convergence properties of
TJpEM are determined by the Jacobian of the composition of the two mappings
at θ ∗:

M′γη (Mη (θ ∗))M′η (θ ∗) = M′γη (θ ∗)M′η (θ ∗) = Jγη Jη .

Since Jγη = QΛγη Q−1 and Jη = QΛη Q−1, we have Jγη Jη = QΛγη ΛηQ−1 and the
eigenvalues are the diagonal elements of Λγη Λη . Lemma 2 gives the eigenvalues in
Jγη Jη .

Lemma 2. The i-th eigenvalue of the Jacobian of Mγη ◦Mη at θ ∗ with estimated

spectral radius γ (t)
η is

ληi
ληi− γ(t)

η

1− γ (t)
η

.

To compare the spectral radii of TJEM and TJpEM, we assume that Equation (7),
the relation between the eigenvalues for the Jacobians of the EM and pEM map-

pings, holds for the estimated spectral radii γ (t) and γ (t)
η :

γ(t)
η = 1−η + ηγ (t).

Now, consider a Jacobian of the EM mapping with 19 distinct eigenvalues λ i,
i = 1, . . . ,19. Assume further that λi = 0.05∗ i. It follows that λmin = 0.05 and λmax =
0.95. Suppose TJEM estimates λmax as γ(t) = 0.83, an inaccurate approximation.
Then according to Equation (7), if we choose η = 1.2 for TJpEM, we will have
ληmin, ληmax, and γ (t) to be −0.14, 0.94, and 0.796, respectively, and −0.52, 0.92,
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and 0.728, respectively, if we choose η = 1.6. Figure 1(a) illustrates the absolute
eigenvalues of TJEM and TJpEM with these different learning rates. We can clearly
observe the tendency that, with the growth of η ,

• the peak of the concave curves in the middle in Figure 1(a) decreases gradually,
and

• the end of the left tails in Figure 1(a) increases drastically.

Figure 1(a) illustrates that TJpEM can converge faster TJEM with a proper learning
rate (e.g. η = 1.2), while can converge slower or even diverge with a large (e.g.
η = 1.6).

Then, we change λmin and keep the other eigenvalues unchanged to see how
sensitive the spectral radius is to λmin and plot the result in Figure 1(b), which shows
that when λmin < 0.03, the spectral radius increases linearly as λmin decreases. The
result shows that the spectral radius could also be influenced by tiny difference of
λmin.

At last, we derive an upper bound of η for TJpEM to converge faster than TJEM.

Proposition 4. Within the neighborhood of θ ∗, TJpEM with η <
1+ γ

4
1−λmin

can con-

verge faster than TJEM, under the assumption that γ (t)
η = 1−η + ηγ (t).
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Fig. 1 We assume that λi = 0.05 ∗ i, i = 1, . . .,19. Accordingly, we plot the composite absolute
eigenvalues of the extrapolation in TJpEM in (a), where the peak value of a curve is the spectral
radius. (a) shows that in this example, TJpEM has a smaller composite spectral radius than TJEM
with η = 1.2, but a larger one with η = 1.6. Then, we change λmin and keep the other eigenvalues
unchanged to see how sensitive the spectral radius ρ◦γη is to λmin and plot the result in (b), which
shows that when λmin < 0.03, ρ◦γη increases linearly as it decreases.
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4.2 Impact of Negative ληmin against TJpEM

Proposition 4 implies that TJpEM converges faster than TJEM with a proper learn-
ing rate, but when the learning rate exceeds the proper range, TJpEM might con-
verge slower. Besides, λmin can also influence the spectral radius, especially when
λmin→ 0. This is usually because a large learning rate and a tiny minimal eigenvalue
may result in a negative eigenvalue ληmin for pEM.

A negative eigenvalue brings impact against TJpEM, especially when the value is
less than−1. In this case, the extrapolation may bring the search away from the local
optimum and fail to improve the likelihood. Recall that to guarantee convergence,
Algorithm 1 will discard an extrapolation result if it fails to improve the likelihood.
If this occurs often, the rate of convergence will suffer. Consequently, the impact
of negative ληmin against TJpEM is undesirable. A solution for TJpEM is to use
a small η . However, it is difficult to determine how to adjust η accordingly and
this conservative solution may rarely produce any significant acceleration. Another
solution, which will be described in the next section, is the TJ2pEM algorithm.
TJ2pEM ensures that all eigenvalues including the minimal one are non-negative,
and thus alleviates the impact of negative eigenvalues against TJpEM.

5 TJ2pEM: Stabilizing TJpEM by Double Extrapolation

The TJ2pEM algorithm applies the double extrapolation method that combines two
pEM extrapolations into one to prevent the Jacobian from having any negative
eigenvalue. The key idea is that, when our mapping is M 2

η , its Jacobian J2
η will be

QΛ2
ηQ−1 and Λ 2

η will contain no negative eigenvalue. Consequently, the deviation
between the real and estimated eigenvalues would be smaller.

Similar to Equation (8), we substitute the EM mapping with Mη , but apply Mη
twice at a time for every current estimate to obtain:

θ ∗ = θ (t−1) +
∞

∑
h′=0

(M2h′+2
η (θ (t−1))−θ (t−1)) (19)

= θ (t−1) +
∞

∑
h′=0

(θ (t+2h′+1)−θ (t+2h′−1)).

Note that the superscript t still indicates the number of iterations that pEM has been
applied.

Based on Equation (4), θ (t+2h′+1)−θ (t+2h′−1) can be written as:

θ (t+2h′+1)−θ (t+2h′−1) ≈ J2h′
η (θ (t+1)−θ (t−1)).

Substituting Equation (19) with the above approximation, we have:
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θ ∗ = θ (t−1) +
∞

∑
h′=0

(θ (t+2h′+1)−θ (t+2h′−1)) (20)

≈ θ (t−1) +
∞

∑
h′=0

J2h′(θ (t+1)−θ (t−1))

= θ (t−1) + (I− J2
η)−1(θ (t+1)−θ (t−1))

= θ (t−1) + (I− J2
η)−1(θ (t)

η −θ (t−1))

Still, we use γ (t)
η as in TJpEM to approximate Jη and obtain the extrapolation in

TJ2pEM as follows:

θ (t+1) = θ (t−1) +
1

1− (γ (t)
η )2

(θ (t)
η −θ (t−1)). (21)

Note that instead of extrapolating from θ (t), TJ2pEM extrapolates from θ (t−1) at the
t-th iteration.

5.1 Convergence Properties of TJ2pEM

The extrapolation of TJ2pEM is quite different from that of TJpEM. At iteration t

where θ (t) = θ (t−1)
η , the extrapolation in TJpEM uses θ (t−1), θ (t), and θ (t)

η to esti-

mate γ (t)
η , and then extrapolates from θ (t) along θ (t)

η −θ (t). The mapping in TJpEM
from θ (t−1) to θ (t+1) is a pEM mapping to θ (t) and a triple jump extrapolation to

θ (t+1). TJ2pEM as given in Equation (21) estimates γ (t)
η in the same way as TJpEM,

but it extrapolates from θ (t−1) along the direction of θ (t)
η −θ (t−1). The mapping in

TJ2pEM is a direct mapping from θ (t−1) to θ (t+1). In other words, if the extrapola-
tion is a success, we consider it as one update that takes two iterations.

The next lemma gives the eigenvalues of the Jacobian of the TJ 2pEM mapping.

Lemma 3. The i-th eigenvalue λγ2
η i of the Jacobian of the TJ2pEM mapping is:

λγ2
η i =

(ληi)2− (γ(t)
η )2

1− (γ (t)
η )2

.

We use the same example in Section 4.1 to show the eigenvalues of TJ2pEM with
different learning rates η in Figure 2(a). We can clearly observe that in this example,
with the growth of η ,

• ληmin has a much less impact on the spectral radius than that of TJpEM, where the
spectral radius of the Jacobian of the TJpEM mapping may increase drastically
due to a small ληmin;
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Fig. 2 With the same example as in Figure 1, (a) shows the absolute eigenvalues of TJ2pEM with
η = 1.4, 1.6, and 1.8. The curves have no left tail and look like the curve of TJEM in Figure 1. (b)
shows that changes to λmin will not affect the spectral radius ργ2

η
here, suggesting that TJ2pEM is

barely affected by λmin.

• TJ2pEM with a large η tends to have a smaller spectral radius than that with a
small η , in contrast of TJpEM.

At last, we derive the conditions under which TJ2pEM can converge faster than
TJpEM.

Proposition 5. Given the same learning rate η , TJ2pEM can converge faster than

TJpEM if ληmin <− 1
2 and ληmax ≤ 1+

√
2

2 γ(t)
η .

5.2 Elimination of Impact of Negative ληmin

Proposition 5 and Figure 2(a) suggest that TJ2pEM will successfully alleviate the
impact of negative eigenvalues ληmin of TJpEM due to a large learning rate η . An-
other factor that influences ληmin is λmin, as described in Section 4.2. Here we dis-
cuss how λmin may affect ληmin with an example.

Figure 2(b) plots the spectral radius of the Jacobian of TJ2pEM with η = 1.8 in
the same way as Figure 1(b). We can observe that, when λmin decreases from 0.05
to 0.01, the spectral radius is unchanged. Unlike TJpEM, TJ 2pEM is barely affected
by the change of λmin. Hence, TJ2pEM will achieve a more stable acceleration per-
formance than TJpEM.
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6 TJ2aEM: Accelerating TJ2pEM by Dynamic Learning Rate

The TJ2aEM algorithm is the same as the TJ2pEM except that η in TJ2aEM is dy-
namically adjusted. Since TJ2pEM is more stable than TJpEM, TJ2pEM is expected
to have much less ill effects on the eigenvalues than TJpEM does with dynamic
learning rates for Mη . In this section, we explain why dynamic learning rates may
help and analyze the convergence properties of TJ 2aEM.

6.1 Success of aEM

In this subsection, we use an example to show the advantage of dynamically ad-
justing the learning rate η over a fixed optimal learning rate η ∗. In particular, we
will show that using two slightly different learning rates for two consecutive pEM
iterations will achieve a higher speedup than using the optimal learning rate η ∗ at
every iteration. Let η (1) = η∗+ Δ and η (2) = η∗ −Δ , where Δ is an arbitrary con-
stant between 0 and 1. Let M1 and M2 be the pEM mappings with the learning rates
η(1) and η (2), respectively. Their Jacobians are J1 = QΛ1Q−1 and J2 = QΛ1Q−1,
respectively. and the eigen matrix of J2J1 is Λ2Λ1. Hence, the i-th eigenvalue in J2J1

is:

(1−η (1) + η(1)λi)(1−η (2) + η(2)λi)
= (1−η∗+ η∗λi−Δ(1−λi))(1−η∗+ η∗λi + Δ(1−λi))
= (λη∗i−Δ(1−λi))(λη∗i + Δ(1−λi))

= (λη∗i)2− (Δ(1−λi))2

≤ (λη∗i)2.

Therefore, for each direction along the eigenvector v i, the eigenvalue of J2J1 is
smaller than that of (Jη∗)2. It follows that pEM with two different learning rates
η(1) and η (2) may converge faster than pEM with a fixed optimal learning rate η ∗
in the neighborhood of the local optimum.

We can extend the above result to use several different Δ in turns. Though the
optimal learning rate η ∗ is not known in practice, we can try a wide range of η so
that it is virtually equivalent to have several different Δ with η ∗. This provides an
explanation of why the aEM algorithm (Salakhutdinov and Roweis, 2003) performs
better than pEM with η ∗.

6.2 Derivation of TJ2aEM

The TJ2aEM algorithm applies dynamic η to TJ2pEM for further acceleration. It is
clear that by applying η (1) and η (2) to Equation (25), we can establish that the spec-
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tral radius of TJ2aEM will be smaller than that of TJ2pEM, implying that TJ2aEM
may converge faster than TJ2pEM in the neighborhood of the local optimum.

|λγ2
η(1) iλγ2

η(2) i|

=
(λη(1)i)

2− (λη(1)max)2

1− (λη(1)max)2 ·
(λη(2)i)

2− (λη(2)max)2

1− (λη(2)max)2

∝
(λη(1)i + λη(1)max)(λη(2)i + λη(2)max)

(1+ λη(1)max)(1+ λη(2)max)

=
(λη∗i + λη∗max−Δ(2−λi−λmax))(λη∗i + λη∗max + Δ(2−λi−λmax))

(1+ λη∗max−Δ(1−λmax))(1+ λη∗max + Δ(1−λmax))

=
(λη∗i + λη∗max)2− (Δ(2−λi−λmax))2

(1+ λη∗max)2− (Δ(1−λmax))2

≤ (λη∗i + λη∗max)2− (Δ(1−λmax))2

(1+ λη∗max)2− (Δ(1−λmax))2

≤ (λη∗i + λη∗max)2

(1+ λη∗max)2 .

|λγ2
η(1) iλγ2

η(2) i| = |λγ2
η∗ i
|2 if Δ = 0. Again, we obtain that |λγ2

η(1) iλγ2
η(2) i| with Δ is

smaller than |λγ2
η∗ i
|2.

TJ2aEM dynamically adjusts η in the range of 1.0 to 2.0 in a zigzag manner to
gain further speedup. We choose this range because this is the range that the pEM
mapping will always converge. There exist various methods to adjust η . The above
method is one of the simplest but works well in our experiments.

7 Experimental Results

This section reports the experimental evaluation of the triple jump acceleration
methods by comparing them with aEM. We have also implemented three other algo-
rithms: staggered EM (Hesterberg, 2005), SQUAREM (Berlinet and Roland, 2007),
and ε-accelerated EM (Kuroda and Sakakihara, 2006). In our tests on the three al-
gorithms, we found that the performance of staggered EM is similar to aEM, while
SQUAREM and ε-accelerated EM usually took longer to converge. Therefore, for
the sake of conciseness, it is sufficient for us to show the comparison of our proposed
methods with aEM only.

We will compare the numbers of iterations required to converge in our evaluation.
More specifically, the number of iterations is the number of times that an E-step is
executed, which is the most costly step in EM for the probabilistic models used in
our experiments. The ratios of average time for each iteration of EM, TJ 2aEM, and



TJ2aEM for Accelerating the EM Algorithm 19

aEM are almost 1 : 1 : 1 after we optimize the codes. Sometimes, EM takes even
more time than TJ2aEM and aEM for an iteration. The reasons are

1. the overhead for aggressive extrapolation methods in TJ 2aEM and aEM is quite
low, and

2. when an estimate fails to improve enough likelihood, TJ 2aEM and aEM will
discard it and move into the next iteration, without performing the M-step and
aggressive extrapolation.

Therefore, it is sufficient to compare the number of iterations to show the speedup
in our experiments.

7.1 Implementation of the Triple Jump Extrapolations

The EM variants compared in our experiments include EM, pEM, aEM, TJpEM,
TJ2pEM, and TJ2aEM. We will use the number that follows pEM, TJpEM, and
TJ2pEM to indicate their learning rates. For example, TJpEM14 stands for the
TJpEM algorithm with η = 1.4. Algorithm 1 described in Section 2.4 is the template
of all of these algorithms, with Step 5 instantiated by the corresponding extrapola-
tion methods.

Algorithm 2 shows how we implement the extrapolation methods. It is quite
straightforward except that we need to ensure that it is numerically stable. In a dif-
ficult EM problem, γ could be close to one and make 1

1−γ → ∞. An easy fix to this
issue is to define an upper bound for γ so that if its value exceeds this upper bound,
we will use a value within this upper bound instead. κ in Algorithm 2 is the upper
bound of γ . We choose κ = 0.95 in our experiments. On the other hand, when we
have a small γ , its value could be too small to produce any gain by extrapolation. In
this case, if γ is less than a constant lower bound κ ′, we will simply set γ to zero and
skip the extrapolation. The lower bound κ ′ was assigned to 0.5 in our experiments.

The use of κ to avoid unstable extrapolation is quite important in two aspects.
First, it avoids aggressive extrapolation with unreasonable learning rates which is
very likely to yield worse estimates to be discarded. The consequence is less back-
tracks and less time in the search. Second, we observed that when γ is greater than
we expected, we can usually obtain an estimate with higher likelihood by using a
reasonable κ .

Also, we used softmax parameterization for multinomial distributions and Choleski
decomposition for covariance matrices to avoid extrapolating to illegal estimates.
The stopping condition for all experiments is that the improvement of the likelihood
δ < 10−5.
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Algorithm 2 Triple Jump Extrapolation
1: input: initial estimate θa, hop estimate θb, and step estimate θc

2: output: jump estimate θd .

3: γ ← ‖θc−θb‖
‖θb−θa‖ ;

4: if (γ > κ) then γ = κ ;
5: if (γ < κ ′) then γ = 0.0;
6: θd ← θa + 1

1−γ2 (θc− θa) for TJ2aEM and TJ2pEM, or θd ← θb + 1
1−γ (θc− θb) for TJEM

and TJpEM.

7.2 Models and Data for Experiments

The experiments were designed to compare different algorithms under the impact
of different models, data sets, and initial values. We synthesized 100 data sets with
randomly generated initial values from each of the following models:

• Hidden Markov Models (HMM): we considered five-state, 20-symbol HMMs
with randomly generated parameters to synthesize training data sets. Each data
set contains 500 sequences with an alphabet of 100 symbols.

• Bayesian networks (BN): we used the ALARM model (Cooper and Herskovits,
1992), a large real world Bayesian Network with 37 multinomial nodes. We ran-
domly assigned conditional probabilities and synthesized 2,000 examples for
each experimental data set. In addition, we removed values from each data set
with a different missing rate to make data set sparse.

• Mixture of Gaussians (MoG): we also investigated the speedup for MoG with
Gaussian components that overlapped with one another. In particular, we sam-
pled 2,000 cases for each experimental data set using five equally-weighted
Gaussians with means at {(0,0), (0,1), (1,0), (0,−1), (−1,0)} and variances
0.8.

• Semisupervised Bayesian classifier (SB): We used a Bayesian classifier that clas-
sifies instances with 100 10-valued discrete features into 5 categories. 3,000
training cases were generated with 90% unknown labels and missing feature val-
ues.

7.3 Accelerating EM by TJEM

Here we empirically show that TJEM outperforms EM. Note that Hesterberg (2005)
has run experiments for similar algorithms, but his experiments are not as com-
prehensive as ours because he only used a quite simple probabilistic model with a
two-dimensional parameter vector.

Figure 3 shows the results of our performance comparison. For the data sets of the
same type of models, there is one scattered plot to show the required iterations for
convergence for each algorithm. The coordination of each data point is the iterations
of TJEM (the X-axis) and EM (the Y-axis) for the same data set. There are 100 data
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points in each plot, representing the results of 100 trials. A data point lays in the
upper triangle if TJEM converges faster, and in the lower triangle if EM is faster.
We can see that in the 400 trials of all four models, TJEM converges faster for 392
times, and slower only for 8 times. Moreover, in the cases where TJEM is faster, it
can run about 7-fold faster than EM. When TJEM is slower, it is only slightly slower
than EM. The overall speedup for TJEM over EM is about two folds.

We also compare the likelihood of the output parameter vector from TJEM and
EM. An acceleration method is desirable if it converges faster and stops at a local
optimum with a higher likelihood. When TJEM and EM converge to different local
optima, the final likelihood is determined by local optima. When they converge to
the same local optimum, TJEM converges with higher likelihood most of the time.
The reason is that EM may prematurely satisfy the termination condition because
the improvement of the likelihood made by EM is limited in the neighborhood of
θ ∗. In contrast, the extrapolation made by TJEM allows it to obtain a parameter
vector closer to θ ∗ and thus converge with a higher likelihood. This applies to other
TJEM variants and explains why TJEM yields better likelihoods in most trials.

In Figure 3, a circle means that TJEM (the X-axis algorithm) converges with a
higher likelihood, while a box indicates that EM (the Y-axis algorithm) stops with
a higher likelihood score. The size of a data point shows the difference between
their likelihood scores. A small point means that the difference is less than 10−5, a
medium one between 10−3 and 10−5, and a large one more than 10−3. We found
that TJEM converges with a higher likelihood score in 60 trials for HMM, 90 for
ALARM, 83 for MoG, and 60 for SB. Therefore, we can conclude that TJEM can
actually accelerate the EM algorithm.

7.4 Accelerating TJEM by TJpEM

Next, we empirically compare the acceleration performance of the TJpEM and
TJEM algorithms. We have shown analytically that TJpEM can further accelerate
TJEM with a small learning rate η in Section 4.1. Figure 4 shows the results of
our experimental comparison. The scattered plots show that, in 100 trials of HMM
training, TJpEM with η = 1.2 (TJpEM12) and η = 1.4 (TJpEM14) converge faster
than TJEM in 94 and 81 trials, respectively. Also, TJpEM12 is superior to TJEM in
terms of the likelihood for 84 times, and TJpEM14 for 73 times. We obtained sim-
ilar results in the experiments for other probabilistic models with the same settings
(not shown here).

Proposition 4 implies that TJpEM may converge slower than TJEM with a large
η , depending on the eigenvalues of the Jacobian of the original EM mapping of the
problem at hand. We assigned η = 1.6 and 1.8 for TJpEM to compare its acceler-
ation performance with TJEM for HMM training. Figure 4 shows the comparison
results confirming that in most trials, TJpEM converges slower than TJEM with a
large η , as predicted by our theorem.
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(c) Training MoG with TJEM and EM
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(d) Training SB with TJEM and EM

Fig. 3 Scattered plots that compare the TJEM and EM algorithms. TJEM converges faster in al-
most all trials.

7.5 Comparison of TJpEM and TJ2pEM

In Section 4.2, we concluded that because of negative eigenvalues, TJpEM may
converge slower with a large learning rate or a small eigenvalue. We proposed an-
other extrapolation method called TJ2pEM to address the issue. Here we empirically
demonstrate that TJ2pEM can actually alleviate the impact of negative eigenvalues
against TJpEM.

For our empirical demonstration, we considered a toy MoG model with two
weighted one-dimensional Gaussians whose variances are a fixed known constant
(1.0 in this case). Therefore, the parameter vector of our model has three dimensions,
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(d) Training HMM with TJpEM18 and TJEM

Fig. 4 Scattered plots that compare the TJpEM and TJEM algorithms. TJpEM converges faster
when the learning rate η = 1.2 and 1.4 but slower when η = 1.6 and 1.8, as predicted.

two for the means and one for the weight. We chose [1.0,−1.0,0.5] as the param-
eters of our model and sampled 500 data points for our experiment. This model is
selected because it has been studied by Louis (1982), who also derived a general
form of its Jacobian. We used his general form to obtain the Jacobian of our model
and its eigenvalues [0.7812,0.3089,0.2569]. Then we chose a large learning rate
η = 1.9 and the eigenvalues of the Jacobian of the resulting pEM mapping became
[0.5843,−0.3131,−0.4119]. In this way, we have created a test case with negative
eigenvalues.

Then we applied TJpEM and TJ2pEM and plotted ψ1 and ψ3 as a function of
iterations in Figure 5. ψ1 and ψ3 are the transformed parameters along the directions
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Fig. 5 The change of the transformed parameters ψ by the TJpEM and TJ2pEM algorithms during
the training of a toy MoG model. pEM extrapolations are marked by a square, TJpEM by a circle,
and TJ2pEM by a pentagram. An asterisk mark on a data point indicates that the improvement of
likelihood is less than a threshold. TJ2pEM is more stable with a large η because its extrapolations

never fail even for ψ(t)
3 , which is along the direction of ληmin.

of ληmax and ληmin, respectively. In Figure 5, the horizontal line in each chart is the
position of the optimal parameter. A square data point is the parameter generated
by pEM or EM. A circle point is generated by TJpEM, and a pentagram point by
a extrapolation in TJ2pEM. An asterisk mark on a data point indicates that the data
point fails to improve the likelihood more than a given threshold and thus will be
discarded at the next iteration. We can see that the extrapolation of TJpEM failed
six times before it reached the optimal, while all the extrapolations by TJ 2pEM
were successful. The failure of TJpEM was mainly due to the errant direction along
ληmin. More specifically, its extrapolation jumped farther away from θ ∗3 than the
extrapolation along the direction of ληmax.

We also illustrate the impact on likelihood improvement with two large models.
We generated sparse data sets with the ALARM and Bayesian classifier models and
used a learning rate η = 1.9 for both algorithms to train these models. The learning
rate was chosen so that the Jacobian of pEM will contain negative eigenvalues. We
used sparse data sets because the eigenvalues of the Jacobian of EM for a sparse
data set tend to cover a wide range between 0.0 and 1.0, hereby increase the chance
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Fig. 6 Two cases of negative eigenvalues. TJpEM makes consecutive errant jumps to worse esti-
mates, as shown by two circles followed by a circle with a small likelihood. In contrast, TJ2pEM
makes no errant jumps and therefore converges faster than TJpEM.

that we have negative eigenvalues for the Jacobian of pEM. Figure 6(a) and 6(b)
show two example runs of both algorithms for both models and the data sets. The
results show that TJpEM usually jumped to estimates with a much worse likelihood
score, while TJ2pEM moved steadily toward local optima and converged faster.

At last, we compare the acceleration performance of TJ2pEM and TJEM for
training HMM models. Figure 7 shows that TJ2pEM consistently outperforms
TJEM, regardless of the learning rates. Compared with the results of TJpEM in
Figure 4, TJ2pEM is less sensitive to the change of η . Clearly, the results above
confirm that TJ2pEM can alleviate the impact of negative eigenvalues.

7.6 Comparison of TJ2aEM and aEM

In this subsection, we empirically demonstrate the advantage of dynamic learning
rates and compare the acceleration performance of aEM and TJ 2aEM.

We compared the acceleration performance of pEM with an optimal learning rate
and two algorithms that dynamically adjust their learning rates, aEM and TJ 2aEM.
We empirically determined the optimal learning rate η ∗ for a large MoG model as
follows. First, we ran EM with a tiny threshold (1.0e− 11) and kept track of the
parameter vectors searched and their likelihood. It took the EM algorithm 4,885
iterations to converge. We chose θ (501) obtained by EM as the initial value because
it is near the local optimum θ ∗. Then, we tried pEM with various learning rates η
and found that η ∗ = 1.96 is the optimal learning rate.

After that, we ran both aEM and TJ2aEM from θ (501). At each iteration, they
dynamically adjust their learning rates. For aEM, its learning rate is adjusted by
η(t+1) = 1.1η (t), while for TJ2aEM, η is dynamically assigned to 1.2, 1.4, 1.6, or
1.8 in a zigzag manner. With a different η , TJ2aEM will come up with a different
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(d) Training HMM with TJ2pEM18 and TJEM

Fig. 7 Scattered plots that compare the TJ2pEM and TJEM algorithms. TJ2pEM converges faster
in almost all cases regardless of the learning rate.

estimate γη at each iteration, and use the effective learning rate 1
1−γη

to perform
double extrapolation (see Lemma 3). We compared the effective learning rate of
TJ2aEM and the learning rate of aEM at each iteration, as shown in Fig 8. We
can see that aEM increases its learning rate linearly until it reaches a point where
it cannot satisfactorily improve the likelihood, while TJ2aEM adjusts its effective
learning rate irregularly and much aggressively. TJ2aEM may adjust its learning
rate to up to our predefined upper bound many times while aEM only reaches as
high as 14 once and usually stops at 9. In the end, the elapsed iterations for TJ 2aEM
and aEM are 527 and 766, respectively. Both outperform pEM with a fixed optimal
learning rate, which required 1,327 iterations to converge.
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(a) Learning rates used by TJ2aEM
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(b) Learning rates used by aEM

Fig. 8 Trace of learning rates used by TJ2aEM and aEM as a function of iterations. The Figure
also shows that the number of iterations required to converge for TJ2aEM is less than aEM.

Finally, we perform a more comprehensive comparison of TJ 2aEM and aEM
with large models and data sets. Figure 9 shows the comparison between the two
algorithms on the four models. In 100 trials, TJ2aEM converges faster for 69 trials
for HMM, 72 for ALARM, 66 for MoG, and 70 for SB. Besides, TJ 2aEM reaches
estimates with higher likelihood scores in 57 trials for HMM, 88 for ALARM, 57
for MoG, and 58 for SB. The results show that TJ2aEM converges faster and yields
higher likelihood scores more often than aEM in our experiments. In many cases,
two- to three-fold or even higher speedup can be achieved. The results also show
that the performance of TJ2aEM is insensitive to different data distributions and
initial conditions.

8 Conclusions

We have presented TJ2aEM, a fast yet computationally efficient method to accel-
erate the EM algorithm. TJ2aEM uses targeted aggressive extrapolation along with
dynamic learning rate to outperform previous works like aEM that only use one of
the techniques. Moreover, the average time of a TJ2aEM iteration is almost the same
as the average time of an EM iteration, which is extremely useful for accelerating
machine learning problems with probabilistic models.

We constructed TJ2aEM step by step, from the baseline TJEM algorithm, TJpEM,
TJ2pEM, and finally to TJ2aEM. We provided theoretical analysis and experimental
verification of the improvements made at each step:

• we use TJpEM to speed up TJEM, and induce Mη with η for dynamic adjust-
ment;

• we propose TJ2pEM to stabilize TJpEM to reduce the impact of negative eigen-
values when η is large;

• we adopt dynamic learning rates as in aEM to obtain TJ2aEM.
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(d) Training SB with TJ2aEM and aEM

Fig. 9 Comparison of TJ2aEM and aEM. The results show that TJ2aEM usually converges faster
than aEM.

Compared with previous works, we contribute many new ideas to explore further
acceleration. The first is that a mapping whose Jacobian contains negative eigenval-
ues, like pEM, can still achieve speedup. Traditionally, only mappings with semi-
positive definite Jacobians are considered. The second is that negative eigenvalues
can be handled by double extrapolation like TJ2pEM. Finally, integrating several
non-optimal mappings may converge faster than sticking to a fixed optimal map-
ping.
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9 Notation

Notation for Parameter Vectors
θ Parameter vector variable
θ ∗ A parameter vector which is a local maximum of likelihood
θ (t) The output of a search algorithm at iteration t

θ (t)
EM The output of one iteration of EM given θ (t)

θ (t)
η The output of a pEM extrapolation with learning rate η given θ (t)

θ (t)
γ The output of a TJEM extrapolation given θ (t−1), θ (t), and θ (t)

EM

θ (t)
γη The output of a extrapolation in TJpEM with learning rate η given θ (t−1), θ (t), and θ (t)

η

θ (t)
γ2

η
The output of a extrapolation in TJ2pEM with learning rate η given θ (t−1), θ (t), and θ (t)

η

ψ , ψ∗, ψ (t), The transformed parameter vectors on the eigenspace corresponding to θ , θ ∗, θ (t),

and ψ (t)
EM and θ (t)

EM , respectively
θi, θ ∗i , · · · The i-th element of θ , θ ∗, · · · (the same convention for any parameter

vector symbol)
Notation for Mappings

M The EM mapping
M′(θ ∗) and J The Jacobian of M at θ ∗
Q The eigenvectors of J
Λ A diagonal matrix of the eigenvalues of J in the descendent order
λi The i-th eigenvalue of J, which is at position (i, i) of Λ
ρ The spectral radius of J, which is the maximal absolute eigenvalue

in Λ
γ(t) Estimation of ρ at iteration t
Mη , Mγ , Mγη , and Mγ2

η
The pEM, TJEM, TJpEM, and TJ2pEM mapping, respectively

Jη , Jγ , Jγη , and Jγ2
η

The Jacobians of Mη , Mγ , Mγη , and Mγ2
η
, respectively

Λη , Λγ , Λγη , and Λγ2
η

The eigenmatrices of Jη , Jγ , Jγη , and Jγ2
η
, respectively

ληi, λγi, λγη i, and λγ2
η i The i-th eigenvalues of Jη , Jγ , Jγη , and Jγ2

η
, respectively

ρη , ργ , ργη , and ργ2
η

The spectral radii of Jη , Jγ , Jγη , and Jγ2
η
, respectively

γ(t)
η , γ(t)

γ , γ(t)
γη , and γ (t)

γ2
η

Estimation of ρη , ργ , ργη , and ργ2
η
, respectively

ρ◦γ and ρ◦γη The spectral radii of JJγ and Jη Jγη , which are the eigenvalues
in (ΛΛγ ) and (ΛηΛγη ), respectively

Others
η∗ The optimal learning rate for pEM
Symbols with subscript η ∗ The same as those subscripted with η ∗ except that pEM with η ∗

is used
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10 Proofs

Proof. (Proposition 1)
To ensure convergence, it is required that all the eigenvalues lie within the range

(-1,1). The condition holds if ληmax < 1 and ληmin > −1. By Lemma 1, we substi-
tute ληmax with (1−η)+ ηλmax and ληmin with (1−η)+ ηλmin. Then, ληmax < 1
implies that η > 0, and ληmin >−1 implies that η < 2

1−λmin
. �

Proof. (Proposition 2)
Based on Assumption 1, when λmin ≥ 0, the upper bound 2

1−λmin
in Proposition 1

becomes 2. Therefore, pEM must converge if 0 < η < 2. �
Proof. (Lemma 2)

Let η ′= 1

1−γ(t)
η

. The i-th eigenvalue is ληiλγη i = ληi(1−η ′+η ′ληi)= ληi
ληi−γ(t)

η

1−γ(t)
η

.

�
Proof. (Proposition 3)

The convergence rate of pEM is determined by ρ η = max{|ληmax|, |ληmin|}. ρη
is minimized when ληmax = −ληmin. Substituting ληmax and ληmin with Lemma 1,
we obtain that η∗ = 2

2−λmax−λmin
. �

Proof. (Proposition 4)
Let f

γ(t)
η

(λ ) be a function such that f
γ(t)

η
(ληi) = λ◦γη i. Then,

f
γ(t)

η
(λ ) = λ

λ − γ(t)
η

1− γ (t)
η

=
1

1− γ (t)
η

[
(λ − γ(t)

η

2
)2− (γ(t)

η )2

4

]
. (22)

Let ρ◦γη denote the spectral radius of Jγη Jη , then its upper bound supρ◦γη is
the maximum of | f

γ(t)
η

(λ )| with ληmin ≤ λ ≤ ληmax. Since f
γ(t)

η
(λ ) is quadratic, the

upper bound is determined by either f
γ(t)

η
(ληmin), f

γ(t)
η

( γ(t)
η
2 ), or f

γ(t)
η

(ληmax):

supρ◦γη i ≤max
λ
| f

γ(t)
η

(λ )|= max{| f
γ(t)

η
(ληmin)|, | fγ(t)

η
(

γ(t)
η

2
)|, | f

γ(t)
η

(ληmax)|}. (23)

After simple rearrangement, we can obtain specific expressions for the upper bound
according to the ranges that ληmax and ληmin lie within.

max
λ
| f

γ(t)
η

(λ )|=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

| f
γ(t)

η
( γ(t)

η
2 )| if 1−√2

2 γ(t)
η ≤ ληmin,ληmax ≤ 1+

√
2

2 γ(t)
η

| f
γ(t)

η
(ληmax)| if 1−√2

2 γ(t)
η ≤ ληmin,

1+
√

2
2 γ(t)

η ≤ ληmax

| f
γ(t)

η
(ληmin)| if ληmin ≤ 1−√2

2 γ(t)
η ,ληmax ≤ 1+

√
2

2 γ(t)
η

max{| f
γ(t)

η
(ληmin)|, | fγ(t)

η
(ληmax)|} otherwise.

(24)
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Let λ◦γi denote the i-th eigenvalue and ρ◦γ the spectral radius of the Jacobian of
the TJEM mapping. We check the sufficient conditions of η for each possible upper
bounds in Equation (24) to prove that supρ ◦γη < supρ◦γ with a proper η :

1. When f
γ(t)

η
(ληmax)≥ 1+

√
2

2 γ(t)
η , we have supρ◦γη = | f

γ(t)
η

(ληmax)|< | fγ(t) (λmax)|=
supρ◦γ .

2. | f
γ(t)

η
( γ(t)

η
2 )|< | fγ(t) ( γ(t)

2 )| always holds.

3. When η <
1+ γ

4
1−λmin

, we have | f
γ(t)

η
(ληmin)|< | fγ(t) ( γ(t)

2 )| ≤ supρ◦γ .

First, we show that | f
γ(t)

η
(ληmax)| < | fγ(t) (λmax)| when f

γ(t)
η

(ληmax) ≥ 1+
√

2
2 γ(t)

η .

We substitute f
γ(t)

η
(.) and fγ(t) (.) with Equation (22):

| f
γ(t)

η
(ληmax)|= ληmax

ληmax− γ(t)
η

1− γ (t)
η

= ληmax
η(λmax− γ(t))

η(1− γ (t))
= ληmax

λmax− γ(t)

1− γ (t) .

Since ληmax < λmax when 1 < η < 2, the first inequality must hold:

| f
γ(t)

η
(ληmax)|= ληmax

λmax− γ(t)

1− γ (t) < λmax
λmax− γ(t)

1− γ (t) = | fγ(t) (λmax)|.

Therefore, when | f
γ(t)

η
(ληmax)| is the upper bound, supρ◦γη must be smaller than

supρ◦γ .

Then, we show that | f
γ(t)

η
( γ(t)

η
2 )|< | fγ(t) ( γ(t)

2 )|. From Equation (22), we have:

| f
γ(t)

η
(

γ(t)
η

2
)|= (γ(t)

η )2

4(1− γ (t)
η )

=
(γ(t)

η )2

4η(1− γ (t))
.

Similarly, we have | fγ(t) ( γ(t)

2 )| = (γ(t))2

4(1−γ(t))
. In addition, the relation γ (t)

η > 0 also

holds, which implies that γ (t) > γ(t)
η here. Otherwise, supρ◦γη is determined by

max{| f
γ(t)

η
(ληmin)|, | fγ(t)

η
(ληmax)|}. Since 1 < η and γ (t)

η ≤ γ(t), | f
γ(t)

η
( γ(t)

η
2 )| must be

smaller than | fγ(t) ( γ(t)

2 )|:

| f
γ(t)

η
(

γ(t)
η

2
)|= (γ(t)

η )2

4η(1− γ (t))
<

(γ(t))2

4(1− γ (t))
= | fγ(t) (

γ(t)

2
)|.

Therefore, when | f
γ(t)

η
( γ(t)

η
2 )| is the upper bound, supρ◦γη must be smaller than

supρ◦γ .
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At last, we show the sufficient condition of η such that | f
γ(t)

η
(ληmin)|< | fγ(t) ( γ(t)

2 )|
to guarantee that supρ◦γη < supρ◦γ . We solve the following inequality:

| f
γ(t)

η
(ληmin)| = ληmin

λmin− γ(t)

1− γ (t)

< −ληmin
γ(t)

1− γ (t)

<
(γ(t))2

4(1− γ (t))

= | fγ(t) (
γ(t)

2
)|.

We can obtain the sufficient condition of η :

η <
1+ γ

4

1−λmin
,

which is greater than 1. �
Proof. (Lemma 3)

TJ2pEM in Equation (21) is of the same form as pEM in Equation (2) by sub-
stituting the EM mapping with two consecutive pEM mappings, in which the i-th
eigenvalue is (ληi)2. Then, note that 1

1−(γ(t)
η )2

corresponds to η in Equation (21).

Therefore, we can apply Lemma 1 to compute the eigenvalue:

λγ2
η i = 1− 1

1− (γ (t)
η )2

+
1

1− (γ (t)
η )2

(ληi)2 =
(ληi)2− (γ(t)

η )2

1− (γ (t)
η )2

. (25)

�
Proof. (Proposition 5)

As in our discussion in Section 4.1, λγ2
η i can be considered as a quadratic function

of ληi and the upper bound of its spectral radius ργ2
η

is:

supργ2
η
≤max{ (γ(t)

η )2

1− (γ (t)
η )2

,
λ 2

ηmax− (γ(t)
η )2

1− (γ (t)
η )2

,
λ 2

ηmin− (γ(t)
η )2

1− (γ (t)
η )2

}

We can obtain specific expressions for supργ2
η

under different conditions of ληmax

and ληmin:
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supργ2
η
≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(γ(t)
η )2

1−(γ(t)
η )2

if −√2γ (t)
η < ληmin,ληmax <

√
2γ (t)

η

λ 2
ηmax−(γ(t)

η )2

1−(γ(t)
η )2

if −√2γ (t)
η < ληmin <

√
2γ (t)

η < ληmax

λ 2
ηmin−(γ(t)

η )2

1−(γ(t)
η )2

if ληmin <−√2γ (t)
η < ληmax <

√
2γ (t)

η

max{ λ 2
ηmax−(γ(t)

η )2

1−(γ(t)
η )2

,
λ 2

ηmin−(γ(t)
η )2

1−(γ(t)
η )2

} otherwise.

(26)

When ληmin ≤ 1−√2
2 γ(t)

η and ληmax ≤ 1+
√

2
2 γ(t)

η , supρ◦γη is ληmin
ληmin−γ(t)

η

1−γ(t)
η

. In the

same range of ληmax, supργ2
η

is:

supργ2
η

=

⎧⎪⎪⎨
⎪⎪⎩

(γ(t)
η )2

1−(γ(t)
η )2

if −√2γ (t)
η < ληmin < 1−√2

2 γ(t)
η

λ 2
ηmin−(γ(t)

η )2

1−(γ(t)
η )2

if ληmin <−√2γ (t)
η .

Therefore, supργ2
η

is less than supρ◦γη if the following situations hold:

1.
(γ(t)

η )2

1−(γ(t)
η )2

< ληmin
ληmin−γ(t)

η

1−γ(t)
η

when ληmin ≤ 1−√2
2 γ(t)

η , and

2.
λ 2

ηmin−(γ(t)
η )2

1−(γ(t)
η )2

< ληmin
ληmin−γ(t)

η

1−γ(t)
η

when ληmin <−√2γ (t)
η .

For situation 1, we solve the last inequality below:

RHS = ληmin
ληmin− γ(t)

η

1− γ (t)
η

= |ληmin|
|ληmin|+ γ(t)

η

1− γ (t)
η

> |ληmin| γ(t)
η

1− γ (t)
η

>
(γ(t)

η )2

1− (γ (t)
η )2

= LHS.

The last inequality can be simplified as:

|ληmin|>
(γ(t)

η )

1+(γ (t)
η )

>
1
2
.
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Since ληmin < 0, we have that ληmin <− 1
2 < 1−√2

2 γ(t)
η is a sufficient condition such

that
(γ(t)

η )2

1−(γ(t)
η )2

< ληmin
ληmin−γ(t)

η

1−γ(t)
η

.

For situation 2, we start from the LHS. Note that in this case, |ληmin|> γ(t)
η :

LHS =
λ 2

ηmin− (γ(t)
η )2

1− (γ (t)
η )2

=
ληmin + γ(t)

η

1+ γ (t)
η

· ληmin− γ(t)
η

1− γ (t)
η

=
|ληmin|− γ(t)

η

1+ γ (t)
η

∣∣∣∣∣ληmin− γ(t)
η

1− γ (t)
η

∣∣∣∣∣
> |ληmin|

∣∣∣∣∣ληmin− γ(t)
η

1− γ (t)
η

∣∣∣∣∣
= RHS.

Therefore, situation 2 always holds. Combining the two situations, we obtain the

result that supργ2
η

< supρ◦γη if ληmin <− 1
2 and ληmax ≤ 1+

√
2

2 γ(t)
η . �




