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Abstract The Expectation-Maximization (EM) algorithmis one of the most popular

algorithms for parameter estimation from incomplete data, but its convergence can

be slow for some large-scale or complex machine learning problems. Extrapolation

methods can effectively accelerate EM, but to ensure stability, the learning rate of

extrapolation must be compromised. This paper describes the TJ2aEM algorithm, a
targeted aggressive extrapolation method that can make much more aggressive ex-

trapolations without causing instability problems. We show that for a wide variety
of probabilistic models, TJ2aEM can converge many times faster than other accel-
eration methods under different data distributions and initial conditions. In addition

to EM, TJ?aEM can also be applied to other bound optimization methods, including
generalized iterative scaling, non-negative matrix factorization and concave-convex

procedure.
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1 Introduction

The Expectation-Maximization (EM) algorithm (Dempster et al., 1977; McLachlan
and Krishnan, 1997) is one of the most popular algorithms for parameter estimation
of probabilistic models from incomplete data. Suppose we want to estimate the pa-
rameter vector 6 of aprobabilistic model to maximize the log-likelihood L(6) from
an incomplete data set. The EM algorithm solves the problem by iteratively search-
ing for alocal optimal solution 6* on the data likelihood surface with the guarantee
that the likelihood of the estimates increases monotonically.

When applied to complex machine learning problems with large data sets and
alarge number of parameters to estimate, the EM agorithm may converge slowly.
If the data sets also contain a large proportion of missing data or there are a large
number of hidden variables in the model to be imputed, the convergence of EM
can be even slower. Previously, Bauer et al. (1997) proposed the parameterized EM
(PEM) agorithm to accelerate EM for Bayesian Networks, and Luis and Ledlie
(1999) applied pEM for Mixtures of Gaussians. The pEM algorithm accel erates the
convergenceof the EM algorithm by extrapolating along the direction to the EM es-
timate with afixed learning rate 1. They showed that pEM convergesfaster than EM
and the convergence is guaranteed when 1 < n < 2. But pEM with a learning rate
within thisrangeis usually too conservative to gain significant speedup. Hammerlin
and Hoffmann (1991) derived an optimal learning rate for pEM-like extrapolation
but in practice it is difficult to obtain this learning rate because it depends on the
maximal and minimal eigenvalues of the Jacobian of the EM mapping.

Compared to other numerical optimization methods, conservative extrapolation
methods have the advantagethat it is easy to implement for any complex probabilis-
tic models and easy to integrate with any existing software package, but is slow due
to the lack of informative guidance. In fact, the extrapolation can be made more ag-
gressive to further accelerate the EM a gorithm (Salakhutdinov and Roweis, 2003;
Hesterberg, 2005; Kurodaand Sakakihara, 2006; Berlinet and Roland, 2007). How-
ever, since a large learning rate may lead to likelihood decreasing and thus failure
of convergence, an aggressive extrapolation must be interleaved with conservative
ones to keep the search stable. Therefore, aggressive extrapolation methods must
dynamically adjust their learning rates. Also, to avoid incurring too much overhead,
the adjustment must be efficient. Salakhutdinov and Roweis (2003) proposed adap-
tive overrelaxed EM (aEM), which increases 1) by a constant ratio at every iteration
if the pEM extrapolation increasesthe likelihood and resets iy to one otherwise. Hes-
terberg (2005) proposed staggered EM, which estimates the maximal eigenval ue of
the Jacobian of the EM mapping to obtain the upper bound of 1 and then rotates
among learning rates within the bounded range in a predefined order or at random.
Since these methods confine the range of the adjustment, their extrapolation may
not be aggressive enough to achieve substantial speedup in some cases.

An alternative to aggressive extrapolation is targeted aggressive extrapolation
methods, which at each iteration compute an informed aggressive extrapolation that
targets the local optimum directly. Usualy this is achieved by combining two or
more consecutive EM estimates. A well-known method is to use estimated eigen-
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values as the learning rates based on two consecutive EM estimates (Schafer, 1997).
To be precise, we will call this method the triple jump EM method (TJEM) (Huang
et a., 2005) in this paper and will describe it in detailsin Section 3. TIEM can be
derived from Aitken acceleration and is aimed at approximating the Jacobian by
the eigenvalue of its slowest dimension, which dictates the globa rate of conver-
gence (Dempster et al., 1977). Since eigenvalues are scalars, both estimation and
extrapolation can be computed as efficiently as pEM and aEM. Staggered EM is
an extension of TJEM. More recently, Kuroda and Sakakihara (2006) proposed the
e-accelerated EM based on the vector € algorithm (Wynn, 1962), which was orig-
inally designed to accelerate a slowly convergent sequence. Varadhan and Roland
(2004) proposed the SQUAREM algorithm. The ideais to extrapolate to a parame-
ter vector on the straight line across two consecutive EM estimatesin the parameter
space such that this parameter vector is estimated to be the closest to the local opti-
mum. Though these methods can make very aggressive extrapolations, they share a
common disadvantage that they favor the acceleration of slow dimensions but may
drift away from the optimum along the dimensions already close to the optimum.
In contrast, aEM and staggered EM have an advantage here because by applying
large and small learning rates by turns, both fast and slow dimensions can be cov-
ered. Section 6.1 explainswhy aEM can be effective. Favoring slow dimensionstoo
much may also cause instability. Therefore, addendato keep the search stable, such
astherestarting test for SQUAREM (Berlinet and Roland, 2007), are required.

This paper describes the TJ?aEM algorithm, a targeted aggressive extrapolation
method with no stability problem. Unlike previous targeted extrapolation methods,
TJFaEM rotatesits extrapolationsto cover all dimensions and applies double extrap-
olation that provesto stabilize the impact of aggressive extrapolation on fast dimen-
sions. As aresult, extrapol ations can be made very aggressive to achieve substantial
acceleration for the EM algorithm. Experimental results show that TJ?aEM extrap-
olates more aggressively and converges faster than other acceleration methods. In
many cases, two- to three-fold or even higher speedup over other accel eration meth-
ods can be achieved for awide variety of probabilistic models under different data
distributions and initial conditions. Furthermore, since TJ2aEM is derived from the
fixed-point iteration and Aitken acceleration, TJ2aEM can be directly applied to all
of the bound optimization methods defined in (Salakhutdinov and Roweis, 2003),
including EM, generalized iterative scaling, non-negative matrix factorization and
concave-convex procedure.

This paper is organized as follows. Section 2 reviews pEM and aEM and their
convergence properties. Section 3 reviews the TJEM agorithm, which serves as
the baseline algorithm for us to derive TJ?aEM. From Section 4 to 6, we describe
our step by step derivation of TJ?aEM. Section 4 describes the TIpEM algorithm,
which substitutes the EM mapping in TIEM with the pEM mapping. We identify
conditions when TJpEM will outperform TJEM, but the conditions also imply that
when we choosealargelearning rate, TJPDEM may converge slower than TJEM. Our
solution to the issue is described in Section 5 and is materialized in the TI?pEM al-
gorithm. The idea is to apply the double extrapolation method to stabilize the ill
effect due to a large learning rate. Finally, in Section 6, we describe the TJ%aEM
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algorithm, avariant of TI?pEM with dynamically adjusted learning rates. We show
that dynamically adjusting the learning rate can outperform sticking with afixed op-
timal learning rate, which also explainswhy aEM can outperform pEM. We present
experimental verifications of our analytical results and report experimental compar-
isons of the acceleration performance of the above algorithms in Section 7. In the
last section, we summarize the conclusions.

2 Accelerating EM by Extrapolation

This section reviews the pEM algorithm and the aEM algorithm. We also present a
generic algorithmic framework that can integrate many extrapolation based variants
of EM while guarantee convergence. Meanwhile, we introduce the notation in this
paper. See Appendix A for the complete notation convention used.

2.1 Parameterized EM

The EM algorithm updates a given parameter vector of a probabilistic model with
the guarantee that the data likelihood will be monotonically increased. Let Q2 be
a parameter space of a probabilistic model, and 6 be a n-dimensional parameter
vector over Q2. An EM mapping M : Q — Q ensuresthat L(M(6)) > L(6). Starting
from an initial parameter, say 69, the EM agorithm applies M to 89 iteratively
until convergence. Let V) denote the output of EM at iteration t, we have 8 1) =
MDY = ... = M{(99), where M!(6(?) denotes applying the EM mapping to
0(© for t times. We will abbreviate M(0-1) as 6% Y. Note that 6®) and 6%,
arethesameinthe EM algorithm, but may be differentin EM variants. Whent — oo,
the EM algorithm convergesto alocal optimum 6 * that satisfies 6* = M(6*).

The parameterized EM (pEM) algorithm (Bauer et al., 1997) accelerates the EM
agorithm by using the pEM mapping M, : Q — Q at each iteration:

Mp(0)=6+n(M(0)—0). (1)

That is, pEM extrapolates along the direction from 6 to M(6) with alearning rate
n. Then, the parameter vector at iterationt of pEM is.

00 =My (8Y) = 0 1 n(gf, Y — oY), )

Similar to EM, we abbreviate M, (0¢-V) as 6" V. 1f n = 1, ' isequivalent to
(t-1)
Oy -

The choice of n affects the rate of convergence of pEM. We summarize some
convergence properties of EM and pEM in Section 2.2 to show the acceleration of
EM by pEM.
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2.2 Convergence Properties of EM and pEM

Suppose that we apply the EM agorithm from 6 ¥ in the neighborhood of 6* and
EM convergesat 6*. Assuming that the EM mapping M is differentiable. Then we
can apply alinear Taylor expansion of M around 6 * so that

0D —M(6Y) ~ 0" +M'(6")(6W — 6*) = 6* + (6 — %), ?3)

where J abbreviates M’ (6*), the Jacobian of EM at 6*. We can apply M to 6
consecutively for h timesto obtain 6 M. From Equation (3), we have

o ~ 6+ "6 — 6). (4)

The eigen decomposition of the Jacobian J at 6 * is

A ... 0
J=Q| o .o |[QT=Q4Q ", Q)
0 A/n

whereQ = [vy, . .., Vy] containsthe eigenvectorscorrespondingto eigenvaluesi, .. ., An,
respectively. Then, J" in Equation (4) becomes:

Al... 0
Jh:Q 0. 0 Qfl:QAthl.
0...AD

Since 9N — 9* when h — o in EM, it is required that limy,_... J" = 0 to ensure
convergence. It follows that limy, ... Aih =0, andthus, —1 < Aj < 1foralli.
Therate of convergence of M is determined by the largest eigenvalue of J, which
is the slowest one among all eigenvalues to convergeto 0. More generaly, the rate
is determined by the spectral radius p of J when the eigenvalues can be negative.
The spectral radius p is defined by max{|Ameax|, | Amin| }, Where Amax and Anmin are the
greatest and smallest eigenvalues of J. In previous works, the following assumption
on the eigenvalues of J is usually expected to be true, which impliesthat p = A yax:

Assumption 1 The eigenval uesof the Jacobian of an EM mappingliein [0, 1)(Dempster
et al., 1977; McLachlan and Krishnan, 1997).

The convergence rate of pEM can be expressed in terms of the eigenvalues of
EM. The relation between the eigenvalues of EM and pEM can be derived by dif-
ferentiating M, (6*) with respect to 6. By Equation (1), we have

In =ML (67) = 1+n(M'(6") 1)
=(1-ml+nJ
= Q[(1-m)I+nAlQ Y, (6)
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where J,, denotes the Jacobian of Mj, a 6%, and | the n x n identity matrix. We
describe the results from Equation (6) in Lemma 1.

Lemma 1. Thei-th eigenvalue of J;;, denoted by A, is alinear combination of 1.0
and A, the eigenvalue of J (Hesterberg (2005), for example):

Ani = (1—n)*1.0+nAi. @)

Besides, the eigenvectors of J and J;,; are the same.

EM and pEM have the same set of local optima. Although EM and pEM share
the same 6*, not every 6* can be reached. Thisis also a convergence issue of the
fixed point iteration methods (Burden and Faires, 1988).

Next, we derive the range of n that ensures convergence of pEM based on
Lemmal. Therangeis determined by the minimal eigenvalue of J,,.

Proposition 1. Let Aymax and Aymin denote the maximal and minimal eigenvalue of
Jy. The pEM algorithmwith 1) convergesif 0 < 1 < —5—.

The Jacobian is not the same for different local maxima, neither are the eigenval -
ues. For each 6* that EM can converge to, pEM with a large learning rate n might
only converge to some of them. The next corollary describes a strict range for
such that convergenceis guaranteed for pEM.

Proposition 2. Within the neighborhood of 6*, the pEM algorithm must converge
too*if0<n <2

The bound in Proposition 2 is too tight because pEM might convergewith n > 2
when Ain > 0. For example, suppose that the smallest eigenvalue among all Jaco-
biansis 0.1, the upper bound can be relaxed to 2.22, greater than the upper bound
given in Proposition 2.

Proposition 3. The optimal learning rate n* for pEM is W{M](Hammerlin
and Hoffmann, 1991).

Although the mapping and Jacobian of pEM can be expressed via those of EM,
we still assign new symbolslike M;, and J,; for pEM. That is because pEM isaso a
fixed point method, and we can directly use M, to replace M in Aitken acceleration.

2.3 Adaptive Overrelaxed EM

An example of dynamic learning rate methods is the adaptive overrelaxed EM
(aEM) agorithm(Salakhutdinov and Roweis, 2003). The aEM algorithm dynami-
caly adjusts the learning rate in pEM by n ) = 1.1n®D for iteration t if the like-
lihood is increased more than a threshold at iteration t — 1. Otherwise, aEM resets
nt+1 = 1.0 to guarantee convergence.
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The motivation of aEM is that dynamically adjusting 1 increases the chance of
using the optimal learning rate of pEM. In fact, our experimental results in Sec-
tion 7.6 show that aEM is superior than pEM with even the optimal learning rate
because of aggressive extrapolation.

The staggered EM is another aggressive extrapol ation method proposed by Hes-
terberg (2005). The difference of staggered EM and aEM is that, staggered EM
estimates the possible range of 11 every ten iterations, and then choose ten values
within the range as the next ten learning rates. We have empirically compared stag-
gered EM and aEM, and found that they are competing with each other. Therefore,
we will only use aEM as the representative in our experiments.

2.4 Backtracking for Convergence Guarantee

Accelerating EM by extrapolation with dynamically adjusted learning rates is not
guaranteed to converge because the learning rates may exceed the upper bound
given in Proposition 1. To ensure convergence, the aEM algorithm applies asimple
yet effective method, which drops the resulting parameter vector of the extrapola-
tion 61 if it fails to improve the likelihood and replaces it with eét,\} the result

obtained by the original EM algorithm. Since we must obtain (-)ét,\}' in order to com-
pute the extrapolation, this method incurs tiny overheads while achieves monotone
increasing of the likelihood. Therefore, the aEM algorithm is guaranteed to con-
verge.

This backtracking method can be generalized to integrate many EM variants
based on extrapolation. The aEM algorithm can be considered as integrating two
EM variants, EM (for abbreviation, EM variantsinclude the original EM agorithm)
and pEM with dynamic learning rates (Salakhutdinov and Roweis, 2003). The pEM
algorithm is the default approach. When pEM fails to improve the likelihood, the
result of the EM agorithm is used instead.

When there are many EM variants, we can use Algorithm 1, which searches
for a parameter vector that satisfies the condition of monotone increasing of the

likelihood. Supposethat there are K variants that generate K candidates 6." ... 6"
at iteration t. Candidates are ordered by the aggressiveness of their extrapolation
methods. é,?) with the largest K is always generated by the original EM mapping
because it is the least aggressive one. Then, the likelihood L(6.") for each 6" is

computed one by one with the E-step in the order of k. Thefirst éét) that successfully
increases the likelihood more than a threshold & becomesthe final 6 V), and the M-
step is performed to compute 8. At last, 6©) ... 6® and 6%, are used to generate
6" 6" the candidates for the next iteration. It is clear that Algorithm 1 is
guaranteed to converge because it ensures monotone increasing of the likelihood.
The worst case computational cost of Algorithm 1is O(TKE), where T is the
iteration times, K is the number of EM variants, and E is the computational cost to
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compute the extrapolation and perform an E-step. In the best case, the most aggres-
sive extrapolation always leads to a parameter vector that improves the likelihood
and thus at each iteration, only one E-step will be performed. In the worst case,
however, al extrapolation methods fail to improve the likelihood and the algorithm
reduces to the original EM agorithm. In this case, K extrapolations and K E-steps
will be performed for each extrapolation method. Therefore, integrating an addi-
tional variant must be justified by its effectiveness of reducing the number of re-
quired iterations, that is, improving the convergencerate. Usually we only consider
to have K < 3. The triple jump methods to be presented in this paper will be inte-
grated with EM or pEM in Algorithm 1 as step 5 to generate new parameter vectors
by extrapolation.

Algorithm 1 Integrating EM Variants

1: Randomly initialize 6, LL = —eo.
2: repeat at iterationt (starting from 0)

6® = 6" with the minimal k such that L(6") — LL > & (use E-step to compute the likeli-
hood).

@

4 LL=1(8Y), and use M-step to compute 6.
5. Generate 6", 68" from 6(©,. .. 0® and 6, for the next iteration.
6: until no 6" satisfiesL(6\")) —LL > 5.

3 TJEM: Baseline Targeted Aggressive Extrapolation Algorithm

In this section, we start by reviewing Aitken acceleration for the EM agorithm, then
we present the triple jump EM method (TJEM) as the baseline method to be im-
proved. Note that TJEM is not brand-new: it followsthe work of Schafer (1997) and
Hesterberg (2005) for targeted extrapolation, and follows Algorithm 1, the generic
algorithmic framework of Salakhutdinov and Roweis (2003), to discard estimates
that fails to improve enough likelihood. We named this method as triple jump be-
causeits search path is similar to the hop, step and jump phasesin triple jump.

3.1 Aitken Acceleration for EM

TheEM agorithmisequivalent to solving 6 * by afixed-pointiteration method (Bur-
den and Faires, 1988). That is, EM looks for a parameter vector that satisfies
6 = M(0) by iteratively substituting 6 on the RHS with that on the LHS until con-
vergence. Therefore, we can use the Aitken accel eration method to speed up EM.
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The multivariate version of Aitken acceleration (Louis, 1982; McLachlan and
Krishnan, 1997) for EM can be derived as follows. We can express 6 * as

+ 2 t+h+1 t+h)). (8)

Supposethat 61 isin the neighborhood of 6 *. Based on Equation (4), @ (1) —
6N can be written as:

gtrhil) _ glt+h) [G*Jﬁ] (9(t+1)_9*)} _ [6*_’_Jh(9(t)_6*) =Nt —gO),

9)
Applying Equation (9) in Equation (8) gives the multivariate Aitken acceleration:

+Z‘J t+1 ))
= 6<‘>+(l —J)‘l(eék% -0, (10)

sincetheeigenvaluesof J arebetween 0 and 1, from Assumption 1. In Equation (10),
we replace 02 with 6%} to emphasizethat 6+ is obtained by applying an EM
mapping to 6 here.

The multivariate version of Aitken acceleration requiresto compute the Jacobian
of the EM mapping matrix, which can be intractable for complex modelswith ahigh
dimensional parameter space. Aitken accel eration also has drawbacksincluding that
it may not always convergeand that it may be numerically unstable (Jamshidian and
Jennrich, 1997).

3.2 Estimating Eigenvalues of Slowest Dimension

Targeted aggressive extrapolation updates a new estimate based on previous EM
estimates. We start from Equation (10) of Aitken acceleration. We substitute J with
Equation (5), and then (I — J)’1 in Equation (10) becomes:

-1

(1-3)"=[Ql-A]QY

=Qll-A1'Q™
_LM 0

=Q| o . o |Q*" (11)
0 ...

With the eigen decomposition of J, we can map 6 * in Equation (10) from the origi-
nal parameter space to the eigenspace spanned by Q:
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* — * — — — t
y =Q o~ QoY+ QL1 -9) (o — o)
_ — _ t
= QoY [ - AT QoS —0")
=y = AT v ).

The relation between y* and 6* can also be written as:
0" = YIVi+ -+ YpVn,

where y;* withi = 1,...,n denotes the i-th transformed parameter vector y * in the
eigenspace. Along with Equation (11), we can observe that the multivariate Aitken
acceleration is in fact a series of univariate Aitken acceleration along the direction
of vi:

v~ w4 - v, (12)

1
The global rate of convergence of the EM agorithm is defined as the limit of

the ratio of the difference between the next estimated parameter vector to the local
maximum and the difference between the current estimated parameter vector to the
local maximum:

(t+1) _ p=*
R:tlimR(U _ im 19 ol (13)

= 60— 6]
Dempster et a. (1977) have shown that R = Amax, thelargest eigenvalue of J. There-
fore, instead of computing the Jacobian, we can simplify Aitken acceleration for
EM by replacing every eigenvalue A; with a single value Y such that y¥) is an
approximation of Amax at thet-th iteration:

e+ — g +(1—}/(t))_1(9§,&| 10 (14)

Note that (1 — )~ in Equation (14) can be written as Qdiag(1— y®)1Q L.
Compared with Equation (11), we can observe that the extrapolation assumes A =
¥ for al i and performs Aitken accel eration accordingly.

We can estimate ¥ as follows. Let 6 = M(8® 1)) and 61 =M(61). We
have, by Equation (9):

JOW — 1))~ g+l _ gt) — Qét'&l —_o®

Then, we substitute J with y©). Let y0 (0® — 9t-1) = 1) — 6®), we have

® _ o)
o _ _l6gu—6Y]

Since A;’s are non-negative in the EM algorithm by Assumption 1, our estimation
of ¥ is defined by (Hesterberg, 2005):
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o _ 165u—6Y ]
16® — oD

(16)

y¥) is primarily dominated by the eigenvalues of the slowest dimension in terms
of distance to y*. It can be shown that ast — oo, ¥V < Aax asymptotically in the
neighborhood of 6*(Hesterberg, 2005). However, when 6 () is not in the neighbor-
hood of 6%, y“) could be greater than 1.0 and results in unstable extrapolation. We
will show how to handleit in Section 7.1.

3.3 The TIEM algorithm

The instantiation of Algorithm 1 that integrates the estimation of y (i.e., Equa-
tion (14)) and the original EM algorithm will be referred to as the TIEM algorithm.
Other variants to be described later in this paper will be named in asimilar manner.

Since our estimation applies two previous estimates of the EM algorithm to ob-
tain y“), the TIEM agorithm invokes Equation (16) at every other iteration, if all
extrapol ations successfully improve the likelihood. Starting from 6 (© in the neigh-
borhood of 6%, we need to apply EM to obtain 6% = 6(Y), again to obtain 6.5,
and then we can apply Equation (14), the triple jump extrapolation, to obtain 6 (2.
To apply the extrapolation again, we cannot simply use 8 (Y, 6 and Géf,l) in Equa-
tion (16) to obtain (@), because in Equation (16), 6 ) must be obtained by the EM
agorithm too so that the ratio is a reasonable estimate of the eigenvalue. There-
fore, to apply the extrapolation again, we need to apply EM to obtain 6 2) = 6(3),
again to obtain Gé?,\’,l) and then we can apply the extrapolation to obtain 6 (), and so
on. Therefore, the TIEM agorithm applies the extrapolation at the 2i-th iteration,
i=12,..., assuming that all extrapolations successfully improvethe likelihood.

If the improvement is less than a threshold, the extrapolation result will be dis-
carded and the result of EM will be used asthe current estimate 6 (). Thetriplejump
extrapolation can be resumed using 8 -, 6 and 93}, or postponed for another
iteration.

4 TIpEM: Accelerating TJIEM by pEM Mapping

One idea to accelerate TIEM is that, since TIEM performs EM mapping and tar-
geted extrapolation by turns, we may have faster convergenceif the EM mappingis
replaced by the pEM one because pEM can converge faster than EM. The idea can
be implemented by replacing M with My, in the derivation of TIEM, resultingin the
triple jump parameterized EM (TJpEM) algorithm.
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Let 6V =M, (6V)). Following the derivation n Section 3.2, we have the estima-
tion of the eigenvalue yf,t) for the slowest dimension based on the pEM mapping:

t) _ pt)
w _ 16y —6%|
= o0 —pr B 0
In this way, we obtain the targeted extrapolation in TIpEM as:
6(t+l) _ G(I) + (l— ,}/1(70)—1(61(10 _ e(t)) (18)

TheTJpEM agorithmisan instantiation of Algorithm 1 describedin Section 2.4,
with K = 3 EM variants. In the TIpEM algorithm, élm is computed by the targeted

extrapolation, 65" by pEM with afixed learning rate 17, and 6 by the original EM
agorithm.

4.1 Convergence Properties of TIpEM

During its execution, the TJpEM a gorithm usually switches between the targeted
extrapolation and pEM extrapolation. Therefore, the convergence properties of
TJPEM are determined by the Jacobian of the composition of the two mappings
at 6%

My, (M (67))My (67) = M3, (67)M;,(67) = Iy, Jy.
Since Jy, = QA Q * and J; = QA,Q 1, we have J,, Iy = QAy, AyQ ! and the
eigenval ues are the diagonal elements of Ay, A,. Lemma 2 gives the eigenvaluesin

Lemma 2. The i-th eigenvalue of the Jacobian of My, oM, at 6* with estimated

spectral radius yf,t) is

i =)

A .
ni l_ %(f)

To comparethe spectral radii of TIEM and TJpEM, we assume that Equation (7),
the relation between the eigenvalues for the Jacobians of the EM and pEM map-

pings, holds for the estimated spectral radii Y and yf,t):
v =1-n+nyY.
Now, consider a Jacobian of the EM mapping with 19 distinct eigenvalues i,
i=1,...,19. Assumefurther that A; = 0.05xi. It followsthat Apin = 0.05and Ajyax =
0.95. Suppose TJEM estimates Amax as 7Y = 0.83, an inaccurate approximation.

Then according to Equation (7), if we choose 1 = 1.2 for TJpEM, we will have
Anmin, Anmax, and ¥ to be —0.14, 0.94, and 0.796, respectively, and —0.52, 0.92,
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and 0.728, respectively, if we choose n = 1.6. Figure 1(a) illustrates the absolute
eigenvalues of TIEM and TJpEM with these different learning rates. \We can clearly
observe the tendency that, with the growth of n,

e the peak of the concave curvesin the middle in Figure 1(a) decreases gradually,
and
e theend of the left tailsin Figure 1(a) increases drastically.

Figure 1(a) illustrates that TJpEM can convergefaster TJEM with a proper learning
rate (e.g. n = 1.2), while can converge slower or even diverge with a large (e.g.
n =16).

Then, we change Amin and keep the other eigenvalues unchanged to see how
sensitive the spectral radiusisto Ay and plot theresult in Figure 1(b), which shows
that when Apin < 0.03, the spectral radiusincreases linearly as A decreases. The
result shows that the spectral radius could also be influenced by tiny difference of
lmin-

At last, we derive an upper bound of 1 for TJpEM to convergefaster than TIEM.

Y
Proposition 4. Within the neighborhood of 6*, TIpEM with n < 1jrim

verge faster than TIEM, under the assumption that y,(P =1-n+ny"Y.

Can con-

2 Absolute Eigenvalues of TJEM and TIpEM Max Absolute Eigenvalue of TIpEM withn = 1.2 and 0.01 < kmm <0.05

——TJEM 1
—=—TIPEM n=1.2
——TIpEM 1=1.6

1, y‘| for TIEM)

v

A,

0.5]

o , . . o
0 5 10 15 20 0 0.01 0.02 0.03 0.04 0.05
Index of Eigenvalues (i, from 1 to 19) Ain (from 0.01 to 0.05)

(8) Composite absolute eigenvalues of TIEM (b) Composite spectral radii of TIpEM with
and TJpEM n = 1.2 and different Amin

Fig. 1 We assume that A; = 0.05xi,i = 1,...,19. Accordingly, we plot the composite absolute
eigenvalues of the extrapolation in TIpEM in (&), where the peak value of a curve is the spectra
radius. (a) shows that in this example, TIPEM has a smaller composite spectral radius than TIEM
with n = 1.2, but alarger one with n = 1.6. Then, we change Ain and keep the other eigenvalues
unchanged to see how sensitive the spectral radius p.y, isto Amin and plot the result in (b), which
shows that when Amin < 0.03, py, increases linearly as it decreases.
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4.2 Impact of Negative Anmin against TIpEM

Proposition 4 implies that TIJpDEM converges faster than TJIEM with a proper learn-
ing rate, but when the learning rate exceeds the proper range, TJpEM might con-
verge slower. Besides, Amin can aso influence the spectral radius, especially when
Amin — 0. Thisisusually because alargelearning rate and atiny minimal eigenvalue
may result in a negative eigenvalue A min for pEM.

A negative eigenval ue bringsimpact against TJpEM, especialy when thevalueis
lessthan —1. In this case, the extrapol ation may bring the search away fromthelocal
optimum and fail to improve the likelihood. Recall that to guarantee convergence,
Algorithm 1 will discard an extrapolation result if it fails to improve the likelihood.
If this occurs often, the rate of convergence will suffer. Consequently, the impact
of negative Aymin against TIPEM is undesirable. A solution for TJpEM is to use
a small n. However, it is difficult to determine how to adjust n accordingly and
this conservative solution may rarely produce any significant accel eration. Another
solution, which will be described in the next section, is the TJ?pEM algorithm.
TFPPEM ensures that all eigenvalues including the minimal one are non-negative,
and thus alleviates the impact of negative eigenvalues against TJpEM.

5 TJ’pEM: Stabilizing TIpEM by Double Extrapolation

The TFpEM algorithm applies the double extrapolation method that combines two
PEM extrapolations into one to prevent the Jacobian from having any negative
eigenvalue. The key idea is that, when our mapping is M 2, its Jacobian J,27 will be
QAZQ ! and A7 will contain no negative eigenvalue. Consequently, the deviation
between the real and estimated el genvalues would be smaller.

Similar to Equation (8), we substitute the EM mapping with M, but apply My,
twice at atime for every current estimate to obtain:

0" — G(tfl) + i (Mrzlh/+2(6(t71)) - G(tfl)) (19)
=0

= Q(t*]-) + i (e(tJrZh/Jrl) _ 6(t+2h/71)).
h=0

Note that the superscript t still indicates the number of iterations that pEM has been

applied.
Based on Equation (4), 6 t+2"+1) _ g(t+27~1) can e written as:

9(t+2hl+l) _ 6(t+2h/—1) ~ J%h/(e(t-‘rl) _ e(t—l)).

Substituting Equation (19) with the above approximation, we have:
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o — gt-1 4 i (O D) _ gltsan-1)) (20)
H=0

~ 0D i 32 (9tHD) _ (-1
=0

— 0t 4 _J%)—l(e(t-&-l) —p(t-1)
— -1 (I _J%)—l(e)gt) _ G(t—l))
Still, we use y,(,t) asin TJpEM to approximate J,, and obtain the extrapolation in
TFpEM asfollows:
1

Note that instead of extrapolating from 6 (), TPpEM extrapolatesfrom 6 (-1 at the
t-thiteration.

e(tJrl) _ e(tfl) + (er(]t) . G(tfl)). (21)

5.1 Convergence Properties of TI2pEM

The extrapolation of TI2pEM is quite different from that of TIJpEM. At iteration t
where 6 = 9,?_1), the extrapolation in TIpEM uses -1, 9 and 6,(,0 to esti-
mate y,(;), and then extrapolates from 6 ) along 0,(10 — 6, The mapping in TIpEM
from 61 to 6D js a pEM mapping to 6 and a triple jump extrapolation to
6t TFPpEM as given in Equation (21) estimates y,st) in the same way as TJpEM,
but it extrapolates from 6 (t~2) along the direction of 6, — 6(-1). The mappingin
TFPpEM isadirect mapping from 6 =1 to 6(t+1). |n other words, if the extrapola-
tion is a success, we consider it as one update that takes two iterations.
The next lemma gives the eigenvalues of the Jacobian of the TI2pEM mapping.

Lemma 3. Thei-th eigenvalue M,Z,i of the Jacobian of the TI2pEM mapping is:

)2 ()2
1- (Yn )2

We use the same examplein Section 4.1 to show the eigenval ues of TJ?pEM with
different learning rates 1 in Figure 2(a). We can clearly observethat in thisexample,
with the growth of 7,

e Aymin hasamuchlessimpact on the spectral radiusthan that of TIpEM, wherethe
spectral radius of the Jacobian of the TIpEM mapping may increase drastically
dueto asmall Aymin;
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(a) Absolute eigenvalues of TPpEM  (b) Spectral radii of TPpEM with n = 1.8
and different Anin

Fig. 2 With the same example asin Figure 1, (&) shows the absol ute eigenvalues of T¥pEM with
n = 1.4, 1.6, and 1.8. The curves have no left tail and look like the curve of TJEM in Figure 1. (b)
shows that changes to Amin will not affect the spectral radius Py here, suggesting that TPpEM is

barely affected by Amin.

e TJFpEM with alarge n tends to have a smaller spectral radius than that with a
small 1, in contrast of TJpEM.

At last, we derive the conditions under which TJ?pEM can converge faster than
TJIPEM.

Proposition 5. Given the same learning rate 7, TI2pEM can converge faster than
TIPEM if Annin < — 2 and Anmax < 2270,

5.2 Elimination of Impact of Negative A,min

Proposition 5 and Figure 2(a) suggest that TJ2pEM will successfully aleviate the
impact of negative eigenvalues A,min of TJIPEM due to alarge learning rate . An-
other factor that influences A min iS Amin, as described in Section 4.2. Here we dis-
cuss how Amin may affect Aymin With an example.

Figure 2(b) plots the spectral radius of the Jacobian of TJ2pEM with n = 1.8in
the same way as Figure 1(b). We can observe that, when A nin decreases from 0.05
to 0.01, the spectral radiusis unchanged. Unlike TIpEM, TJ?pEM isbarely affected
by the change of Amin. Hence, TPpEM will achieve a more stable accel eration per-
formance than TJpEM.
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6 TJ2aEM: Accelerating TJ?pEM by Dynamic Learning Rate

The TFaEM algorithm is the same as the TJ?pEM except that 17 in TJ?aEM is dy-
namically adjusted. Since TI?pEM is more stable than TIPEM, TI?pEM is expected
to have much less ill effects on the eigenvalues than TJpEM does with dynamic
learning rates for My,. In this section, we explain why dynamic learning rates may
help and analyze the convergence properties of TJ2aEM.

6.1 Success of aEM

In this subsection, we use an example to show the advantage of dynamically ad-
justing the learning rate n over a fixed optimal learning rate n *. In particular, we
will show that using two dlightly different learning rates for two consecutive pEM
iterations will achieve a higher speedup than using the optimal learning rate n * at
every iteration. Let n™® = n*+ A and n® = n* — A, where A is an arbitrary con-
stant between 0 and 1. Let M1 and M be the pEM mappings with the learning rates
n® and n@, respectively. Their Jacobians are J; = QA1Q ! and J, = QA1Q 1,
respectively. and the eigen matrix of J>J; is A2A1. Hence, thei-th eigenvaluein J,J1
is:
(1=nW+nW2)(L-n? +n2)

={1-n"+ n*ll AL=2)A=n"+n"Ai+A(1- X))
= (Api = AL =4))(Aysi +A(1—4i))
= (Api)? = (A(L— 1))
(l *|) .

Therefore, for each direction along the eigenvector vj, the eigenvalue of J»J; is
smaller than that of (J,+)2. It follows that pEM with two different learning rates
n@ and @ may converge faster than pEM with a fixed optimal learning rate n *
in the neighborhood of the local optimum.

We can extend the above result to use several different A in turns. Though the
optimal learning rate n* is not known in practice, we can try a wide range of 11 so
that it is virtually equivalent to have several different A with n*. This provides an
explanation of why the aEM agorithm (Salakhutdinov and Roweis, 2003) performs
better than pEM with n*.

6.2 Derivation of TJ2aEM

The TFaEM agorithm appl ies dynamic 1 to TI?pEM for further acceleration. It is
clear that by applying ) and (2 to Equation (25), we can establish that the spec-
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tral radius of TJaEM will be smaller than that of TJ?pEM, implying that TJ?aEM
may converge faster than TJ?pEM in the neighborhood of the local optimum.

|7Ly12]<1)ily12]<2)i|
(@) = Aywmex)? . (Ap@i)? = (Ay@max)?
1- (%,(l)max)2 1- (An<2>max)2

(Ayi + Ay wmax) (A, @i + Ay @max)
(1+An<1)max)(l+ln<2>max)
_ (Apsi +Anrmax — A(2— A — Amax)) (Ansi + Aprmax + A (2= Ai — Amax))
(1+ Ap=max — A(1— Amax)) (1 + Ansmax + A (1 — Amax))
(A + Aprmax)? — (A(2— 2 — Amew))?
(1+ Agemax)? — (A(1— Amex))?
< (i A max)? — (A (1 — Aex) )2
T (I Agprmax)? = (A(1 - Amax))?
(Ansi + An-max)?
o (1+)~n*maX)2 '

_ 12 _ . . | o _
m?’i(l)il?’f](z)d = MY%*" if A = 0. Again, we obtain that M’ﬁﬂ)'l’ﬁ@)" with A is
smaller than |42 |2,

n*

TJFaEM dynamically adjusts 17 in the range of 1.0 to 2.0 in a zigzag manner to
gain further speedup. We choose this range because this is the range that the pEM
mapping will always converge. There exist various methods to adjust . The above
method is one of the simplest but workswell in our experiments.

7 Experimental Results

This section reports the experimental evaluation of the triple jump acceleration
methods by comparing them with aEM. We have al so implemented three other algo-
rithms: staggered EM (Hesterberg, 2005), SQUAREM (Berlinet and Roland, 2007),
and e-accelerated EM (Kuroda and Sakakihara, 2006). In our tests on the three al-
gorithms, we found that the performance of staggered EM is similar to aEM, while
SQUAREM and e-accelerated EM usually took longer to converge. Therefore, for
the sake of conciseness, it is sufficient for usto show the comparison of our proposed
methods with aEM only.

Wewill comparethe numbersof iterationsrequired to convergein our evaluation.
More specifically, the number of iterationsis the number of times that an E-step is
executed, which is the most costly step in EM for the probabilistic models used in
our experiments. The ratios of average time for each iteration of EM, TJ%aEM, and
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aEM are dmost 1: 1: 1 after we optimize the codes. Sometimes, EM takes even
more time than TJ?aEM and aEM for an iteration. The reasons are

1. the overhead for aggressive extrapolation methods in TJ2aEM and aEM is quite
low, and

2. when an estimate fails to improve enough likelihood, TJaEM and aEM will
discard it and move into the next iteration, without performing the M-step and
aggressive extrapolation.

Therefore, it is sufficient to compare the number of iterations to show the speedup
in our experiments.

7.1 Implementation of the Triple Jump Extrapolations

The EM variants compared in our experiments include EM, pEM, aEM, TJpEM,
TFpEM, and TJ?aEM. We will use the number that follows pEM, TJpEM, and
TFpEM to indicate their learning rates. For example, TIJpPEM14 stands for the
TJpEM agorithmwith 1 = 1.4. Algorithm 1 described in Section 2.4 isthe template
of al of these algorithms, with Step 5 instantiated by the corresponding extrapola-
tion methods.

Algorithm 2 shows how we implement the extrapolation methods. It is quite
straightforward except that we need to ensure that it is numerically stable. In a dif-
ficult EM problem, y could be close to one and make l% — oo, An easy fix to this
issue is to define an upper bound for y so that if its value exceeds this upper bound,
we will use a value within this upper bound instead. k in Algorithm 2 is the upper
bound of y. We choose x = 0.95 in our experiments. On the other hand, when we
have asmall vy, its value could be too small to produce any gain by extrapolation. In
thiscase, if yislessthan a constant lower bound k’, we will simply set y to zero and
skip the extrapolation. The lower bound x’ was assigned to 0.5 in our experiments.

The use of x to avoid unstable extrapolation is quite important in two aspects.
First, it avoids aggressive extrapolation with unreasonable learning rates which is
very likely to yield worse estimates to be discarded. The consequenceis less back-
tracks and less time in the search. Second, we observed that when y is greater than
we expected, we can usually obtain an estimate with higher likelihood by using a
reasonable k.

Also, we used softmax parameterization for multinomial distributionsand Chol eski
decomposition for covariance matrices to avoid extrapolating to illegal estimates.
The stopping condition for all experimentsisthat theimprovement of thelikelihood
5 <1075
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Algorithm 2 Triple Jump Extrapolation
input: initial estimate 05, hop estimate 6y, and step estimate 6,
output: jump estimate 6.

V< Top—6al

if (y> k) then y=x;

if (y < «’) then y=0.0;

Oy — 02+ rlyz(eC — 6,) for TPaEM and TPpEM, or 6y «— 6+ lfly(ec — 6y) for TIEM
and TJpEM.

7.2 Models and Data for Experiments

The experiments were designed to compare different algorithms under the impact
of different models, data sets, and initial values. We synthesized 100 data sets with
randomly generated initial values from each of the following models:

e Hidden Markov Models (HMM): we considered five-state, 20-symbol HMMs
with randomly generated parameters to synthesize training data sets. Each data
set contains 500 sequences with an alphabet of 100 symbols.

e Bayesian networks (BN): we used the ALARM model (Cooper and Herskovits,
1992), alarge real world Bayesian Network with 37 multinomial nodes. We ran-
domly assigned conditional probabilities and synthesized 2,000 examples for
each experimental data set. In addition, we removed values from each data set
with a different missing rate to make data set sparse.

e Mixture of Gaussians (MoG): we also investigated the speedup for MoG with
Gaussian components that overlapped with one another. In particular, we sam-
pled 2,000 cases for each experimental data set using five equally-weighted
Gaussians with means at {(0,0), (0,1), (1,0), (0,—1), (—1,0)} and variances
0.8.

e Semisupervised Bayesian classifier (SB): We used aBayesian classifier that clas-
sifies instances with 100 10-valued discrete features into 5 categories. 3,000
training cases were generated with 90% unknown labels and missing feature val -
ues.

7.3 Accelerating EM by TIEM

Here we empirically show that TJEM outperforms EM. Note that Hesterberg (2005)
has run experiments for similar algorithms, but his experiments are not as com-
prehensive as ours because he only used a quite simple probabilistic model with a
two-dimensional parameter vector.

Figure 3 showstheresults of our performance comparison. For the data sets of the
same type of models, there is one scattered plot to show the required iterations for
convergencefor each algorithm. The coordination of each datapoint istheiterations
of TJEM (the X-axis) and EM (the Y-axis) for the same data set. There are 100 data
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points in each plot, representing the results of 100 trials. A data point lays in the
upper triangle if TIEM converges faster, and in the lower triangle if EM is faster.
We can see that in the 400 trials of all four models, TJEM converges faster for 392
times, and slower only for 8 times. Moreover, in the cases where TIEM is faster, it
can run about 7-fold faster than EM. When TJEM isslower, it isonly slightly slower
than EM. The overall speedup for TJEM over EM is about two folds.

We aso compare the likelihood of the output parameter vector from TJEM and
EM. An acceleration method is desirable if it converges faster and stops at a local
optimum with a higher likelihood. When TJEM and EM convergeto different local
optima, the final likelihood is determined by local optima. When they converge to
the same local optimum, TIEM converges with higher likelihood most of the time.
The reason is that EM may prematurely satisfy the termination condition because
the improvement of the likelihood made by EM is limited in the neighborhood of
6*. In contrast, the extrapolation made by TJEM allows it to obtain a parameter
vector closer to 8* and thus converge with a higher likelihood. This applies to other
TJEM variants and explainswhy TJEM vyields better likelihoodsin most trials.

In Figure 3, a circle means that TJEM (the X-axis algorithm) converges with a
higher likelihood, while a box indicates that EM (the Y-axis algorithm) stops with
a higher likelihood score. The size of a data point shows the difference between
their likelihood scores. A small point means that the differenceis less than 10>, a
medium one between 102 and 105, and a large one more than 103, We found
that TJIEM converges with a higher likelihood score in 60 trials for HMM, 90 for
ALARM, 83 for MoG, and 60 for SB. Therefore, we can conclude that TJEM can
actually accelerate the EM agorithm.

7.4 Accelerating TIEM by TIpEM

Next, we empirically compare the acceleration performance of the TJpEM and
TJEM agorithms. We have shown analytically that TIpEM can further accelerate
TJEM with a small learning rate n in Section 4.1. Figure 4 shows the results of
our experimental comparison. The scattered plots show that, in 100 trials of HMM
training, TIPEM with n = 1.2 (TIJpEM12) and n = 1.4 (TIJpEM 14) converge faster
than TIEM in 94 and 81 trials, respectively. Also, TIPEM 12 is superior to TIEM in
terms of the likelihood for 84 times, and TJpEM 14 for 73 times. We obtained sim-
ilar results in the experiments for other probabilistic models with the same settings
(not shown here).

Proposition 4 implies that TIpEM may converge slower than TJIEM with alarge
7, depending on the eigenval ues of the Jacobian of the original EM mapping of the
problem at hand. We assigned 1 = 1.6 and 1.8 for TJpEM to compare its acceler-
ation performance with TJEM for HMM training. Figure 4 shows the comparison
results confirming that in most trials, TJpEM converges slower than TIEM with a
large n, as predicted by our theorem.
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Fig. 3 Scattered plots that compare the TIEM and EM algorithms. TJEM converges faster in al-
most all trials.

7.5 Comparison of TIpEM and TJ?pEM

In Section 4.2, we concluded that because of negative eigenvalues, TIpEM may
converge slower with a large learning rate or a small eigenvalue. We proposed an-
other extrapolation method called TJ?pEM to address the issue. Herewe empirically
demonstrate that TI?pEM can actually alleviate the impact of negative eigenvalues
against TIJpEM.

For our empirical demonstration, we considered a toy MoG model with two
weighted one-dimensional Gaussians whose variances are a fixed known constant
(1.0inthiscase). Therefore, the parameter vector of our model hasthree dimensions,
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Fig. 4 Scattered plots that compare the TIpEM and TJEM algorithms. TJpEM converges faster
when the learning rate n = 1.2 and 1.4 but slower when 1 = 1.6 and 1.8, as predicted.

two for the means and one for the weight. We chose [1.0,—1.0,0.5] as the param-
eters of our model and sampled 500 data points for our experiment. This model is
selected because it has been studied by Louis (1982), who also derived a general
form of its Jacobian. We used his general form to obtain the Jacobian of our model
and its eigenvalues [0.7812,0.3089,0.2569]. Then we chose a large learning rate
n = 1.9 and the eigenval ues of the Jacobian of the resulting pEM mapping became
[0.5843,—0.3131, —0.4119]. In this way, we have created a test case with negative
eigenvalues.

Then we applied TIPEM and TJ?pEM and plotted y; and 3 as a function of
iterationsin Figure 5. w1 and 3 are the transformed parameters along the directions
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Fig.5 The change of the transformed parameters y by the TJpEM and TFpEM algorithms during
the training of atoy MoG model. pEM extrapolations are marked by a square, TJpEM by acircle,
and TPpEM by a pentagram. An asterisk mark on a data point indicates that the improvement of
likelihood isless than athreshold. TPpEM ismore stable with alarge ) because its extrapolations

never fail even for yi", which is along the direction of Aynin.

of Apmax @nd Aymin, respectively. In Figure 5, the horizontal line in each chart isthe
position of the optimal parameter. A square data point is the parameter generated
by pEM or EM. A circle point is generated by TJpEM, and a pentagram point by
aextrapolation in TpEM. An asterisk mark on a data point indicates that the data
point fails to improve the likelihood more than a given threshold and thus will be
discarded at the next iteration. We can see that the extrapolation of TIJpEM failed
six times before it reached the optimal, while al the extrapolations by TJ2pEM
were successful. The failure of TIJpEM was mainly due to the errant direction along
Anmin. More specifically, its extrapolation jumped farther away from 65 than the
extrapol ation aong the direction of A max.

We aso illustrate the impact on likelihood improvement with two large models.
We generated sparse data sets with the ALARM and Bayesian classifier modelsand
used alearning rate n = 1.9 for both algorithms to train these models. The learning
rate was chosen so that the Jacobian of pEM will contain negative eigenvalues. We
used sparse data sets because the eigenvalues of the Jacobian of EM for a sparse
data set tend to cover awide range between 0.0 and 1.0, hereby increase the chance
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Fig. 6 Two cases of negative eigenvalues. TIJpDEM makes consecutive errant jumps to worse esti-
mates, as shown by two circles followed by acircle with a small likelihood. In contrast, TZpEM
makes no errant jumps and therefore converges faster than TIpEM.

that we have negative eigenvalues for the Jacobian of pEM. Figure 6(a) and 6(b)
show two example runs of both algorithms for both models and the data sets. The
results show that TIpEM usually jumped to estimates with a much worse likelihood
score, while TJ*pEM moved steadily toward local optima and converged faster.

At last, we compare the acceleration performance of TI2pEM and TJEM for
training HMM models. Figure 7 shows that TJ?pEM consistently outperforms
TJEM, regardless of the learning rates. Compared with the results of TIJpEM in
Figure 4, T?pEM is less sensitive to the change of 1. Clearly, the results above
confirm that TJ?pEM can alleviate the impact of negative eigenvalues.

7.6 Comparison of TJ2aEM and aEM

In this subsection, we empirically demonstrate the advantage of dynamic learning
rates and compare the acceleration performance of aEM and TJ?aEM.

We compared the accel eration performance of pEM with an optimal learning rate
and two agorithms that dynamically adjust their learning rates, aEM and TJ2aEM.
We empirically determined the optimal learning rate n* for alarge MoG model as
follows. First, we ran EM with a tiny threshold (1.0e— 11) and kept track of the
parameter vectors searched and their likelihood. It took the EM agorithm 4,885
iterations to converge. We chose 6 (°°1) obtained by EM as the initial value because
it is near the local optimum 6*. Then, we tried pEM with various learning rates 1
and found that n* = 1.96 is the optimal learning rate.

After that, we ran both aEM and TJ?aEM from 0390, At each iteration, they
dynamically adjust their learning rates. For aEM, its learning rate is adjusted by
ntD = 1.1n®, while for TaEM, 7 is dynamically assigned to 1.2, 1.4, 1.6, or
1.8 in a zigzag manner. With a different n, TJ?aEM will come up with a different
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Fig. 7 Scattered plots that compare the TPpEM and TJEM agorithms. TPpEM converges faster
in almost all cases regardless of the learning rate.

estimate ¥, at each iteration, and use the effective learning rate ﬁ to perform

double extrapolation (see Lemma 3). We compared the effective learning rate of
TFaEM and the learning rate of aEM at each iteration, as shown in Fig 8. We
can see that aEM increases its learning rate linearly until it reaches a point where
it cannot satisfactorily improve the likelihood, while TJ?aEM adjusts its effective
learning rate irregularly and much aggressively. TJ2aEM may adjust its learning
rate to up to our predefined upper bound many times while aEM only reaches as
high as 14 once and usually stops at 9. In the end, the elapsed iterations for TJ?aEM
and aEM are 527 and 766, respectively. Both outperform pEM with a fixed optimal
learning rate, which required 1,327 iterations to converge.
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Fig. 8 Trace of learning rates used by TPaEM and aEM as a function of iterations. The Figure
also shows that the number of iterations required to converge for T¥aEM is less than aEM.

Finally, we perform a more comprehensive comparison of TJ?aEM and aEM
with large models and data sets. Figure 9 shows the comparison between the two
algorithms on the four models. In 100 trials, TJ2aEM converges faster for 69 trials
for HMM, 72 for ALARM, 66 for MoG, and 70 for SB. Besides, TJ?aEM reaches
estimates with higher likelihood scores in 57 trials for HMM, 88 for ALARM, 57
for MoG, and 58 for SB. The results show that TJ?aEM convergesfaster and yields
higher likelihood scores more often than aEM in our experiments. In many cases,
two- to three-fold or even higher speedup can be achieved. The results also show
that the performance of TJ?aEM is insensitive to different data distributions and
initial conditions.

8 Conclusions

We have presented TJ?aEM, a fast yet computationally efficient method to accel-
erate the EM algorithm. TJ?aEM uses targeted aggressive extrapolation along with
dynamic learning rate to outperform previous works like aEM that only use one of
the techniques. Moreover, the averagetime of a TJ%aEM iteration is almost the same
as the average time of an EM iteration, which is extremely useful for accelerating
machine learning problems with probabilistic models.

We constructed TJ?aEM step by step, from the baseline TIEM algorithm, TIpEM,
TFpEM, and finally to TJ?aEM. We provided theoretical analysis and experimental
verification of the improvements made at each step:

e we use TJPEM to speed up TJEM, and induce M, with n for dynamic adjust-
ment;

e we propose TJ?pEM to stabilize TIpEM to reduce the impact of negative eigen-
valueswhen 1 islarge;

¢ we adopt dynamic learning rates asin aEM to obtain TJ2aEM.
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Fig. 9 Comparison of TPaEM and aEM. The results show that TaEM usually converges faster
than aEM.

Compared with previous works, we contribute many new ideas to explore further
acceleration. Thefirst isthat a mapping whose Jacobian contains negative eigenval -
ues, like pEM, can still achieve speedup. Traditionally, only mappings with semi-
positive definite Jacobians are considered. The second is that negative eigenvalues
can be handled by double extrapolation like TJ?pEM. Finally, integrating several
non-optimal mappings may converge faster than sticking to a fixed optimal map-
ping.
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9 Notation

Notation for Parameter Vectors

6 Parameter vector variable

0" A parameter vector whichisaloca maximum of likelihood

(210 The output of a search algorithm at iteration t

ol The output of one iteration of EM given 6

o The output of apEM extrapolation with learning rate n given 6

630 The output of a TJEM extrapolation given 6 3, 9®), and 6%

65}3 The output of a extrapolation in TJPEM with learning rate n given 6 (=2, 6 and G,St)
6%) The output of a extrapolation in TI2pEM with learning rate n given 61, M) and 9,30

v, v*, U, Thetransformed parameter vectors on the eigenspace correspondingto 6, 6 *, 61,
and w,(zt,& and eét,\),l respectively

Mn, My, Myﬂ’ and MYrZ;
In, 3y Iy, and J e
An, Ay, Ay, and A
Ani, lyi, lyni, and Ay,%i
P Py: Py, @ py2
wn oy and g

poy and poy,

6i, 6, --- Thei-thelement of 6, 6%, - -- (the same convention for any parameter
vector symbol)

Notation for Mappings

M The EM mapping

M’(6*) and J The Jacobian of M at 6*

Q The eigenvectors of J

A A diagonal matrix of the eigenvalues of J in the descendent order

Ai Thei-th eigenvalue of J, which isat position (i,i) of A

p The spectral radius of J, which is the maximal absolute eigenvalue
inA

o Estimation of p at iteration t

The pEM, TJEM, TJpEM, and TJ?pEM mapping, respectively
The Jacobians of My, My, My, , and M2, respectively

The eigenmatrices of Jy, Jy, Jy,,, and J},% , respectively

Thei-th eigenvaues of Jy,, Jy, Jy,,, and J},% , respectively

The spectral radii of Jp, Jy, Jy, , and J},% , respectively
Estimation of py, py, py,, and Py respectively

The spectral radii of JJ, and J, Jy,,, which are the eigenvalues
in (AAy) and (An Ay, ), respectively

Others

n*

Symbols with subscript n*

The optimal learning rate for pEM
The same as those subscripted with n* except that pEM with n*
isused
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10 Proofs

Proof. (Proposition 1)

To ensure convergence, it is required that al the eigenvalueslie within the range
(-1,1). The condition holds if A max < 1 and Aymin > —1. By Lemma 1, we substi-
tute Aymax With (1 —1) + NAmax and Aymin With (1 —1) + nAmin. Then, Apmax < 1

impliesthat n > 0, and Aymin > —1impliesthat n < - T

Proof. (Proposition 2)
Based on Assumption 1, when Apin > 0, the upper bound —5— |n Proposition 1
becomes 2. Therefore, pEM must convergeif 0 < n < 2. D

Proof. (LemmaZ2)

N0

Letn’:1—l<t).Thei—theigenvaIueis)Lni/lyni :lni(l—n’+n%ni):lnill”'—z';.
7 %

n
O

Proof. (Proposition 3)

The convergence rate of pEM is determined by p, = max{|Aymax|, | Aqminl}. pn
is minimized when Apmax = —Aymin. Substituting Aymax and Aymin With Lemma 1,
Proof. (Proposition 4)

Let f%?) (1) be afunction such that f%%” (Ani) = Aoy,i- Then,

kw2 W )
fyﬁ(’l)*’ll_%(]t) T10 A= == (22)

Let poy, denote the spectral radius of Jy, Jy, then its upper bound supp.y, is
the maximum of \fym (A)] with Apmin < A < Apmax. Since fy@ (1) is quadratic, the
n n

(t)

upper bound is determined by either f ) (nmin), .0 (%), or f 0 (Anma):
n n n

(t)
)i
PP < max| {1y (4)] = ma{ [ Ramin) | 0 ()L | g0 (s} (23)
n n n

After simple rearrangement, we can obtain specific expressions for the upper bound
according to the ranges that A ymax and Aymin lie within.

(t)

[0 (%) 12520 < A A < 2321
max|f ()| = |fy,‘7‘> (Anmax)| if 15291 < lnmmv Y29 < Ay
e [0 ()| i Amin < 521 A < 52

max{| fyﬁ,” (Anmin)l; | fyﬁ,” (Aymax)|}  otherwise.
(24)
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Let A,y denote the i-th eigenvalue and p ., the spectral radius of the Jacobian of
the TJIEM mapping. We check the sufficient conditions of 1 for each possible upper
boundsin Equation (24) to provethat supp .y, < supp.y With a proper n:

1. When fyg) (}anax) > 1+_2\/z,yr(]t) ,we havesuppoy,, = |fy§,t) ()anax)| < |fy<t) ()Lmax)| =
SupPoy-
y(t) V(t)
2. |f%<71>(%)| < |f,0 (%7)| dways holds.

1+7

t)
3. Whenn < 12—, we ha\/e\f%(;) (Anmin)| < |f¢t>(%7)| < SUPPoy-

n n
We substitute fy@ (.) and f0 () with Equation (22):
n
Anmax — %Eit) 1 (Arax — YY) Arvex — 7

g0 ()| = Ao =0 = AL “ S = Ay
|yr<]t>(nmax)| nmax 10 MR (1 — ) ] — (0

Since Anymax < Amax When 1 < n < 2, thefirst inequality must hold:

Arven — Y Arven — Y
1—y0 Amax = 70

[0 (Anmax)| = Anmex = [0 (Amax)|-
n

Therefore, when |fy<t> (Anmex)| is the upper bound, supp.y, must be smaller than
n
SUPPoy-

(1)
Then, we show that |fy<t) (7”7)| <t (Q)L From Equation (22), we have:
n

”l(ﬁ”: W2 )
w2 T 4y T a0y

Similarly, we have \f}m(@ﬂ = %. In addition, the relation y,(f) > 0 also

holds, which implies that y® > y,(,t) here. Otherwise, supp.y, is determined by
(t)
max{| f s (Anmin)|, | f 1) ()|} Since 1< 1 and 1) < 4, |1 0 ()| must be

smaller than [ f. 4, (137)]:

(t) (t)\2
W () (Y92 7
0 (5l = 4n(1" 0y <2y~ el

0]
Therefore, when |fy<t)(y"7)| is the upper bound, supp.y, must be smaler than
n
SUPPoy-
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Atlast, we show the sufficient condition of n such that | fy@ (Agmin)| < |0 (@M
to guarantee that supp.y, < supp.y. We solve the followi ngni nequality:

- —)/(t)
I 40 (Aamin)| = lnminnfn_iy(t)
a
< —lnminl_ ’}/(t)
(y")?
4(1—yM)
(t)
= Wt)(%)l-
We can obtain the sufficient condition of n:
1+]
T

whichisgreater than1l. 0O

Proof. (Lemma3)

TJFpEM in Equation (21) is of the same form as pEM in Equation (2) by sub-
stituting the EM mappi ng with two consecutive PEM mappings, in which the i-th
eigenvalue is (Ayi)2. Then, note that —2— ( 7 corresponds to 1 in Equation (21).

Therefore, we can apply Lemma 1 to compute the eigenvalue:
1 1 2 ) - ()2
n) = T T e,

-2 1-()? 1- ()2

Api=1- (25)

O

Proof. (Proposition 5)
Asinour discussionin Section4.1, M,Z,i can be considered as aquadratic function

of A,i and the upper bound of its spectral radius Py is:

(A2 Mirex— 1)) Moin— ()2
-2 1= 1=
We can obtain specific expressions for Supp.2 under different conditions of A max

Supp,z < max{

}
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N0
1(( <t)>> it — \/é%(lt) < Anmin, Apmax < \/i%(f)

A2rax (1))2 ]
o ( <(ty;_> it — V2% < Agnin < V21 < Anmx
Supp,2 < 22 )2
o A < —V2H) < A < V21
2 (t) 2 (t)\2
{ P <(1y") ,}L”"‘” (n )* }  otherwise.
1-(m )2 1—(711 )?
(26)
When Anmin < 2527 and Apmax < £52), suppeyy, i Aymin "i“'” ' 10 the

same range of Aymax, Supp,2 is:

<y§7">2

. if — \/é}/n < }Lr’mn < \[2

e
7'7;"'” f " i if Agmin < — V2.

supp,2 =

Therefore, supp,2 isless than supp.y, if the following situations hold:

wf}))z

()2
n= (%

PR
< Anmin ”i“'”/" when Anmin < 1= fy,(,),and
n

(t) (t)
' )?  dqmin—Ty
7 < Aamin= Tr

1(<t

For situation 1, we solve the last inequality below:

I (t)
RHS = Anminiﬂmm yn

Thelast inequality can be simplified as:

("))

(t)

|Anmin| > 1
1+ (Yn )

-
>
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Since Anmin < 0, we have that Aymin < —% < 1*—2‘[2)/,(,” is a sufficient condition such
that (V’S]t))z < . )anin_yr(;)
)z T )

For situation 2, we start from the LHS. Note that in this case, |4 ymin| > y,(,t):

2 (t)\2
LHS = ’1”""”_%’7 )
1-(n )2
Anpin -7 Arin — 74
1—|—}/,(7t) 1—y,(7t)
_ |7anin|—%(1t) lnmin—%st)
1—&—%(10 1—y,(,t)
PR (
S
n
= RHS.

Therefore, situation 2 always holds. Combining the two situations, we obtain the
result that Supp,2 < SUPPoy, if Apmin < —3 ad Apmex < L2, 0 o





