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Abstract
The triple jump extrapolation method is an effective approximation of Aitken’s acceleration that

can accelerate the convergence of many parameter learning algorithms, including EM and gener-
alized iterative scaling. It has two options — global and componentwise extrapolation. Empirical
studies showed that neither can dominate the other in all cases and it is not known which one is
better under what condition. In this paper, we investigate this problem and conclude that, when the
Jacobian is (block) diagonal, componentwise extrapolation will be more effective. We derive two
hints that allow us to determine the block diagonality. The first hint is that when we have a highly
sparse data set, the Jacobian of the EM mapping for training a Bayesian network will be block diag-
onal. The second hint is that the block diagonality of the Jacobian of the GIS mapping for training
CRF is negatively correlated with the strength of feature dependencies. We empirically verify these
hints with controlled and real-world data sets. The results show that our hints can accurately pre-
dict which method will be superior. The results also show that both global and componentwise
extrapolation can provide substantial acceleration. In particular, when applied to train large-scale
CRF models, the GIS variant accelerated by componentwise extrapolation not only outperforms its
global extrapolation counterpart, as our hint predicts, but can also compete with limited-memory
BFGS (L-BFGS), the de facto standard for CRF training, in terms of both computational efficiency
and F-scores.

Keywords: Bayesian Networks, Conditional Random Fields, Expectation-Maximization (EM)
Algorithm, Generalized Iterative Scaling, Triple-Jump Extrapolation

1. Introduction

Aitken’s acceleration is one of the most commonly used method to speed up fixed-point iteration
methods (Burden and Faires, 1988). Since many machine learning and pattern recognition algo-
rithms can be considered as a fixed-point iteration method, we can apply Aitken’s acceleration to
accelerate these algorithms. For example, the expectation-maximization (EM) algorithm (Dempster
et al., 1977) can be considered as a fixed-point iteration method. We can apply Aitken’s accelera-
tion to speed up its convergence (Louis, 1982; McLachlan and Krishnan, 1997). Another example
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is the generalized iterative scaling (GIS) algorithm (Darroch and Ratcliff, 1972), which is a clas-
sical method to train exponential probabilistic models. However, GIS usually converges slowly,
especially when applied to train a conditional random field model (CRF) (Lafferty et al., 2001) for
large-scale entity recognition tasks, where a CRF model may contain millions of parameters to be
estimated from tens thousands of sentences. Again, since GIS can also be considered as fixed-point
iteration, we can apply Aitken’s acceleration to speed up its convergence. In fact, all bound op-
timization methods (Salakhutdinov et al., 2003; Salakhutdinov and Roweis, 2003), including EM,
GIS, non-negative matrix factorization (NMF) and concave-convex procedure (CCCP), can be ac-
celerated by Aitken’s acceleration.

Basically, the idea of Aitken’s acceleration is to extrapolate according to previous and current
estimation of the parameters to be learned. However, the multivariate version of Aitken’s accel-
eration requires to compute or approximate the Jacobian of the mapping matrix of the fixed-point
iteration, which may not have a closed form and can be intractable even for a very simple model.
Many variants of Aitken’s acceleration have been proposed to approximate the Jacobian. One of
the methods is the triple jump extrapolation method for the EM algorithm (Huang et al., 2005;
Hesterberg, 2005; Schafer, 1997). The idea is to estimate the extrapolation rate by considering the
previous two consecutive estimates of the parameter vectors. The triple jump extrapolation method
can effectively accelerate the EM algorithm by substantially reducing the number of iterations re-
quired for the EM algorithm to converge. Another benefit of the triple jump method is that it can
be easily integrated with existing EM packages for any probabilistic model. Though the triple jump
method, as all variants of Aitken’s acceleration, may not monotonically increase the likelihood, we
can apply the idea proposed by Salakhutdinov and Roweis (2003) to resolve the issue. The idea is to
discard the extrapolation if it fails to improve the likelihood and use the estimate obtained without
the extrapolation. In this way, convergence can be guaranteed (Huang et al., 2005).

The triple jump method can extrapolate the parameter vector with a fixed scalar extrapolation
rate for all dimensions or a vector of extrapolation rates for different dimensions. We refer to the for-
mer approach as global extrapolation and the latter as componentwise extrapolation. We tried them
for a variety of probabilistic models and found that in general, global extrapolation yields a better
performance for the EM algorithm, but there are cases where componentwise extrapolation yields
very high speedup (Huang et al., 2005). When applied to accelerate CRF training, both method can
be many orders of magnitude faster than GIS, with componentwise extrapolation further outper-
forming global extrapolation by many folds. But for real-world applications that involve millions
of parameters, componentwise extrapolation requires millions of bytes more of memory space to
store extrapolation rates. Therefore, though it is possible to empirically determine which method
to apply, it is important to understand when and why componentwise extrapolation is superior and
necessary in advance.

In this paper, we investigate when componentwise extrapolation should be preferred and when
should not. We conclude that, when the Jacobian of the fixed-point iteration mapping is (block)
diagonal, componentwise extrapolation should be preferred. Otherwise, global extrapolation should
be applied. Previously, Schafer (1997, chap. 3) suggested that for the EM algorithm, when the
global and componentwise rates of convergence are different, componentwise extrapolation should
be preferred. However, he did not formally justify this claim and how to determine when the rates
may be different. In fact, we can show that when the mapping is (block) diagonal, the rates will be
different and our conclusion follows.
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However, it is difficult to determine the block diagonality of the Jacobian of a given model. In
this paper, we identify analytical conditions when a Jacobian will be (block) diagonal. The analyti-
cal conditions imply hints for us to easily determine which extrapolation method should be applied
without actually computing their Jacobians. We identify two such hints and verify them empirically
with controlled and real-world data sets. The first hint is that when we have a highly sparse data set,
the Jacobian of the EM mapping for training a Bayesian network will be more likely to be block
diagonal and therefore, componentwise extrapolation will be more effective. Otherwise, global ex-
trapolation should be used. The second hint is that the block diagonality of the Jacobian of the
GIS mapping for training CRF is negatively correlated with the strength of feature dependencies.
To verify the second hint and demonstrate the usefulness of our findings, we investigate the entity
recognition problem in natural language processing, an application of CRF which usually involves
millions of parameters with tens thousands of training examples. Applying GIS is impractical here
because it is prohibitively slow for large data sets (Malouf, 2002; Sha and Pereira, 2003). Our hint
predicts that componentwise extrapolation will be more effective than global extrapolation. Ex-
perimental results over three large-scale real-world data sets confirm our prediction, showing that
componentwise extrapolation can converge about four times as fast as global extrapolation. The
results also show that both extrapolation methods can accelerate GIS drastically, reducing the con-
vergence time to a practical level. Moreover, the results also show that componentwise extrapolation
can compete with limited-memory BFGS (L-BFGS) (Nocedal and Wright, 1999), the de facto stan-
dard algorithm for CRF training, in terms of both computational efficiency and quality of trained
models.

In the remainder of this paper, we first provide a review of a formal derivation of the triple jump
extrapolation method for global extrapolation. Next, Section 3 compares the convergence properties
of global and componentwise extrapolations and presents the main result of this paper. Then, we
verify our result with a variety of probabilistic models. In Section 4, we consider the models trained
by the EM algorithm, including mixtures of Gaussians, Bayesian networks and Semi-supervised
Bayesian classifiers. Then in Section 5, we consider the problem of accelerating the GIS algorithm
for training CRFs. Finally, we summarize our conclusions in the last section.

2. Triple Jump Extrapolation

In this section, we review Aitken’s acceleration for fixed-point iteration algorithms and present the
derivation of the triple jump extrapolation method.

2.1 Aitken’s Acceleration

We consider the parameter learning problem as solving an equation by fixed-point iteration. Let θ
be a l-dimensional parameter vector of a probabilistic model in the space Ω. A parameter estima-
tion problem is usually solved by a bound optimization method (Salakhutdinov and Roweis, 2003),
which in turn solves the equation θ(t+1) = M(θ(t)), where M is a mapping M : Ω → Ω defined
by the bound optimization method and θ(t) ∈ Ω is the result of the t-th iteration, t = 0, 1, 2, . . ..
Starting from θ(t) at iteration t, the fixed-point iteration method solves the equation θ = M(θ) by
iteratively substituting the input of a function M with the output of M in the previous iteration:

θ(t+1) = M(θ(t)), θ(t+2) = M(θ(t+1)), . . . .

If M is continuous and θ(t) converges to a local optimum θ∗, then θ∗ = M(θ∗).
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For example, in the EM algorithm, M is a mapping that combines the E-step and the M-step
such that after each iteration, the data likelihood given θ(t+1) will be improved from the data like-
lihood given θ(t). The EM algorithm looks for a parameter vector that satisfies θ = M(θ) by
iteratively substituting θ on the RHS with that on the LHS until convergence. Therefore, a bound
optimization method such as the EM algorithm is equivalent to solving θ∗ by the fixed-point itera-
tion method (Burden and Faires, 1988).

Suppose that we apply the fixed-point iteration method from θ(t) in the neighborhood of θ∗ and
the iteration converges at θ∗. Assuming that the mapping M is differentiable. Then we can apply a
linear Taylor expansion of M around θ∗ so that

θ(t+1) = M(θ(t)) ≈ θ∗ +M ′(θ∗)(θ(t) − θ∗) = θ∗ + J(θ(t) − θ∗), (1)

where J abbreviates M′(θ∗), the Jacobian of the mapping M at θ∗. We can apply M to θ(t) con-
secutively for h times to obtain θ(t+h). From Eq. (1), we have

θ(t+h) ≈ θ∗ + Jh(θ(t) − θ∗). (2)

The eigen decomposition of the Jacobian J at θ∗ is

J = Q

⎛⎜⎝ λ1 . . . 0

0
. . . 0

0 . . . λn

⎞⎟⎠Q−1 = QΛQ−1, (3)

where Q = [v1, . . . , vn] contains the eigenvectors corresponding to eigenvalues λ1, . . . , λn, respec-
tively. Then, Jh in Eq. (2) becomes:

Jh = Q

⎛⎜⎝ λh
1 . . . 0

0
. . . 0

0 . . . λh
n

⎞⎟⎠Q−1 = QΛhQ−1.

Since θ(t+h) → θ∗ when h→ ∞ in bound optimization methods, it is required that limh→∞ Jh = 0
to ensure convergence. It follows that limh→∞ λh

i = 0 , and thus, −1 < λi < 1 for all i.
Within the neighborhood of θ∗, the rate of convergence of M is determined by the largest

eigenvalue of J , which is the slowest one among all eigenvalues to converge to zero. More generally,
the rate is determined by the spectral radius ρ of J when the eigenvalues can be negative. The
spectral radius ρ is defined by max{|λmax|, |λmin|}, where λmax and λmin are the greatest and
least eigenvalues of J . Since monotonicity and convergence can be proved for bound optimization
methods, in previous works, the following assumption on the eigenvalues of J is usually expected to
be true for bound optimization methods, including both EM and GIS algorithms. This assumption
implies that ρ = λmax.

Assumption 1 The eigenvalues of the Jacobian of the mapping M lie in [0, 1) (Dempster et al.,
1977; McLachlan and Krishnan, 1997; Salakhutdinov et al., 2003).

Aitken’s acceleration is a classical method for accelerating fixed-point iteration. The multivari-
ate version of Aitken’s acceleration can be derived as follows (McLachlan and Krishnan, 1997).
Suppose that when t→ ∞, θt → θ∗. Then we can express θ∗ as

θ∗ = θ(t) +
∞∑

h=1

(θ(t+h) − θ(t+h−1)). (4)
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Suppose that θ(t) is in the neighborhood of θ∗. Based on Eq. (2), θ(t+h+1) − θ(t+h) can be
written as:

θ(t+h+1) − θ(t+h) ≈
[
θ∗ + Jh(θ(t+1) − θ∗)

]
−
[
θ∗ + Jh(θ(t) − θ∗)

]
= Jh(θ(t+1) − θ(t)). (5)

Applying Eq. (5) in Eq. (4) gives the multivariate Aitken’s acceleration:

θ∗ ≈ θ(t) +
∞∑

h=0

Jh(θ(t+1) − θ(t))

= θ(t) + (I − J)−1(θ(t)
M − θ(t)), (6)

since the eigenvalues of J are between 0 and 1, from Assumption 1. In Eq. (6), we replace θ(t+1)

with θ(t)
M to emphasize that θ(t+1) is obtained by applying the mapping M(θ(t)) here.

In fact, Aitken’s acceleration can be considered as performing extrapolations to accelerate fixed-
point iteration. Aitken’s acceleration extrapolates with a different rate along the direction of each
eigenvalue for each dimension of the parameter vector.

One of the drawbacks of Aitken’s acceleration is that it requires to compute the Jacobian of the
fixed-point iteration mapping, which may not have a closed form and can be intractable even for a
very simple model with a low dimensional parameter space. Other drawbacks include that it may
not always converge and that it may be numerically unstable (Jamshidian and Jennrich, 1997).

2.2 The Triple Jump Extrapolation Method

The triple jump extrapolation method is an approximation of Aitken’s acceleration. Instead of using
the Jacobian matrix, the triple jump extrapolation method estimates the largest eigenvalue of the
Jacobian matrix according to previous estimates of the parameter vectors in the extrapolation to
alleviate the drawbacks of Aitken’s acceleration.

We start from Eq. (6) of Aitken’s acceleration. We substitute J with Eq. (3), and then (I − J)−1

in Eq. (6) becomes:

(I − J)−1 =
[
Q [I − Λ]Q−1

]−1

= Q[I − Λ]−1Q−1

= Q

⎛⎜⎝
1

1−λ1
. . . 0

0
. . . 0

0 . . . 1
1−λn

⎞⎟⎠Q−1. (7)

With the eigen decomposition of J , we can map θ∗ in Eq. (6) from the original parameter space to
the eigenspace spanned by Q:

ψ∗ = Q−1θ∗ ≈ Q−1θ(t) +Q−1(I − J)−1(θ(t)
M − θ(t))

= Q−1θ(t) + [I − Λ]−1Q−1(θ(t)
M − θ(t))

= ψ(t) + [I − Λ]−1 (ψ(t)
M − ψ(t)).

The relation between ψ∗ and θ∗ can also be written as:

θ∗ = ψ∗
1v1 + · · · + ψ∗

nvn,
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where ψ∗
i with i = 1, . . . , n denotes the i-th transformed parameter vector ψ∗ in the eigenspace.

Along with Eq. (7), we can observe that the multivariate Aitken’s acceleration is in fact a series of
univariate Aitken’s acceleration along the direction of vi:

ψ∗
i ≈ ψ

(t)
i +

1
1 − λi

(ψ(t)
Mi − ψ

(t)
i ). (8)

Let ϕ(t) = θ(t) − θ∗ denote the difference between current estimated parameter vector to the
local maximum. The global rate of convergence of a fixed-point iteration method is defined as the
ratio:

R = lim
t→∞R(t) ≡ lim

t→∞
‖ϕ(t+1)‖
‖ϕ(t)‖ (9)

Dempster et al. (1977) have shown that R = λmax, the largest eigenvalue of J for the EM
algorithm. Their result can be generalized to bound optimization methods. Therefore, instead of
computing the Jacobian, we can simplify Aitken’s acceleration by replacing every eigenvalue λi
with a single value γ(t) such that γ(t) is an approximation of λmax at the t-th iteration:

θ(t+1) = θ(t) + (1 − γ(t))−1(θ(t)
M − θ(t)). (10)

Note that (1−γ(t))−1 in Eq. (10) can be written as Q diag(1−γ(t))−1Q−1. Compared with Eq. (7),
we can observe that the extrapolation assumes λi = γ(t) for all i and performs Aitken’s acceleration
accordingly.

We can estimate γ(t) as follows. Let θ(t) = M(θ(t−1)) and θ(t+1) = M(θ(t)). We have, by
Eq. (5):

J(θ(t) − θ(t−1)) ≈ θ(t+1) − θ(t) = θ
(t)
M − θ(t).

Then, we substitute J with γ(t). Let γ(t)(θ(t) − θ(t−1)) = θ
(t)
M − θ(t), we have

|γ(t)| =
‖θ(t)

M − θ(t)‖
‖θ(t) − θ(t−1)‖ . (11)

Since λi’s are non-negative in both EM and GIS algorithms by Assumption 1, our estimation of γ(t)

is defined by:

γ(t) ≡ ‖θ(t)
M − θ(t)‖

‖θ(t) − θ(t−1)‖ . (12)

Therefore, we have γ(t) as an estimate of λmax. It can be shown that as t → ∞, γ(t) ≤ λmax

asymptotically in the neighborhood of θ∗ for the EM algorithm (Hesterberg, 2005). This estimation
applies two previous estimates in an attempt to extrapolate to the local optimum. Because this is
similar to the hop, step and jump phases in triple jump, Huang et al. (2005) named this method the
Triple Jump Acceleration.

Aitken’s acceleration does not guarantee to reach θ∗ directly from θ(t) because it is based on
the assumption that θ(t) is within the neighborhood of θ∗. When θ(t) is not close enough to θ∗, the
extrapolation jumps to a θ(t+1) that might fail to improve the likelihood. By applying the idea of
adaptive overrelaxed bound optimization methods (Salakhutdinov and Roweis, 2003), we can com-
bine a bound optimization method with the triple jump extrapolation that is guaranteed to converge,
as described in (Huang et al., 2005).
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Since estimating γ(t) applies two previous estimates of the parameter vector, the triple jump
method invokes Eq. (12) at every other iteration, if all extrapolations successfully improve the like-
lihood. Starting from θ(0) in the neighborhood of θ∗, we need to apply the underlying fixed-point
iteration mapping M to obtain θ(0)M = θ(1), again to obtain θ(1)M , and then we can apply Eq. (10),
the triple jump extrapolation, to obtain θ(2). To apply the extrapolation again, we cannot simply
use θ(1), θ(2) and θ(2)

M in Eq. (12) to obtain γ(2), because in Eq. (12), θ(t) must be obtained by the
mapping M too so that the ratio is a reasonable estimate of the eigenvalue. Therefore, to apply the
extrapolation again, we need to apply M to obtain θ(2)M = θ(3), again to obtain θ(3)M , and then we
can apply the extrapolation to obtain θ(4), and so on. Therefore, the triple jump algorithm applies
the extrapolation at the 2i-th iteration, i = 1, 2, . . ., assuming that all extrapolations successfully
improve the likelihood.

In the case that the parameter space has only one dimension, Eq. (12) provides an exact approx-
imation of J(θ∗) = M ′(θ∗). When the convergence is slow, we will have M′ ≈ 1 and γ(t) ≈ 1,
too. Then, 1/(1 − γ(t)) will be very large and provide a large acceleration. In a multi-dimensional
case, the convergence rate is determined by the largest eig(J(θ∗)). When the eigenvalue is close
to one, the convergence will be slow. Aitken’s acceleration can provide a large acceleration when
we have a good approximation of λmax but may also cause numerical insatiability when λmax ≈ 1.
Since γ(t) ≤ λmax, the triple jump extrapolation is numerically more stable than directly using the
eigenvalues.

3. Global and Componentwise Extrapolations

It is also possible to approximate λi in each dimension, or divide the parameter space into subspaces
and use Eq. (12) to obtain an approximation for each subspace, as reported in (Huang et al., 2005).
In this section, we investigate general conditions of when componentwise extrapolation should be
preferred.

3.1 Componentwise Extrapolation

Huang et al. (2005) proposed a different estimate. In that work, the parameter vector is divided into
sub-vectors. A sub-vector may be a single component or consist of a subset of components in the
parameter vector. Each sub-vector has its estimate of eigenvalue:

γ(t)
p ≡ ‖θ(t)

Mp − θ
(t)
p ‖

‖θ(t)
p − θ

(t−1)
p ‖

, (13)

where p ≤ l is the index of sub-vectors. Then we can perform the extrapolation separately for each
sub-vector:

θ(t+1)
p = θ(t)

p + (1 − γ(t)
p )−1(θ(t)

Mp − θ(t)
p ) . (14)

The final estimate of the parameter vector is the concatenation of all resulting sub-vectors. Ex-
trapolation using Eq. (13) (i.e., componentwise extrapolation) may accelerate convergence and out-
perform extrapolation using Eq. (12) (i.e., global extrapolation) in certain cases, though in general
using Eq. (12) performs better for the EM algorithm. A rule of thumb is that when componentwise
convergence rates are different, using Eq. (13) may perform better (Schafer, 1997, chap. 3).

7



CHUN-NAN HSU ET AL.

3.2 Convergence Rates and Extrapolation Methods

Let us recall that the global rate of convergence R of the EM algorithm is defined in Eq. (9). Now let
ϕ

(t)
i = θ

(t)
i −θ∗i denote the componentwise difference. The i-th componentwise rate of convergence

is defined as

Ri = lim
t→∞R

(t)
i ≡ lim

t→∞
ϕ

(t+1)
i

ϕ
(t)
i

. (15)

We note that ϕ(t) in Eq. (9) is a vector while ϕ(t)
i is a scalar.

When Ri = R for all component i, global extrapolation is more appropriate than componen-
twise extrapolation, and vice versa. The global rate of convergence R is known to be the largest
eigenvalue of the Jacobian (Dempster et al., 1977). Ri is also one of the eigenvalues but due to
eigen transformation, Ri is not necessarily the i-th eigenvalue. The following Lemma is helpful for
us to understand why R and Ri are eigenvalues and which eigenvalue corresponds to Ri.

Lemma 2 The l × l Jacobian matrix J can be decomposed into a linear combination of its eigen-
values

J =
k∑

j=1

λjujv
T
j = λ1u1v

T
1 + λ2u2v

T
2 + · · · + λkukv

T
k ,

where 1 > λ1 > λ2 > · · · > λk > 0 are k(≤ l) distinct eigenvalues of J , uj , vj (j = 1, · · · , k)
form the bases of the j-th eigenvector spaces for J and JT , respectively. Moreover,

J t =
k∑

j=1

λt
jujv

T
j . (16)

Proof Since J is a real-valued square matrix and can be decomposed as J = QΛQ−1. Let Q =
[ u1 · · · ul ] and

Q−1 =

⎡⎢⎢⎢⎣
vT
1

vT
2
...
vT
l

⎤⎥⎥⎥⎦ .
Eq. (16) follows immediately from (Searle, 1982, page 293).

With this Lemma, Meng and Rubin (1994) showed that the global rate of convergence R for EM
is the largest eigenvalue and gave the sufficient and necessary condition of when the componentwise
rate Ri = R. We restate the proof of their findings less formally here.

A Taylor expansion yields

ϕ(t) = θ(t) − θ∗

≈ J(θ(t−1) − θ∗)
= Jϕ(t−1)

= J · J · ϕ(t−2)

=
...

= J tϕ(0) .

8
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From Lemma 2, we have

ϕ(t) =
k∑

j=1

λt
jujv

T
j ϕ

(0). (17)

That is, the difference between the t-th estimate θ(t) to the local maximum θ∗ is a linear combination
of the eigenvalues of J . Now, consider the i-th component θi of the parameter vector and the j-th
largest eigenvalue λj of J . The contribution of λj to θi is

λt
j · [ujv

T
j ] · ϕ(0) = λt

j · [ujv
T
j ] ·

⎡⎢⎢⎣
...

ϕ
(0)
i
...

⎤⎥⎥⎦ = λt
j

⎡⎢⎢⎣
...
wij

...

⎤⎥⎥⎦ . (18)

Note that ujv
T
j is a matrix defining the eigen transformation of the j-th eigenvalue. ujvT

j maps the

difference of the i-th component ϕ(0)
i to wij . If wij 	= 0, then λj contributes to the convergence of

θi and the convergence rate for the i-th component is at least as slow as λj .
If for any component i, we have wi1 	= 0, that is, the mapping result of the largest eigenvalue

λ1 is nonzero, then the global rate of convergence is at least as slow as the largest eigenvalue λ1.
That is, R = λ1. If for a given component i, we have wi1 	= 0, then the componentwise rate of
convergence for the i-th component is as slow as the global rate of convergence. That is, Ri = R.
Otherwise, the componentwise rate of convergence is different from the global rate. Meng and
Rubin (1994) proved this by following the definitions of the componentwise rate and global rate of
convergence with Lemma 2.

Corollary 3 Ri 	= R if wi1 = eTi u1v
T
1 ϕ

(0) = 0, where ei is the i-th column of the identity matrix
Id.

An obvious case that makes wi1 = 0 is when ϕ(0) is a zero vector. That is, our initial value is
exactly the local maximum, which is unlikely to happen. Since wi1 is the inner product of the i-th
row of the matrix u1v

T
1 and ϕ(0), if they are orthogonal, then wi1 = 0. This is unlikely, too. A more

possible case is that the i-th row of u1vT
1 is a zero vector.

When J = QΛQ−1 is a diagonal matrix, Q and Q−1 will be diagonal, too. As a result, ujv
T
j

will be singular. That is, some of their rows will be zero vectors and thus make Ri 	= R. There-
fore, we can conclude that when J is a diagonal matrix, we have Ri 	= R, and we should apply
componentwise triple jump extrapolation. More precisely, we should also require that J is not only
diagonal but also not proportional to the identity matrix so that all eigenvalues are distinct. Sim-
ilarly, if J is block diagonal, ujv

T
j will also be singular and lead to the same consequence. We

summarize our conclusion with the following claim:

Claim 4 If the Jacobian J of the mapping of a bound optimization method is (block) diagonal,
then applying componentwise triple jump extrapolation to the mapping will require less iterations
to converge than applying global triple jump extrapolation.

This claim is useful as a guideline for selecting which extrapolation method to apply. But to
establish it as a guarantee of the rate of convergence, we need to make the following assumptions.

9
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Assumption 5 We assume that the estimations of λmax and θ are perfect:

A1 (Perfect estimation of λmax) Assuming that our estimation of the largest eigenvalues of J is
perfectly accurate, then γ(t) in Eq. (10) will be λmax of J in global extrapolation, while in
componentwise extrapolation, γ(t)p in Eq. (14) will be λp max, the largest eigenvalue of J in
the dimensions corresponding to sub-vector θp.

A2 (Perfect partitioning of θ) We also assume that when applying componentwise extrapolation,
we divide the parameter vector θ into sub-vectors corresponding to the diagonal blocks in
J , if J is block diagonal. That is, we have a sub-vector θp in θ from dimension p to q,
1 ≤ p ≤ q ≤ l, if and only if J(p : q, p : q) is one of the diagonal blocks in J . Here we
follow the colon notation as defined in (Golub and Loan, 1996, Sec. 1.2.5). Clearly, when J
is diagonal, our sub-vectors will contain each of the components of θ.

Under these assumptions, we can show that starting at the same parameter vector, if J is block
diagonal, applying a step of componentwise extrapolation will move the parameter vector closer to
the local optimum than applying a step of global extrapolation.

Theorem 6 Given Assumption 5, and a starting parameter vector, θ(t), let θ(t+1)
TJ be the new param-

eter vector after applying a step of global triple jump extrapolation and θ(t+1)
CTJ be the new parameter

vector after applying a step of componentwise triple jump extrapolation. If the Jacobian J is block
diagonal, then ‖θ(t+1)

TJ − θ∗‖ ≥ ‖θ(t+1)
CTJ − θ∗‖.

Proof From (A2), since J is block diagonal, for all blocks J(p : q, p : q) in J ,

θ
(t)
Mp − θ∗p = J(p : q, p : q)(θ(t)

p − θ∗p) . (19)

Consider a sub-vector θ(t)p . Applying a triple jump extrapolation, we have

θ(t+1)
p = θ(t)

p + (1 − γ)−1(θ(t)
Mp − θ(t)

p )

= θ(t)
p + (1 − γ)−1(J(p : q, p : q)(θ∗p − θ(t)

p ) + θ∗p − θ(t)
p ) ,

for both global and componentwise extrapolation. Whether it is global or componentwise depends
on which eigenvalue that we use for γ. For global extrapolation, from (A1), we have γ = λmax, the
largest eigenvalue of J , while for componentwise, γ = λp max, the largest eigenvalue of J(p : q, p :
q). This is because we assume that we can estimate these eigenvalues perfectly.

The above equation can be considered as a new mapping of the parameter vector. Rearranging
the equation, we have

θ(t+1)
p − θ∗p =

[
I − I − J(p : q, p : q)

1 − γ

]
(θ(t)

p − θ∗p) , (20)

where I − I−J(p:q,p:q)
1−γ is the Jacobian of the new mapping, with eigenvalues 1 − 1−eig(J(p:q,p:q))

1−γ .
Let λ be one of the eigenvalues of J(p : q, p : q). Then

λctj = 1 − 1 − λ

1 − λp max

10
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is one of the eigenvalues of the new mapping when we apply componentwise extrapolation. Since
0 ≤ λ ≤ λp max ≤ 1, λctj is negative. Similarly, when we apply global extrapolation, in the same
dimension, the eigenvalue will be

λtj = 1 − 1 − λ

1 − λmax
≤ λctj .

The inequality holds because λmax ≥ λp max. Since λctj is negative, we have |λtj | ≥ |λctj| for

each dimension of the new mapping. From Eq. (20) and Lemma 2, the difference ‖θ(t+1)
p − θ∗p‖

obtained by applying global optimization will therefore be greater than or equal to the differ-
ence obtained by applying componentwise extrapolation. Also, since the new parameter vectors
θ
(t+1)
TJ and θ(t+1)

CTJ are simply the concatenation of their respective θ(t+1)
p , for all p, we obtain that

‖θ(t+1)
TJ − θ∗‖ ≥ ‖θ(t+1)

CTJ − θ∗‖.

Note that Eq. (19) may not hold unless J is block diagonal. In the case when J is not diagonal, it
is likely that using λmax as γ may move the parameter vector closer to the optimum, and therefore
applying global extrapolation will be more effective. A caveat of this theorem is that it does not
guarantee anything if the extrapolation is applied from different parameter vectors. Another caveat
is that in the real world, Assumption 5 may not hold. That is, our partitioning of parameter vectors
and our estimation of eigenvalues may not be accurate. Nevertheless, in the remainder of this paper,
we will empirically show that our claim is still valid for a variety of probabilistic models even if our
estimation is not perfectly accurate.

4. Case Study: EM

In this section, we start by deriving the general form of Jacobian of the EM mapping. Then we
review two simple mixture-of-Gaussian models. They were selected because they are so simple that
the closed-form of their Jacobians have been derived in previous works, and one of them is diagonal
and the other is not, perfectly fitting our need of initial verification.

Then we consider the Bayesian Network models because training their parameters is one of the
most widely used applications of the EM algorithm. We investigate when their Jacobians are (block)
diagonal. We show that the rate of missing data and diagonality are correlated and conclude that
componentwise extrapolation should be preferred when the missing rate is high, otherwise global
extrapolation should be used. We present results of numerical experiments to verify our claim.

4.1 Jacobian of the EM Mapping

Suppose we want to use the EM algorithm to train a probabilistic model with a l-dimensional pa-
rameter vector θ from an incomplete data set D = (Dobs,Dmis), where Dobs denotes the observed
values and Dmis denotes the missing values. Now let d = {. . . , yim, . . .} be the data set with all
missing values in D imputed (i.e., filled in by some estimation method) and f(d|θ) be the probability
density of d given θ, then

L(θ) = log fDobs
(Dobs|θ) = log

∫
f(d|θ)dDmis

is the log-likelihood of the observed data Dobs. The maximum likelihood principle states that the
best parameter vector is the one that maximizes the log-likelihood of the observed data. However, it

11
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is usually difficult to derive a closed-form solution for the integral for the observed data likelihood
in a complex probabilistic model. The EM algorithm solves this problem by iteratively imputing
the missing data and searching for θ∗ that maximizes the expected complete data likelihood.

To determine which extrapolation may be more effective, we review the general form of Ja-
cobian of the EM mapping matrix, derived by (Dempster et al., 1977). The Jacobian of the EM
algorithm is given by

J = I − IobsI−1
c , (21)

where I is the l × l identity matrix,

Ic = E

[
−∂

2[log f(D|θ)]
∂θ∂θT

∣∣∣∣Dobs, θ

]∣∣∣∣
θ=θ∗

is the Fisher’s information of the expected complete data, and

Iobs = −∂
2L(θ)
∂θ∂θT

∣∣∣∣
θ=θ∗

is the Fisher’s information of the observed data. Fisher’s information measures how flat the like-
lihood surface is. Computing Fisher’s information can be intractable for complex models with a
high dimensional parameter space. However, for our purpose, we only need to see if the Jacobian is
(block) diagonal.

4.2 Mixtures of Gaussians

Our first example is from Meng and Rubin (1994). Suppose we have a set of one-dimension data
Dobs = X = {xi|i = 1, 2, . . .} from the following distribution:

fex1(X|μ, σ2) = (1 − π)N(μ, σ2) + πN(μ, σ2/λ). (22)

That is, the data set comes from a mixture of two Gaussians with the same mean but different
variances. Assuming that we know the mixture ratio π and constant λ, then our parameter vector
is θ = (μ, σ2). We can estimate the parameter vector from data by the EM algorithm by creating
a missing, unobservable variable Q ∈ {1, λ} that assigns membership of an observed variable X.
Therefore, our complete, augmented data set is D = {(xi, qi)|i = 1, 2, . . .}.

We can use Eq. (21) to compute the Fisher’s information of the observed and missing data by
differentiating the log-likelihood of the data twice to determine whether the Jacobian of this model is
diagonal. If both information matrices, Ic and Iobs, are diagonal, then the Jacobian will be diagonal,
too. Though this model is simple, its Jacobian is still quite complex. Nevertheless, Meng and Rubin
(1994) showed that in this case, the Jacobian is a 2 × 2 diagonal matrix and empirically show that
the componentwise rate of convergence is different:⎛⎝ E

�
Var(q|x,θ)(x−μ

σ )2
�

(λπ+(1−π)) 0

0 E
(

Var(q|x, θ) (x−μ
σ

)4
)
/2

⎞⎠
Interestingly, with a different parameter vector, another one-dimensional Mixtures of Gaussian

model from (Louis, 1982) has a Jacobian that is not diagonal. In this case, the parameter vector is
θ = (μ0, μ1, π) with the variance known to be σ2 = 1. The distribution for the observed data is

fex2(X|μ0, μ1, π) = (1 − π)N(μ0, 1) + πN(μ1, 1) . (23)

12
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We introduce an additional unobserved membership assignment variable Q ∈ {0, 1} for the aug-
mented complete data set. In this case, Louis (1982) showed that Ic is diagonal, while Iobs is not
diagonal, though it is symmetric. Thus J is not diagonal.

4.3 Bayesian Networks

We now consider a more practical model, the Bayesian network, to determine when its Jacobian
is diagonal. The EM algorithm is applied to train a Bayesian network model when we have latent
variables whose values are not observable or when some of the values of variables in the training
data are missing. In theory, the Jacobian of the EM algorithm for the Bayesian network can be
obtained from Eq. (21). However, unlike the toy examples in the previous sub-section, it is difficult
to obtain the closed-form of the Jacobian for Bayesian networks. Fortunately, since our purpose is
only to determine if the Jacobian is diagonal, there is no need to obtain the Jacobian. In fact, if we
can show that the Fisher’s information Iobs and Ic are (block) diagonal, then the Jacobian must be
(block) diagonal as well. Therefore, it suffices to just determine if the off-diagonal elements of Iobs

and Ic are zero.

A Bayesian network consists of a set of variables X = {Xi|i = 1, 2, . . .}, the graph structure of
the variables, and their conditional probability tables. Suppose we have a variable Xi whose parent
nodes include a set of variables denoted by Ui. The conditional probability table for a variable Xi

consists of entries of the form

wijk ≡ Pr(Xi = xik|Ui = uij)

to denote the probability that Xi has its k-th possible value xik under the condition that its parent
Ui has the j-th combination of values, uij . Since wijk denotes the probability, to ensure that wijk

is in [0, 1] during the training process, a common technique used in practice is applying softmax
reparameterization:

wijk =
eθijk∑
k′ e

θijk′

Therefore, the parameters that we want to estimate from data using the EM algorithm are the set
θ = {θijk|i, j, k = 1, 2, . . .}.

A Bayesian network models the joint event y = {. . . ,Xi = xik, . . .}, which is a set of variable-
value pairs representing that variable Xi is instantiated by the value xik. Some of the variable’s
value in an event may be missing either because in that particular case, its value is not available,
or because the variable is a latent variable. Many algorithms are available for efficiently computing
Pθ(ymis|yobs), the conditional probability of missing values given observed values and the parame-
ters θ. The Bayesian network allows us to factorize any conditional probability into an expression
of wijk, the entries in the conditional probability table (Russell et al., 1995). The training data for
the Bayesian network is a set of I.I.D. event cases Dobs = {. . . , yobs, . . .}. The EM algorithm is
applied to learn θ that maximizes the log-likelihood of the observed data.

We start by giving Lemma 7 which summarizes possible values of ∂
∂θijk

wijk that will be fre-
quently used:

13
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Lemma 7 For Bayesian networks with softmax reparameterization, the derivative of wi′j′k′ with
respect to θijk is:

∂wi′j′k′

∂θijk
=

⎧⎨⎩
0 : i 	= i′ or j 	= j′

−wijkwijk′ : (i, j) = (i′, j′) and k 	= k′

wijk(1 − wijk): (i, j, k) = (i′, j′, k′)
(24)

Proof See Appendix.

Now let us consider the problem of determining the diagonality of Iobs. Its off-diagonal ele-
ments are the second partial derivatives of the log-likelihood of observed data L(θ) with respect to
two different parameters. When they are all zero, Iobs will be diagonal.

Since we assume that the training data Dobs is I.I.D., ∂
∂θijk

L(θ) =
∑

Dobs

∂
∂θijk

logPθ(y).
Lemma 8 describes the first order derivative of P (y) and when the derivative is zero.

Lemma 8 For Bayesian networks with softmax reparameterization, the derivative of P (y) with
respect to θijk is:

∂

∂θijk
P (y) = P (xik, uij , y) − wijkP (uij , y), (25)

and the derivative must be 0 if uij d-separates (Pearl, 1988) the observations in y − {Ui = uij}
and Xi, that is, if P (Xi|uij , y) = P (Xi|uij).

Proof See Appendix.

Lemma 8 implies that “Xi = xik” must not appear in y to satisfy the d-separation condition.
Intuitively, if “Xi = xik” appears in y, y and Xi will not be conditionally independent given uij
because P (Xi|uij, y) will be equal to 1 ifXi = xik and 0 otherwise. Based on Lemma 8, Theorem 9

shows the conditions in which ∂2 log P (y)
∂θi′j′k′∂θijk

= 0, which implies that the second derivatives of L(θ)
and thus the off-diagonal elements of Iobs are zero.

Theorem 9 ∂2 log P (y)
∂θi′j′k′∂θijk

is 0 if one of the following conditions holds:

1. The condition stated in Lemma 8 holds, or

2. ui′j′ d-separates the observations in y ∪ {uij , xik} and Xi′ .

Proof See Appendix.

The first condition is straightforward because the derivative of zero is still zero. We can obtain the
second condition by expanding y to y ∪ {uij , xik} and applying Lemma 8 to θi′j′k′ again. Though
both conditions in Theorem 9 are difficult to check directly in real applications, in the next sub-
section, we will relate them to the proportion of missing values in training data, which is easy to
check to determine which extrapolation method should be used.

Next, we consider the diagonality of Ic. The elements in Ic are the expectation of the second
partial derivatives of the complete data log-likelihood. Since if the second partial derivatives are
zero, their expected values must be zero, too, we will consider the second partial derivatives. We will
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show that Ic is always a block diagonal matrix for any Bayesian network. Each block corresponds
to parameters θijk that share the same i and j but different k. In other words, they are the parameters
of the k possible values of Xi given its parents Ui = uij . Note that since here we are considering
the complete data log-likelihood, missing values will be imputed and ∀i∃k, j{uij , xik} ⊂ y. That
is, each Xi and its parents Ui are instantiated with no missing value in y ∈ D, the complete data set.

Lemma 10 If uij and xik are observed in y, ∂2 log P (y)
∂θijk′∂θijk

, the second order derivative of two param-

eters with the same i, j, will be:

∂2 log P (y)
∂θijk′∂θijk

=
{ −wijk(1 − wijk):if k′ = k

wijkwijk′ :if k′ 	= k.

Moreover, the derivatives with other (i′, j′, k′)’s will be zero in this case.

Proof See Appendix.

From Lemma 10, we can order θijk by i, j and k so that ∂2 log P (D)
∂θ2 is a block diagonal matrix,

implying that Ic = E(∂2 log P (D)
∂θ2 ) is also a block diagonal matrix.

Theorem 11 Ic is a block diagonal matrix:⎛⎜⎜⎜⎜⎜⎜⎜⎝

B11 · · · 0 · · · 0

0
. . . . . .

...
... Bij 0
...

. . . . . .
...

0 · · · 0 · · · BIJ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

in which each block Bij is a k × k matrix:⎛⎜⎜⎜⎝
E
(

∂2 log P (D)
∂θij1∂θij1

)
· · · E

(
∂2 log P (D)
∂θij1∂θijk

)
...

. . .
...

E
(

∂2 log P (D)
∂θijk∂θij1

)
· · · E

(
∂2 log P (D)
∂θijk∂θijk

)
⎞⎟⎟⎟⎠ .

Proof See Appendix.

Since Ic is a block diagonal matrix, J will be a block diagonal matrix if Iobs is also block
diagonal with the same block layout, and if that is the case, we should apply componentwise ex-
trapolation.

4.4 Missing Data and Diagonality

Theorem 9 implies the following corollary that allows us to check whether Iobs and thus J is block
diagonal.
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Corollary 12 Let Vi and Vi′ be the descendents of Xi and Xi′ .
∂2 log P (y)

∂θi′j′k′∂θijk
is 0 if Vi or Vi′ contains

none of the observed random variables in y.

From Corollary 12, we can show that the more missing data we have, the Jacobian is closer to
diagonal or block diagonal, and the superiority of the performance of componentwise extrapolation
to global extrapolation is more obvious. This is because the higher the missing rate or the less the
values observed in y, the less likely they may appear in descendent nodes Vi and Vi′ . Therefore,
∂2 log P (y)

∂θi′j′k′∂θijk
will be more likely to be zero as Iobs is close to block diagonal.

The effect of high missing rates to the whole data set Dobs is that ∂2 log P (Dobs)
∂θi′j′k′∂θijk

will be close or

equal to zero because ∂2 log P (Dobs)
∂θi′j′k′∂θijk

=
∑

y
∂2 log P (y)

∂θi′j′k′∂θijk
. Hence, most off-diagonal elements will be

close or equal to zero and the Jacobian will appear like a diagonal or block diagonal. It follows that
when training a Bayesian network with the EM algorithm, if the missing rate of the training data is
high, componentwise extrapolation will be more effective than global extrapolation.

4.5 Semi-Supervised Bayesian Classifier

We provide theoretical analysis with experiments on the semi-supervised Bayesian classifier, which
consists of a cluster random variable C and a set of feature random variables F1, . . . , FN . There are
N links from C to each Fn. The model assumes that the feature random variables are conditionally
independent given C .

From Theorem 11, we know that Ic is block diagonal. Therefore, we only need to discuss Iobs

of the model, which is simpler than general Bayesian networks in that every feature node shares
the same parent node. Note that C and Fn might contain missing values. Theorem 13 describes
conditions when off-diagonal elements of Iobs are zero.

Theorem 13 ∂2

∂θi′j′k′∂θijk
log P (y) of a Bayesian classifier is zero if one of the following conditions

is satisfied:

1. Xi is a feature variable and is not observed, or

2. Xi′ is a feature variable and is not observed.

Proof See Appendix.

Corollary 14 ∂2

∂θi′j′k′∂θijk
logP (y) of a Bayesian classifier is nonzero if one of the following con-

ditions is satisfied:

1. i = i′ and Xi is a class variable,

2. Xi and Xi′ are feature and class variables and the feature variable is observed, or

3. Xi and Xi′ are feature variables or the same feature variable and are observed.

Proof See Appendix.
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Corollary 14 implies that whether Iobs is block diagonal or not depends on the missing rates.
First, we consider the case when the missing rate is low. Suppose that the features are all observed.

From Theorem 13, no element is guaranteed to be zero in ∂2 log P (y)
∂θ2 so that

∑
y′

∂2 log P (y′)
∂θ2 is un-

likely to be a block diagonal matrix. However, if the missing rate is high, Iobs will be much closer
to a block diagonal matrix. An extreme case is that only one feature is observed in every training
example. From Theorem 13, most values outside the block diagonal area will be zero. Therefore,
CTJEM will be more likely to outperform global TJEM under such circumstances.

4.6 Experimental Results

We report convergence rate comparison of the EM algorithm, the TJEM algorithm (i.e., the triple
jump EM algorithm applying global extrapolation), and the CTJEM algorithm (i.e., the triple jump
EM algorithm applying componentwise extrapolation) for the probabilistic models discussed in this
section. We will show that the experimental results are consistent with our prediction. We review
these models as follows.

• The Gaussian mixture model defined by Meng and Rubin (1994) in Eq. (22) and the model
by Louis (1982) in Eq. (23).

Meng’s model has a diagonal Jacobian while Louis’ model has a non-diagonal one.Therefore, we
predict that CTJEM will outperform TJEM for Meng’s model while TJEM will outperform CTJEM
for Louis’. For each model, we synthesized a data set with 10,000 data points. To ensure the relia-
bility of our results, we compare the rate of convergence of three EM variants 100 times. Each time
these EM variants were initialized with a randomly generated parameter vector. For Meng’s model,
the termination condition for all EM variants was when the improvement of the likelihood between
two consecutive iterations was less than 10−10, and for Louis’ model, 10−5. The experiment was
run on a Windows XP machine with Pentium 4 3.2GHz CPU and 2GB RAM.

• The ALARM Bayesian network (Cooper and Herskovits, 1992) with different proportions of
random missing values.

The ALARM network is a real world Bayesian network with 37 multinomial nodes. We randomly
assigned conditional probabilities as the true distributions and synthesized 2,000 examples as our
experimental data set. Then, we randomly removed 50% and 90% values from the data set to
produced two data sets, respectively. Our analysis in Section 4.4 predicts that CTJEM will be faster
for the one with 90% missing because in that case J will be block diagonal, and TJEM will have
an advantage over CTJEM for the data set with 50% of missing values. For both models, we tested
three EM variants with 100 randomly generated initial parameter vectors. The termination condition
for all trials was when the likelihood improvement was less than 10−4. The experiment was run on
a Windows Server machine with Xeon 3.4GHz CPU and 3.5GB RAM.

• A Bayesian classifier with different proportions of random missing values.

We designed a Bayesian classifier with 20 feature variables. All the features and class variables have
five possible values. We randomly synthesized a data set with 10,000 examples and then randomly
removed 50% and 90% of variable values to produce two data sets, respectively. According to our
analysis in Section 4.5, it is expected that CTJEM will perform better for the data set with 90%
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missing but not as well compared to TJEM for the data set with 50% missing. We compared the
EM variants 100 times with different initialization and applied the same termination condition as
that for the ALARM network for all trials. The experiment was run on a Windows XP machine with
Athlon Dual 2GHz CPU and 2.37GB RAM.

We use the scattered plots to compare the number of iterations required for convergence. More
specifically, the number of iterations here is the number of times that E-step is executed. In each
scattered plot, the coordination of each data point is the iterations of the X-axis method and the
Y-axis method for the same trial. There are 100 data points in each plot, representing the results of
100 trials. A data point appear in the upper triangle if the X-axis method converges faster and in
the lower triangle if the Y-axis method is faster. We arranged the axes of the plots such that if data
points appear in the upper triangle, then the results are consistent with our predictions. Note that in
EM, every iteration contains the E-step and M-step, but in TJEM and CTJEM, an iteration could be

1. a regular EM iteration;

2. a regular EM iteration plus extrapolation, after parameter vectors for extrapolation are ready;

3. an E-step only, if the parameter vector fails to improve the likelihood.

While the second situation may induce additional overheads, the third takes less time than a regular
EM iteration. On average, EM, TJEM, and CTJEM take almost the same time to finish an iteration.
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(a) Louis’ Model, not block diagonal: TJEM vs CTJEM (left), TJEM vs EM (center), CTJEM vs EM (right).
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(b) Meng’s model, block diagonal: CTJEM vs TJEM (left), TJEM vs EM (center), CTJEM vs EM (right).

Figure 1: Convergence rate comparison of EM,TJEM, and CTJEM for two models of mixtures of
Gaussians.

Figures 1, 2, and 3 show the results for the three pairs of the models in our case study. The plots
show that both TJEM and CTJEM outperform EM, confirming that they are effective, as has been
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established in previous work. More importantly, they clearly show that the results are consistent
with our prediction. That is, for models with a (block) diagonal Jacobian, CTJEM converges faster,
while for the other models, TJEM converges faster. Few exceptions either appear near the origin
in the plots or near the diagonal line, meaning that those are either easy cases requiring very few
iterations or ties. Ties occurred mostly for the two Bayesian network models with 50% of missing
rates because in those cases, though the Jacobian may not be block diagonal but will be sparse and
affect componentwise rates of convergence. As a result, the advantage of TJEM may not be as
obvious as the advantage that CTJEM has for the data set with a 90% missing.
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(a) ALARM model with 50% data missing, not block diagonal: TJEM vs CTJEM (left), TJEM vs EM (center), CTJEM vs EM
(right).
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(b) ALARM model with 90% data missing, block diagonal: CTJEM vs TJEM (left), TJEM vs EM (center), CTJEM vs EM
(right).

Figure 2: Convergence rate comparison of EM,TJEM, and CTJEM for ALARM Bayesian network
models with different proportions of missing data.

We also compare the CPU time required for different methods. Table 1 gives the average CPU
time results over 100 trials. The speedup is defined as the CPU time required for EM divided by the
CPU time required for TJEM or CTJEM. The results show that very high speedup can be achieved
by extrapolation, especially when the right method is applied to the right problem according to our
predictions.

5. Case Study: GIS

The generalized iterative scaling (GIS) algorithm is one of the bound optimization methods and
becomes well-known because of the conditional random field (CRF) model. GIS can also be ac-
celerated by the triple jump extrapolation method. This section presents our results which show
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(a) Bayesian classifier model with 50% data missing, not block diagonal: TJEM vs CTJEM (left), TJEM vs EM (center),
CTJEM vs EM (right).
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(b) Bayesian classifier model with 90% data missing, block diagonal: CTJEM vs TJEM (left), TJEM vs EM (center), CTJEM
vs EM (right).

Figure 3: Convergence rate comparison of EM,TJEM, and CTJEM for semi-supervised Bayesian
classifier models with different proportions of missing data.

that when applying GIS to train a CRF, componentwise extrapolation is more effective than global
extrapolation when the features are not correlated.

5.1 Conditional Random Fields

The CRF (Lafferty et al., 2001) is one of the most prevailing solutions to sequential data classi-
fication. In a CRF, sequences and their labels are transformed into features. The probability of
a labeling result is a function of weighted sum of features. Training of CRFs is to assign proper
weights for all features, trying to maximize the log-likelihood or penalized log-likelihood with the
training data.

Let {x1, . . . , xK} denote a set of K data sequences and {y1, . . . , yK} the corresponding labels.
A CRF defines l features to be transformed from a given instance (x, y):

F (x, y) = (f1(x, y), . . . , fl(x, y))T ,

where fi(x, y) is the number of times that feature i occurs in (x, y). A CRF is parameterized by the
weights for all features:

θ = (θ1, . . . , θl)T .
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Type Data set CTJEM TJEM EM
CPU Time (sec) 1.431 0.674 4.609

GMM Louis
Speedup 3.219 6.834 1

Not CPU Time(min) 4.714 2.701 7.747
Diagonal

ALARM 50%
Speedup 1.643 2.868 1

CPU Time(min) 2.926 2.361 3.477
Bayes 50%

Speedup 1.188 1.472 1

CPU Time(sec) 0.249 0.286 0.391
Diagonal

GMM Meng
Speedup 1.570 1.367 1

or CPU Time(min) 16.962 33.976 75.748
Block

ALARM 90%
Speedup 4.466 2.229 1

Diagonal CPU Time(min) 8.473 27.327 68.862
Bayes 90%

Speedup 8.127 2.520 1

Table 1: Average CPU time and speedup comparisons of EM, TJEM and CTJEM for various mod-
els and data missing rates.

Then, the conditional probability of y given x is:

pθ(y|x) =
exp(θTF (x, y))

Zθ(x)
,

where Zθ(x) is a normalization term:

Zθ(x) =
∑

y

exp(θTF (x, y)).

Training of CRFs is to search for the weight vector that maximizes the log-likelihood function as
the objective function. The log-likelihood function, denoted by L(θ), is:

L(θ) =
∑

k

log pθ(yk|xk)

=
∑

k

[
θTF (xk, yk) − logZθ(xk)

]
, (26)

The gradient of L(θ) along the axis of θi is ∇iL(θ):

∇iL(θ) = Ẽfi − Efi,

where Ẽfi is:
Ẽfi =

∑
k

fi(yk, xk),

and Efi is the expected number of occurrence of fi:∑
k

∑
y

pθ(y|xk)fi(y, xk).
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5.2 Accelerating GIS by Triple Jump Extrapolation

This sub-section presents how to apply the triple jump extrapolation method to accelerate GIS. GIS
can be formulated as a fixed point iteration method. At iteration t, GIS computes Δ(θ(t)), which

will be abbreviated as Δ(t) = (Δ(t)
1 , . . . ,Δ(t)

l ) for all i = 1 . . . l with this formula:

Δ(t)
i =

1
S

log
Ẽfi

Efi
,

where S = maxk
∑

i fi(yk, xk) is the maximum number of feature occurrences in a training se-
quence (Lafferty et al., 2001). Then, we update the weights by θ(t+1) = θ(t) +Δ(t), which is a fixed
point iteration method with the definition of M as:

θ(t+1) = M(θ(t)) = θ(t) + Δ(t).

When the global optimum θ∗ is reached, Δ(θ∗) should be a zero vector, which implies that we
obtain the fixed-point solution θ∗ = M(θ∗). Since GIS can be considered as a fixed-point iteration
method and Assumption 1 holds for GIS, we can apply the triple jump extrapolation method to
accelerate GIS.

However, when applied to train CRFs, GIS suffers from overfitting. Recent works usually use
Gaussian priors with the same mean and variance for each θi as a penalty term to train CRFs to
avoid overfitting. The penalized log-likelihood function L(θ) is:

L(θ) = L(θ) −
∑

i

(θi − μ)2

2σ2
+ const., (27)

and the gradient along the direction of θi is:

∇iL(θ) = Ẽfi − Efi − θi − μ

σ2
. (28)

A Gaussian prior with μ = 0.0 is widely adopted as a penalty term to avoid overfitting, which
is based on the idea that the number of important features with high weights should be less than the
number of unimportant features. Based on Eq. (28), the weights of unseen features in the training
data set should be zero at θ∗. In addition, the weights of observed features should be greater than
zero, showing that they are more important than unseen ones. Sha and Pereira (2003) reported
that they use negative weights to discourage some undesired features. More generally, we can also
assign negative weights to unseen features by setting μ < 0. In this case, the weights of unseen
features should be μ, and those of observed features should be greater than μ.

To accelerate CRF training subject to L(θ) with triple jump, we need to formulate penalized
GIS (PGIS) as fixed-point iteration. Our goal is to find the global optimum, where the gradients are
zero. In other words, PGIS is supposed to solve the equation ∇iL(θ) = 0:

Ẽfi = Efi +
θi − μ

σ2
.

We multiply the RHS with exp( 1
β (θi − θi)) and obtain:

Ẽfi = (Efi +
θi − μ

σ2
) exp(

1
β

(θi − θi)), (29)
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where β is an arbitrary constant learning rate in (0, 1). Then, we can rearrange Eq. (29) to obtain
the following equation:

θi = θi + β log
Ẽfi

Efi + θi−μ
σ2

. (30)

Now we have the PGIS algorithm, which updates each θi with Eq. (30). Let M(θ) be the RHS, the
PGIS algorithm also solves θ = M(θ) as the GIS algorithm. Assigning β = 1/S, we obtain a new
update rule quite similar to GIS. The only difference is the additional term θ−μ

σ2 in the RHS. In fact,
GIS can be considered as a special case of PGIS when σ2 → ∞. In this way, we have formulated
PGIS as fixed-point iteration so that we can apply the triple jump method to PGIS and accelerate its
convergence. We therefore have many combinations of GIS variants to train a CRF model. We will
consider the following combinations in this paper:

• GIS: generalized iterative scaling

• PGIS: penalized GIS

• TJPGIS: PGIS with global triple jump extrapolation

• CTJGIS: GIS with componentwise triple jump extrapolation

• CTJPGIS: PGIS with componentwise triple jump extrapolation

5.3 Jacobian of the PGIS Mapping

Previously, Salakhutdinov et al. (2003) provided the general form of Jacobian of the GIS mapping
as follows:

I − 1
S

Cov(θ∗)D(θ∗)−1,

where Cov(θ∗) is covariance of the feature vectors under model distribution pθ∗(x, y) and D(θ∗) ≡
diag(F̄ (θ∗)) is a diagonal matrix of F̄ (θ∗) ≡ ∑

x,y pθ∗(x, y)F (x, y), the mean of the feature vec-
tors. We can derive the general form of Jacobian of the PGIS mapping by a similar technique.

Theorem 15 Let Λ ≡ diag( 1
σ2 ). The Jacobian of the PGIS Mapping is

I − 1
S

[Cov(θ∗) + Λ][D(θ∗) +
1
S

Λ]−1

Proof See Appendix.

Since I , D and Λ are all diagonal, whether Jacobian of PGIS is diagonal or block diagonal
depends only on the covariance matrix Cov(θ∗), which is (block) diagonal when (subsets of) the
features are independent. It follows that if subsets of the features are independent, componentwise
extrapolation CTJPGIS should be preferred. We will empirically verify this corollary next.
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5.4 Experimental Result: Synthesized Data

We performed a controlled experiment with two synthesized data sets. One was designed to have
independent features and the other dependent features so that the Jacobian of PGIS for the former
data set will be diagonal while for the latter will not. We synthesized both data sets using the hidden
Markov model (HMM). To generate independent data, we used five state labels and 26 possible
input values in HMM, with all state transition probabilities and emission probabilities assigned
uniformly. The HMM model for dependent data also contains five state labels but only five possible
input values. Its state transition probabilities were given by

p(yi|yi−1) =
{

0.92, if yi = (yi−1 + 1)
0.02, otherwise

and emission probabilities given by

p(xi|yi) =
{

0.92, if xi = yi

0.02, otherwise

we extracted two types of features as defined in (Lafferty et al., 2001) to train CRFs:

fy′,y,<i−1,i>(X,Y ) = δ(Yi−1 = y′)δ(Yi = y)
gx,y,j(X,Y ) = δ(Yj = y)δ(Xj = x),

where δ(.) is the indicator function. These features state that, given X and Y , fy′,y,<i−1,i> = 1 if
the state labels at positions i−1 and i of the sequence are y′ and y, respectively. Otherwise its value
is 0. If at position j the state label is y and the observed value is x then gx,y,j = 1; otherwise it is 0.
They correspond to transition and emission probabilities in HMM. Clearly, if the probabilities are
distributed uniformly, the feature values will be independent of each other and the Jacobian will be
diagonal. On the contrary, if the distributions are far from uniform, their values will correlate with
each other and the Jacobian will not be diagonal.

We implemented the GIS variants by replacing the L-BFGS optimization part in CRF++ (Kudo,
2006) 1 with PGIS, i.e., Eq. (30), and our extrapolation methods. We then used the HMM models
described above to synthesize a sample of 1,000 sequences of length 25 as the independent data
set and a sample of 1,000 sequences of length 50 as the dependent data set. Then we applied
our implementation of PGIS, TJPGIS and CTJPGIS to train CRF models for each data set. The
convergence rate is measured by the required number of forward-backward evaluations for CRF
training to converge. This measure will be abbreviated as iterations. The termination condition for

all trials was |L(θ(t−1))−L(θ(t))|
L(θ(t))

< 10−6. The experiment was run on a Fedora 7 x86-64 machine

with AMD Athlon 64 X2 3800+ CPU and 4GB RAM.
The convergence rate performance results are shown in Figure 4. The CPU time results are

given in Table 2. The results show that, for both data sets, both TJPGIS and CTJPGIS converged
much faster than PGIS, which was still far away from convergence after more than 100 iterations.
More importantly, as predicted, CTJPGIS actually converged fastest for the independent data set
while TJPGIS performed the best for the dependent one.

1. Available under LGPL from the following URL: http://crfpp.sourceforge.net/.
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Figure 4: Convergence rate comparison of PGIS,TJPGIS, and CTJPGIS for synthesized data sets
with independent (a) and dependent features (b), respectively.

Data Set & Type CTJPGIS TJPGIS PGIS
Dependent Features CPU Time(sec) 32.01 7.35 > 295.14

(Not Block Diagonal) Iteration 53 10 > 500
Independent Features CPU Time(sec) 5.02 9.88 391.61

(Block Diagonal) Iteration 16 32 1324

Table 2: Comparison of CPU time of PGIS, TJPGIS, and CTJPGIS for synthesized data sets with
independent and dependent features.

5.5 Experimental Result: Entity Recognition

We evaluate the performance of our GIS variants with three large real-world data sets for entity
recognition to further verify our claim: CoNLL-2000 chunking task Sang and Buchholz (2000),
BioNLP/NLPBA-2004 bio-entity recognition task Kim et al. (2004), and BioCreative II gene men-
tion tagging task Wilbur et al. (2007). CoNLL-2000 and BioCreative II are single type entity recog-
nition tasks. The problem is to label each token in an input sentence as one of B (beginning of
entity), I (in an entity), and O (outside an entity). BioNLP/NLPBA-2004 is a multiple type task,
where each type X has its corresponding B-X, I-X and O-X. These data sets have been used in
competitions. The performance was measured by the F-scores for the hold-out sets. The F-score is
defined as F = 2PR

P+R , where P is the precision and R the recall. Table 3 gives the details of these
data sets. GIS is known to be prohibitively slow for large data sets (Malouf, 2002; Sha and Pereira,
2003). In this experiment, we will show that the triple jump extrapolation can accelerate GIS to a
practical level, and that as our analysis predicts, componentwise extrapolation always outperforms
global extrapolation and is the method of choice for these tasks.

To deal with these large data sets, we modified the base GIS algorithm into adaptive overrelaxed
variant of GIS as described in (Salakhutdinov and Roweis, 2003). Since adaptive overrelaxed GIS
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CoNLL 2000 BioNLP/NLPBA 2004 BioCreative II
# of training sentences 8,936 20,546 15,000
# of tokens in training 211K 472K ∼ 350K∗

# of test sentences 2,012 4,260 5,000
# of tokens in test 49K 97K ∼ 100K∗

# of entity types 1 5 1
# of features/parameters† 1M 6M 7M
F-score† ∼ 93% ∼ 70% ∼ 87%
Reference Sha and Pereira (2003) Settles (2004) Kuo et al. (2007)
∗BioCreative II did not provide standardized tokenization of the sentences.
†Data about # of features/parameters and F-scores are obtained from the given references.

Table 3: Three data sets used in the experiment of our GIS variants.

is also a fixed-point iteration method, the triple jump extrapolation is applicable. All GIS variants
in this experiment were built on top of adaptive overrelaxed GIS, with the learning rate initialized
from 1.8 and increased by ten percent at each iteration until the likelihood fails to improve. Also,
to maintain numerical stability, we assigned θi = μ 	= 0 if the i-th feature does not appear in the
training data, which implies that Ẽf i = 0 and we will have log 0 in Eq. (30). We also used μ as
the lower bound of the weight for the least informative features and assigned θi = μ any time when
λi < μ. We set μ = −0.1 for all of our GIS variants in this experiment. We also ran CRF++
with default settings to obtain the performance results of L-BFGS. We used a tight termination

condition |L(θ(t−1))−L(θ(t))|
L(θ(t))

< 10−7 for all methods compared in this experiment, including L-
BFGS, to ensure a fair comparison. The experiment was run on a Fedora 7 x86-64 Linux machine
with AMD Athlon 64 X2 3800+ CPU and 4GB RAM.

The features used in these tasks concern word occurrences, word pairing, part-of-speech tags
and their pairing, etc. They were adopted from the references given in Table 3. These references
were selected because they described the best performing CRF systems in their corresponding com-
petitions. Since the number of features is huge and only a small proportion of the features may be
correlated with each other. Intuitively, we expect that the covariance matrix will be quite sparse and
should be block diagonal. Therefore, we predict that componentwise extrapolation will converge
faster than global extrapolation. We may apply a statistical test for diagonality of large dimensional
covariance matrices (see Kapetanios, 2004) to rigorously justify our prediction. However, we did
not perform such a test because existing tests are prohibitively expensive given the size of our ma-
trix and they are not applicable to test block diagonality. Instead, we randomly sampled subsets of
training sentences and examined the resulting small covariance matrices. We found that the matrices
were block diagonal. Therefore, we maintain our prediction that componentwise extrapolation will
be more effective in this task.

Figure 5 to 7 give the comparison of the rates of convergence of PGIS, TJPGIS, CTJPGIS and
L-BFGS and Table 4 provides their performance data. We draw the following conclusions from the
results.
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• Both TJPGIS and CTJPGIS accelerate PGIS drastically for all three tasks by many orders
of magnitude. The trials for PGIS were cut off because they were still too far away from
convergence for all data sets.

• As predicted, CTJPGIS is more than three times as fast as TJPGIS for all three tasks.

• CTJPGIS can compete with L-BFGS, winning in two out of three tasks, in terms of both rate
of convergence and CPU time.

• Both TJPGIS and CTJPGIS can achieve F-scores as good as L-BFGS and those reported in
the literature (see Table 3).
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Figure 5: Comparison of F-scores of PGIS,TJPGIS, CTJPGIS, and L-BFGS as a function of the
number of iterations for CoNLL-2000 data set.

6. Conclusions

In this paper, we verify that, when the componentwise rate of convergence is different from the
global rate of convergence, componentwise extrapolation should be preferred. We show that the
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Figure 6: Comparison of F-scores of PGIS,TJPGIS, CTJPGIS, and L-BFGS as a function of the
number of iterations for BioNLP/NLPBA-2004 data set.

componentwise rate and the global rate of convergence are different if the Jacobian of the fixed-
point iteration mapping is diagonal or block diagonal.

We proceed to compare two simple mixtures of Gaussians models. One has a diagonal Jacobian
and the other’s is not. Experimental results with these models are consistent with our claim. We then
analyze the Bayesian networks and identify analytical conditions for a general Bayesian network to
have a block diagonal Jacobian. Based on the analysis results, we predict that for a particularly
sparse data set with a large proportion of missing data, componentwise extrapolation should be
preferred. The results are applied to the Alarm network and the semi-supervised Bayesian classifier
model. Again, experimental results show that the componentwise triple jump method can quickly
reach the optimum in a small number of iterations, consistent with our prediction.

Then we consider the GIS algorithm for training CRFs. We derive a penalized variant of GIS,
PGIS, so that we can apply the triple jump extrapolation method. Our experimental results on
synthesized data are consistent with our claim. Then we showed that the Jacobian of PGIS for
large-scale entity recognition tasks is quite likely to be block diagonal and thus we predicted that
CTJPGIS will perform the best in terms of convergence rate. Again, the results match our prediction.
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Figure 7: Comparison of F-scores of PGIS,TJPGIS, CTJPGIS, and L-BFGS as a function of the
number of iterations for BioCreative II data set.

Data set L-BFGS CTJPGIS TJPGIS PGIS
CPU Time (sec) 583 816 3001 >41463

CoNLL-2000 Iteration 427 619 2316 >30906
Final F-score (%) 93.95 93.94 93.98 >93.35
CPU time (sec) 63158 38800 132286 >162462

BioNLP/NLPBA-2004 Iteration 1961 1279 4117 >5161
Final F-score (%) 70.33 70.26 70.32 >62.13
CPU time (sec) 4615 3011 9114 >17656

BioCreative II Iteration 895 639 1974 >3926
Final F-score (%) 86.77 86.49 86.49 >69.30

Table 4: Performance comparison of PGIS,TJPGIS, CTJPGIS, and L-BFGS for CoNLL-2000,
BioNLP/NLPBA-2004 and BioCreative II data sets.

Moreover, we also show that CTJPGIS can compete with L-BFGS, the de facto standard training
algorithm for CRF training.
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Our results suggest that when considering accelerating a bound optimization method with the
triple jump extrapolation method, in the following cases, componentwise extrapolation should be
applied.

• for Bayesian networks, check if the data set is sparse;

• for CRFs, check if the features are not correlated.

For other bound optimization methods, we can check the diagonality of the Jacobian to determine
which extrapolation strategy will produce a better speedup.
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Appendix A. Proofs

Proof of Lemma 7:

∂wijk

∂θijk′
= − eθijkeθijk′

(
∑

k′′ e
θijk′′ )2

= −wijkwijk′

∂wijk

∂θijk
=

eθijk∑
k′′ e

θijk′′
−
(

eθijk′∑
k′′ e

θijk′′

)2

= wijk(1 − wijk).

Proof of Lemma 8:
We rewrite P (y) for θijk as:

P (y) =
∑
j′,k′

P (uij′ , xik′ , y)

=
∑
j′,k′

P (uij′)P (xik′ |uij′)P (y|uij′ , xik′)

=
∑
j′,k′

P (uij′)wij′k′P (y|uij′ , xik′).

Note that P (uij′), the prior of uij′ , is not a function of wijk based on the parameter independence
assumption of Bayesian networks. Besides, P (y|uij′ , xik′) is not a function of wijk. If there exists
conflict between (uij′ , xik′) and the corresponding values in y, P (y|uij′ , xik′) = 0. Otherwise,

P (y|uij′ , xik′) =
P (uij′ ,xik′ ,y)

P (uij′ ,xik′)
in which both P (uij′ , xik′ , y) and P (uij′ , xik′) contain wij′k′ and

thus wij′k′ can be eliminated.
Therefore, ∂

∂θijk
P (y) is:

∂

∂θijk
P (y) =

∑
j′,k′

P (uij′)P (y|uij′ , xik′)
∂

∂θijk
wij′k′

=
∑
k′
P (uij)P (y|uij , xik′)

∂

∂θijk
wijk′ .
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Based on Lemma 7, the above equation can be further simplified:

∂

∂θijk
P (y) = P (uij)P (y|uij , xik)

∂

∂θijk
wijk +∑

k′ �=k

P (uij)P (y|uij , xik′)
∂

∂θijk
wijk′

= P (uij)P (y|uij , xik)wijk(1 − wijk) −∑
k′ �=k

P (uij)P (y|uij , xik′)wijkwijk′

= P (uij)P (y|uij , xik)wijk −
wijk

∑
k′
P (uij)P (y|uij , xik′)wijk′

= P (uij , xik, y) − wijk

∑
k′
P (uij , xik′ , y)

= P (uij , xik, y) − wijkP (uij , y). (31)

When uij d-separates the observations in y − {uij} and Xi, Eq. (31) can be rewritten as:

P (uij , xik, y) − wijkP (uij , y)
= P (xik|uij , y)P (uij , y) − wijkP (uij , y)
= wijkP (uij , y) − wijkP (uij , y) = 0.

Proof of Theorem 9:
The first condition is straightforward. The second condition can also be proved by Lemma 8.

From Eq. (25), we have

∂2

∂θi′j′k′∂θijk
log P (y)

=
1

P (y)
∂

∂θi′j′k′
(P (uij , xik, y) − wijkP (uij , y))

=
1

P (y)
∂

∂θi′j′k′
P (uij , xik, y) − P (uij , y)

∂

∂θi′j′k′
wijk

−wijk
∂

∂θi′j′k′
P (uij , y). (32)

We can consider y′ = y ∪ {uij , xik} as another observed training data, and ui′j′ d-separates y′ and
xi′k′ . By Lemma 8, we obtain that ∂

∂θi′j′k′
P (uij , xik, y), the first term of the above equation, is 0.

Similarly, ∂
∂θi′j′k′

P (uij , y) = 0. Besides, Lemma 7 describes that ∂
∂θi′j′k′

wijk = 0 here. Therefore,

Eq. (32) is also 0 under the second condition.
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Proof of Lemma 10:
We start from

∂2 log P (y)
∂θijk′∂θijk

=
∂

∂θijk′
(P (uij , xik|y) − wijkP (uij |y)) .

If uij and xik are exactly the observed values in y, P (uij , xik|y) and P (uij |y) are 1 and the above
equation becomes:

∂2 log P (y)
∂θijk′∂θijk

=
∂

∂θijk′
(1 − wijk) .

From Lemma 7, the second order partial derivative is −wijk(1 − wijk) if k′ = k, is wijkwijk′ if
k′ 	= k, and is 0 otherwise.

Proof of Theorem 11:
Let p̃(w) denote the number of times that the predicate in w occurs in the data set D. For

example, suppose wijk = Pr(Xi = xik|Ui = uij), then p̃(wijk) is the number of times that
Xi = xik|Ui = uij occurs in D.

log f(D|θ) = log
∏
y

∏
i

eθijk∑
k′ e

θijk′

=
∑
ijk

p̃(wijk)(log eθijk − log
∑
k′
eθijk′ )

=
∑
ijk

p̃(wijk)(θijk − log
∑
k′
eθijk′ )

=
∑
ijk

p̃(wijk)θijk −
∑
ij

p̃(wij) log
∑
k′
eθijk′ .

Therefore,

∂ log f(D|θ)
∂θijk

= p̃(wijk) −
∂
∑

ij P̃ (wij) log
∑

k′ eθijk

∂θijk

= p̃(wijk) −
∑
ij

p̃(wij) · eθijk∑
k′ e

θijk′
.

For θi′j′k′ , i′ = i, j′ = j, k′ = k or k′ 	= k, we have ∂2 log f(D|θ)
∂θi′j′k′∂θijk

= eθijk · θijk�
k′ e

θ
ijk′ ; for θi′j′k′ ,

i′j′k′ 	= ijk, ∂2 log f(D|θ)
∂θi′j′k′∂θijk

= 0.

Proof of Theorem 13:
In the first condition, if Xi is not observed, Xi is d-separated with y by the cluster node. Based

on the first condition in Theorem 9, ∂2

∂θi′j′k′∂θijk
logP (y) = 0.

In the second condition, if Xi′ is not observed, Xi′ is d-separated with {y, xik} by the cluster
node. Based on the second condition in Theorem 9, ∂2

∂θi′j′k′∂θijk
log P (y) = 0.
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Proof of Corollary 14:
The three conditions are the complement of Theorem 13. The class variable and feature vari-

ables are probabilistically dependent because there are direct links between the class and feature
variables. Therefore, we know from Lemma 8 that the derivative of log P (y) with respect to the
parameters of the class variable is not guaranteed to be zero because y cannot be d-separated from
the class variable. Accordingly, the first is true and the second condition can be easily verified. The
third condition is true because Xi and Xi′ are not independent of y.

Proof of Theorem 15: From Eq. (26) and Eq. (27), the penalized log-likelihood function is:

L(θ) =
∑

k

[θTF (xk, yk) − lnZθ(xk)] −
∑

i

(θi − μ)2

2σ2

Note that lnZ(θ) ≤ Z(θ)/Z(ψ)+ lnZ(ψ)−1 for any ψ, and exp
∑

i θigi(x) ≤
∑

i gi(x) exp θi +
[1 −∑

i gi(x)], with
∑

i gi(x) ≤ 1. We have a lower bound:

L(θ) ≥
∑
x,y

p̃(x, y)
∑

i

θifi(x, y) − lnZ(ψ) +
∑
x,y

p(x, y|ψ)
∑

i

fi(x, y)
s

−

∑
x,y

p(x, y|ψ)
∑ fi(x, y)

s
exp[s(θi − ψi)] −

∑
i

(θi − μ)2

2σ2

≡ G(θ, ψ)

Let M be the PGIS mapping. Applying the Taylor expansion of M around θ∗, we have:

θt+1 ≈ θ∗ +M ′(θ∗)(θt − θ∗)

Near a local optimum, this matrix is related to the curvature of the function G(θ, ψ):

lim
θt→θ∗

M ′(θt) = −[∇2
G(θ∗, ψ∗)][∇2

G(θ∗)]−1 (33)

where the mixed partial derivatives and Hessian are defined as:

∇2
G(θ∗, ψ∗) ≡

[
∂2G(θ, ψ)
∂θ∂ψT

∣∣∣∣ θ = θ∗

ψ = θ∗

]
∇2

G(θ∗) ≡
[
∂2G(θ, ψ)
∂θ∂θT

∣∣∣∣ θ = θ∗

ψ = θ∗

]
Using these to compute second order statistics, we have:

∇2
G(θ∗) = −s diag[F̄ (θ)] − Λ = −sD(θ∗) − Λ

∇2
G(θ∗, ψ∗) = s diag[F̄ (θ)] −[∑

x,y

p(x, y|θ∗)F (x, y)F (x, y)T − [F̄ (θ∗)][F̄ (θ∗)]T
]

= sD(θ∗) − Cov(θ∗)
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where Λ is

∂2
∑

i
(θi−μ)2

2σ2

∂θ∂θT
=

⎛⎜⎜⎜⎝
1
σ2 01

σ2

. . .
0 1

σ2

⎞⎟⎟⎟⎠ = diag(
1
σ2

).

According to Eq. (33), Jacobian M′(θ∗) is of the form:

∂M(θ)
∂θ

∣∣∣∣
θ=θ∗

= [sD(θ∗) − Cov(θ∗)][−sD(θ∗) − Λ]−1

= [sD(θ∗) − Λ][−sD(θ∗) − Λ]−1 +
[Cov(θ∗) + Λ][−sD(θ∗) − Λ]−1

= I − 1
s
[Cov(θ∗) + Λ][D(θ∗) +

1
s
Λ]−1
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