
TR-IIS-07-017

BibPro: A Citation Parser Based on
Sequence Alignment Techniques

Kai-Hsiang Yang, Chien-Chih Chen, Jan-Ming Ho

Oct. 30, 2007 || Technical Report No. TR-IIS-07-017
http://www.iis.sinica.edu.tw/page/library/LIB/TechReport/tr2007/tr07.html

BibPro: A Citation Parser Based on Sequence Alignment
Techniques

Kai-Hsiang Yang
Institute of Information Science,

Academia Sinica,
Taipei,Taiwan

khyang@iis.sinica.edu.tw

Chien-Chih Chen
Institute of Information Science,

Academia Sinica,
Taipei,Taiwan

rocky@iis.sinica.edu.tw

Jan-Ming Ho
Institute of Information Science,

Academia Sinica,
Taipei,Taiwan

hoho@iis.sinica.edu.tw

ABSTRACT
The dramatic increase in the number of academic publications has

led to a growing demand for efficient organization of the

resources to meet researchers’ specific needs. As a result, a

number of network services have compiled databases from the

public resources scattered over the Internet. Furthermore, because

the publications utilize many different citation formats, the

problem of accurately extracting metadata from a publication list

has also attracted a great deal of attention in recent years. In this

paper, we extend our previous work by using a gene sequence

alignment tool to recognize and parse citation strings from

publication lists into citation metadata. We also propose a new

tool called BibPro. The main difference between BibPro and our

previously proposed tool is that BibPro does not need any

knowledge databases (e.g., an author name database) to generate a

feature index for a citation string. Instead, BibPro only uses the

order of punctuation marks in a citation string as its feature index

to represent the string’s citation format. Second, by using this

feature index, BibPro employs the Basic Local Alignment Search

Tool (BLAST) to match the feature’s citation sequence with the

most similar citation formats in the citation database. The

Needleman-Wunsch algorithm is then used to determine the best

citation format for extracting the desired citation metadata. By

utilizing the alignment information, which is determined by the

best template, BibPro can systematically extract the fields of

author, title, journal, volume, number (issue), month, year, and

page information from different citation formats with a high level

of precision. The experiment results show that, in terms of

precision and recall, BibPro outperforms other systems (e.g.,

INFOMAP and ParaCite). The results also show that BibPro

scales very well.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Retrieval.

General Terms
Algorithms, Documentation.

Keywords
Citation Extraction, Sequence Alignment, Digital Library, Data

Integration, Data Cleaning.

1. INTRODUCTION
Parsing citations is essential for integrating bibliographical

information published on the Internet. The technique can also be

used in other applications, such as field-based searching, author

analysis of publications, and citation analysis [5]. However, it is

difficult to design a system that can automatically parse citations

scattered over the Internet because, in addition to the problem of

technical typing errors, there are many different citation

styles/formats. Citations can include a number of fields (e.g.,

author, title, publication information) arranged in many different

formats depending on the type of publication (e.g., book, journal,

conference paper, research report, or technical report). Therefore,

extracting the required fields from citations is a challenging task.

Numerous works on extracting metadata from citations are

reported in literature [1-12, 16]. The approaches can be roughly

classified into three categories: learning-based, template-based

and rule-based approaches.

Learning-based methods utilize machine learning techniques (e.g.,.

the Hidden Markov Model (HMM) [7, 8], Support Vector

Machines (SVM) [6], and Conditional Random Fields (CRF) [5]).

Among them, CRF achieves the best performance with an overall

word accuracy of 95.37% on the Cora reference dataset [5, 17],

which contains 500 references covering thirteen fields: author,

title, editor, book title, date, journal, volume, tech, institution,

pages, location, publisher, and note.

Template-based methods utilize template databases with various

styles of citation templates (e.g., ParaCite [16] and INFOMAP

[11,12]). ParaCite has been integrated with the EPrints.org

software, and links with CiteBase, RefLink, and ISI Web of

Science [16] are currently under consideration. INFOMAP is a

hierarchical template-based reference metadata extraction method

with an overall average accuracy level of 92.39% for the six

major citation styles detailed in [12].

Rule-based methods are widely used in real-world applications.

For example, CiteSeer [1-4] is a well-known search engine and

digital library that uses heuristics to extract certain subfields. It

identifies titles and author names in citations with roughly 80%

accuracy and page numbers with roughly 40% accuracy [1].

In a previous work [10], we proposed a template-based citation

parser that achieved approximately 80% precision, but it had a

number of drawbacks. First, because template construction relies

on an author name database for the token matching process, the

size of the author database directly affects the accuracy of the
Copyright 2007 ACM 1-58113-000-0/00/0004…

template database. Second, the parser uses several heuristic rules

to transform a citation string into templates, but the rules may

only work for some special cases. The same problem arises when

metadata is extracted from a citation string by referencing a

template. Finally, during the matching process, there is high

probability of mismatching templates with other templates that

have same similarity score. We call this the "template conflict"

problem. Generally, the larger the template database, the more

serious the problem will be.

In this paper, we propose a new framework, called BibPro, for the

citation parser. BibPro retains the advantages of our previous

work (e.g., it uses protein sequences to represent citations and the

Basic Local Alignment Search Tool (BLAST) to find similar

templates), and resolves the weaknesses. Instead of relying on an

author name database and heuristic rules, BibPro uses the order of

punctuation marks in a citation string as a feature to represent the

string’s citation style. Furthermore, to find the template with the

highest similarity score, we use the Needleman-Wunsch algorithm

[15] in conjunction with BLAST to extract metadata from citation

strings and align the features (a protein sequence) with the

templates in our template database. In other words, BibPro

extracts metadata systematically from the strings by referencing

the alignment information of the matched template. Because of

these two modifications, BibPro does not need any heuristics, and

thus overcomes the template conflict problem. Figure 1 shows an

example of extracting metadata from a citation string, where

BibPro can be used to extract several common fields, such as

author, title, journal, volume, number (issue), page, month, and

year information, from a citation string.

The remainder of this paper is organized as follows. In Section 2,

we explain the concepts behind BibPro and describe its

architecture. In Section 3, we detail the experiment results and

compare BibPro with several related works. Then, in Section 4,

we present our conclusions and discuss some interesting

directions for future research.

2. BIBPRO: CITATION PARSER
2.1 Basic Ideas
Our system is based on two concepts. The first uses a protein

sequence to represent a citation string. We split a citation string

into several tokens and use an amino acid symbol to represent

each token. Figure 2 shows an example of a citation string

transformed into a protein sequence

“AAADTTTTDLLLLDYRPHS”. When transforming a citation

string into a protein sequence, Bibpro only transfers important

features (e.g., the order of the fields and the field separators) from

the citation string to the protein sequence. Redundant information

is filtered out to simplify the problem and accelerate the parsing

process. A protein sequence is designed to capture some features

of the citation string. The sequence is then matched with

previously known templates by BLAST [13, 14], a well-

developed protein sequence matching program that searches

protein sequence databases for sequences that are most similar to

the target sequence. After a template has been selected as the first

priority by BLAST, Bibpro partitions and extracts the desired

metadata from the citation string.

Because citation strings of the same style have similar

punctuation marks and reserved words, the order of the

punctuation marks in a string must be fairly significant to identify

the citation style. Our second concept utilizes this structural

property as a feature index in BLAST to help match citation

styles and parse citation strings according to their respective

citation styles.

Based on these two concepts, Bibpro consists of two phases: a

system preprocessing phase and an online parsing phase. The goal

of the first phase is to generate feature indices for all previously

known citation styles in advance so that BLAST will be able to

better match citation styles in the second phase (see Figure 3a.).

During the online parsing phase, BibPro uses BLAST [13, 14] to

Figure 2. Transforming a citation string to a protein
sequence.

Figure 3. System preprocess and online parsing phases.

Figure 1. Extraction metadata from a citation string.

find a citation style with a feature index similar to that of the

citation string. BibPro then accurately extracts metadata from this

citation string. In the following subsections, we introduce each

component and the feature indices used in our system.

2.2 Form Translation
In order to use BLAST to match similar citation styles, we need to

transform incompatible citation strings into compatible protein

sequences. Therefore, we need to consider a number of questions:

How many symbols can be used in a protein sequence?

How many fields should be extracted from a citation string?

How do we transform a citation string into a protein sequence

and retain its citation style information?

Having considered the above questions, we created an encoding

table to define the relationships between the tokens in a citation

string and the symbols in protein sequences, as shown in Table1.

Table 1. Encoding Table

A: Author

T: Title

L: Journal

F: Volume value

W: Issue value

H: Page value

X: noise (unrecognized token)

M: Month

Y: Year (number: 1900-2010)

S: Issue key. e.g. “no”, “No”

P: Page key. e.g. “pp”, “page”

V: Volume key. e.g. “Vol”, “vo”

N: numeral

Q: @ # $ % ^ & * + = \ | ~ _
/ ! ?

I: ([{ <

K:)] } >

D: .

G: " “ ”

R: ,

C: - :

E: ' `

Z: ;

B: blank (use one B＂ to
replace continuous X＂)

The design of the encoding table is based on the following

observations:

BLAST can only process sequences with 23 different symbols,

so we use these 23 symbols to represent different fields, and

use field separators to keep the citation style information in

sequence.

The most common fields in citation strings are: author, title,

journal, volume, number, page, issue, month and year. Thus,

we focus on extracting these fields from citation strings and

assign a symbol to represent each field.

The most common reserved words used in citation string are:

"vo", "vol", "no", "NO", "pp", and "page". Since these words

are also used to separate fields, we use a symbol to represent

each kind of reserved word.

The punctuation marks normally used to separate fields are: " ,

", " . ", " ; ", " : ", " " " and " ' ". Hence we assign each

punctuation mark a symbol to represent it.

Brackets and parentheses are synonymous in citation strings,

so we use one symbol to represent both.

Several kinds of punctuation marks appear in the title field,

such as: " - ", " ! ", " ? ". However, we only use one symbol to

represent all of them because they do not separate fields.

Figures 4 and 5 show examples of citation strings transformed

into protein sequences. Figure 4 shows that when a citation

string’s partitions are pre-determined, we can correctly label each

token. Because this form is the correct encoding of the protein

sequence, we call it the "RESULT FORM", and if we can

correctly transform a citation string to its RESULT FORM, it is

easy to extract information for the citation string. However, when

parsing a given citation string online, as Figure 5 shows, we can

only label each token based on its content. If we find

unrecognized tokens, we replace them with a "X". We call this

protein sequence the "BASE FORM". Thus, the process of

parsing citation strings can be stated more simply as the

transformation of target citation strings from their BASE FORM

into their RESULT FORM.

To transform a citation string from its BASE FORM into its

RESULT FORM, we need to know its citation style. For this

reason, we define several forms of a protein sequence for our

mining process:

STYLE FORM: To store information about different citation

styles, BibPro generates a style form for each style in the

preprocessing phase. The style form is then used to partition

citation strings during the online parsing phase. The RESULT

FORM can represent style information for specific citation

strings, but it has a lot of excess information, such as the

length of author, title, and journal fields. We therefore

condense the redundant information in the RESULT FORM by

using one of each symbol to represent the above fields, as

shown in Figure 6. This sequence, called the "STYLE FORM",

is used to represent a citation style.

INDEX FORM: To recognize the style of a citation string, we

need to define a form to represent the feature index shown in

Figure 3. We only use the order of punctuation marks in

citation strings as the feature index. Figure 7 shows an

example of the transformation of a citation string from its

BASE FORM into what we call its “INDEX FORM” by

removing all other unrecognized tokens. The INDEX FORM is

the protein sequence that BLAST will try to match with similar

sequences in the template database, so it is like an index used

in a conventional database.

ALIGN FORM: Parsing a citation string online is a difficult

task, even after BLAST has determined its corresponding

template. This is because the system only knows the INDEX

and STYLE FORM of the template, but many fields of the

citation like the author, title, and journal fields may contain

punctuation marks. To extract these fields correctly, we have

to remove all the punctuation marks in them. Besides, the

STYLE FORM only shows the order of fields, not the number

of authors that appear in a citation string. Hence, we cannot

partition the citation string correctly with the STYLE FORM

alone. For this reason, we use a knowledge database that

includes author and journal information to mark and group

author and journal field tokens in citation strings during the

online parsing phase. Figure 8 shows an example of author and

journal field grouping during the transformation of the BASE

FORM into what we call the "ALIGN FORM". The knowledge

database is not essential to our system, but it helps improve the

level of accuracy. The ALIGN FORM is only used to process

citation strings in the online parsing phase.

Remember that the goal of BibPro is to correctly parse the given

citation string, that is, to transform the given citation string to its

final RESULT FORM. When parsing the citation string, BibPro

does not know the RESULT FORM but could generate an answer

by using the BLAST tool to match similar citation strings in our

database. The matching process is based on the citation string’s

INDEX FORM, so that BibPro can find out candidate citation

strings with similar INDEX FORM. According to these

candidates’ STYLE FORM, BibPro then uses the Needleman-

Wunsch algorithm to perform global alignment between the

STYLE FORM and the ALIGN FORM, and extract metadata

from the given citation string. Figure 9 shows the result of global

alignment. With the alignment, BibPro is able get the RESULT

FORM from the ALIGN FORM by adding “A” (author), “L”

Figure 4. Transforming a citation string into a RESULT FORM.

Figure 5. Transforming a citation string into a BASE FORM.

(journal), and “T” (title) in the correct positions and by changing

“N” to its corresponding amino acid (e.g., an amino acid “N” may

become F [volume number], “W” [issue number] or H” [page

number]]. Finally, by checking the original citation string and the

RESULT FORM, we can parse all the metadata correctly.

2.3 System Architecture and Design
Figure 10 shows a simple flow diagram of BibPro’s processes. In

the first step, BibPro collects data, including citation strings and

their corresponding partition information, from the Internet and

uses it to build a template database. The system is then able to

provide an online citation parsing service. Hence, we can divide

BibPro into two basic systems: a template generating system and

a parsing system.

2.3.1 Template Generating System
The goal of the template generating system is to construct a large

database of templates, each of which represents a citation style.

We divide the template generating process into two phases. The

first phase collects data, including citation strings and their

corresponding metadata (partition answers), from the Internet.

The second phase uses this data to build the templates. We

developed programs to retrieve BibTeX files from the Internet.

Since the files are field-based, we can easily parse them to get the

metadata for a citation string. Then, we use the title field as a

search query to search for a citation in CiteSeer or another search

engine, e.g., Google. In this way, we can get many citation strings

and their corresponding metadata, as shown in Figure 11.

Figure 6. Transforming RESULT FORM into STYLE
FORM.

Figure 7. Transforming BASE FORM into INDEX
FORM.

Figure 10. System work flow of BibPro.

Figure 8. Transforming BASE FORM into ALIGN
FORM.

Figure 9. Aligning STYLE FORM and ALIGN FORM
to get a RESULT FORM.

Figure 11. Process of collecting template data.

BibPro can then build the template database. Because each

citation string’s partition answers are known, it is easy to

transform citation strings into their STYLE and INDEX FORMs,

as described in Section 2.2. We treat these two sequences as one

record in the template database. However, we can not store the

record in the database directly because the data collected from a

citation string may be inconsistent with its metadata. Moreover,

our token-based form translation may encounter problems if

different fields share the same token. For this reason, we designed

a template filter to ensure that a template is consistent with its

original citation string. The template filter is designed according

to some simple rules (e.g., the author, title and journal fields can

not appear more than once in a citation string). This filter enables

BibPro to build the template database automatically. Figure 12

shows the process of building a template database.

2.3.2 Parsing System
Once the template database has been compiled, BibPro can parse

a citation string on-the-fly. Like the template-generating process,

the parsing process can also be divided into two phases. In the

first phase, BLAST searches the template database for the

template most similar to that of the citation string. Then, the

encoding table transforms the citation string into its INDEX

FORM and ALIGN FORM. BibPro then uses the INDEX FORM

as a query string for BLAST to match against and find the

corresponding STYLE FORM. Since BLAST needs a scoring

table to evaluate the search results, we modified the score table to

fit the encoding table’s definitions. The complete process is

illustrated in Figure 13.

A problem may arise if the template database becomes too large

because BLAST is likely to match many STYLE FORMs with the

same similarity score. To solve this problem, in the second phase,

BibPro uses the Needleman-Wunsch algorithm to compute the

ALIGN FORMs of all the matched STYLE FORMs with the

same score. Since the algorithm also needs a score table to

evaluate the score, we added the author and journal information,

which is included in both the ALIGN and STYLE FORMs, to the

score table (see Appendix 1) . After calculating the scores, BibPro

chooses the STYLE FORM with the highest score and thereby

avoids the template conflict problem. Note that during the

alignment computation step, BibPro continues to extract metadata

from the citation string. Figure 14 illustrates the processes in the

second phase.

Figure 12. The structure of building template database.

Figure 13. Process of matching template by the BLAST.

Figure 14. Process of extracting metadata.

Figure 15. System structure of BibPro.

Figure 15 shows the combination of the parsing system and

template generating system in BibPro.

3. EXPERIMENTS AND ANALYSIS
To conduct a comprehensive evaluation, we compared BibPro

with several other systems. Because we cannot obtain their source

codes, and each of them only provides its own dataset and

performance measurements, we used their datasets with

corresponding performance measurements when comparing with

different systems, in order to have a fair comparison.

3.1 Datasets
We chose three datasets for our experiments. The first dataset,

which was compiled by [12], comprised six citation styles,

namely, JMIS, ACM, IEEE, APA, MISQ, and ISR, and included

160,000 citation strings. We randomly selected 10,000 strings to

build the template database and another 10,000 citation strings for

testing. We refer this dataset as D1.

The second dataset was created by the Cora project [5, 17]. It

comprises 500 citation strings, each of which contains 13 fields:

author, title, editor, book title, date, journal, volume, tech,

institution, pages, location, publisher, and note. We used 350

citation strings for training and the remaining 150 for testing. We

refer this dataset as D2.

The third dataset was obtained from CiteSeer and contained 6,500

citation strings. We developed two programs: one to retrieve the

BibTeX files from each citation string on the Internet; and the

other for choosing the title field to search the citations in CiteSeer

so that we could compile the citation strings and their

corresponding metadata. We used 2,500 citation strings for

training and 4,000 for testing. We refer this dataset as D3.

The citation strings in D1 are more regular than those in D2 and

D3 because they were generated from existing data. Moreover,

the citation styles only differ in the order of the fields and the

separators of the fields. In other words, there are no variations in

the citation string formats. The D2 dataset is more complex than

D1; however, it only contains 500 records, which are insufficient

to express every type of citation style. We therefore collected real

data from the Internet to generate the D3 dataset, which is more

varied and fits real-world applications better.

3.2 Performance Measurements
We use different performance measurements for the datasets in

our experiments. The first measurement, which is also used in [11,

12] is

fieldsofnumberTotal

fieldsextractedcorrectlyofNumber
Accuracy

This accuracy measurement, called EVAL1, is used to evaluate

the system’s performance on the D1 dataset.

The second measurement, defined in [5], is calculated as follows:

Word accuracy: assume that A is the number of true positive

words, B is the number of false negative words, C is the

number of false positive words, D is the number of true

negative words, and A + B + C + D represents the total

number of words. The word accuracy is calculated

by: DCBA

DA

F1-measure: The Precision, Recall and F1 measures are

defined as follows.

RecallPrecision

RecallPrecision2
F1

BA

A
Recall

CA

A
Precision

This measurement, called EVAL2, is used to evaluate the

system’s performance on the D2 dataset.

The third measurement is used for the D3 dataset. For this dataset,

the metadata in BibTeX that we collected from the Internet should

be consistent with the metadata of the citation string.

Unfortunately, some of the BibTeX metadata from the Internet

does not fit the corresponding citation string. To resolve this

problem, we developed the following measurement to determine

whether the data is correctly parsed.

]Token[Token#

]Token[Token#
 PrecisionField

BibTexcitationquery

fieldBibTexfieldparsed

where
fieldparsedToken denotes tokens that appear in the parsed

subfield;
citationqueryToken denotes tokens that appear in the query

citation string;
fieldBibTexToken denotes tokens that appear in a

specific subfield in the BibTeX file; and
BibTexToken denotes all

tokens that appear in the BibTeX file.

The denominator represents the number of the tokens in both the

citation string and the BibTeX file, while numerator represents

the number of correctly parsed tokens. We use this measurement,

called EVAL3, to compare BibPro with ParaCite.

Using these three measurements, we can compare BibPro with

other systems and derive more reliable experiment results.

3.3 Experimental Results
3.3.1 Comparison with INFOMAP
The first experiment compares BibPro with INFOMAP [11, 12].

We used EVAL1 on the D1 dataset; the results are shown in Table

2. BibPro outperforms INFOMAP with an overall average

accuracy for the six styles of 97.68% versus 92.39% for

INFOMAP. Furthermore, in all fields, except the journal field,

BibPro achieves a higher average accuracy level than INFOMAP.

More specifically, BibPro is at least 5% more accurate in the

author, title, issue and page fields. Similarly, of the six different

citation styles mentioned earlier, BibPro excels in all styles except

the MISQ style. To verify the scalability, we use the same

template database and evaluation to test the full 150,000 citation

strings, and the overall average accuracy is 94.85% as shown in

Table 3. The results show that BibPro can achieve a better

performance than INFOMAP. Furthermore, it is reliable when the

dataset is regular and clean.

Table 2. Extraction results of BibPro and INFOMAP on D1
using EVAL1.

Citation
Style Author Title Journal Volume Issue Year Page

Overall

Avg.

APA

IEEE

ACM

ISR

MISQ

JMIS

Bib

Pro

Avg.

APA

IEEE

ACM

ISR

MISQ

JMIS

INFO

MAP

Avg.

Table 3. Extraction results of BibPro on 150,000 citation
strings using EVAL1.

Citation
style Author Title Journal Volume Issue Year Page

Overall

Avg.

APA

IEEE

ACM

ISR

MISQ

JMIS

Avg.

3.3.2 Comparison with CRF and HMM
In the second experiment, we compared BibPro with the CRF and

HMM systems, using EVAL2 as the performance measurement

for the D2 dataset. The results are shown in Table 4. We compare

BibPro with these systems because it is designed to extract the

most common fields for citation strings; therefore, we could only

measure the accuracy of the author, title, journal, volume, issue,

page, month and year fields in a citation string. Moreover, we use

the month and year fields to represent the date field and ignore the

issue field because it was not included in the D2 dataset. The

results show that BibPro is more accurate than HMM, but less

accurate than CRF. However, since the D2 dataset only contains

500 records, it is not large enough to evaluate the performance of

a real-world system. Furthermore, the D2 dataset comprises

multiple styles that are difficult to differentiate. However, since

BibPro automatically builds a feature list for each known template

during the token matching step, it does not work very well with

citation strings that have ambiguous tokens, such as those in D2.

Thus, the results suggest that the size of the dataset and the

variety of the citation strings in the dataset may have a strong

impact on the system’s performance.

Table 4 Extraction results of HMM, CRF and BibPro on D2
using EVAL2.

HMM CRF BibPro

acc. F1 acc. F1 acc. F1

Author

Booktitle

Date

Editor

Institution

Journal

Location

Note

Pages

Publisher

Tech

Title

Volume

3.3.3 Comparison with ParaCite
In this experiment, we compared BibPro with ParaCite [16] using

EVAL3 as the performance measurement on the D3 dataset. The

results are detailed in Table 5. Since the source code for ParaCite

is available on the Internet, we can use the D3 dataset, which was

compiled by our automatic programs to compare ParaCite’s

performance with that of BibPro. Because ParaCite does not

automatically build templates, we use ParaCite’s default template

database to test the D3 dataset, which contains about 4000 records.

Moreover, because ParaCite can only extract one author name per

citation string, its accuracy in the author field is much lower than

that of BibPro. From Table 5, we observe that, in terms of

accuracy, BibPro outperforms the ParaCite system by more than

20% in all fields, except the title field, and by as much as 90% in

the page field. BibPro achieves a better performance than

ParaCite because the D3 dataset consists of real data, which is

more complex than regular datasets. However, comparing the

accuracy level of the different fields in BibPro, it is interesting to

note that the average accuracy for the title and journal fields is

consistently lower than it is for other fields. This is probably due

to the frequent variability (the variability in punctuation e.g., "-",

".", and "?") in the title and journal fields.

Table 5 Extraction results of ParaCite and BibPro on D3
using EVAL3.

Author Title Journal Volume Page Issue Month Year

Bib

Pro

Para

Cite

3.4 Analysis
We now consider several important factors that can influence the

performance of BibPro. The factors are the benchmark, score

matrix, knowledge database, and template database. Our

experiment results suggest that the origin of target datasets affects

the performance substantially. In addition, the more regular the

dataset is, the higher the level of accuracy will be. To determine

what other factors reduced the accuracy level, we checked the

datasets manually. Our findings are listed below.

[Template Creating Error]: Since the process of

transforming a citation string into its STYLE FORM depends

on token matching, problems may arise when tokens with

ambiguous meanings are encountered. For example, the

inclusion of numbers or people’s names in the title field may

affect the accuracy of the author and year fields. We applied a

template filter to alleviate this problem, but it still affects

BibPro’s performance to some degree.

[Extraction Alignment Error]: Even though BLAST can find

templates with a high degree of similarity to the target citation

strings during the online parsing phase, errors in alignment

continue to occur during the extraction process. There may be

several different alignments with templates that have the same

similarity score. Hence, in the trace-back stage of global

alignment, there may be many paths to trace back, but it is

very difficult to choose the correct path automatically.

[Database Completeness Problem]: Because we use the

template database as training data, the comprehensiveness of

the template database and knowledge database has a strong

influence on the performance of BibPro.

Since BibPro’s performance depends to a large extent on the

template database, our primary interest is to determine how we

can automatically generate each template’s feature index as

precisely and efficiently as possible. However, as we use a token

matching technique to recognize templates, it is difficult to create

the correct feature index when citation styles are very complex.

This is an interesting problem that we will consider in our future

work.

We also applied two sequence alignment techniques in BibPro:

BLAST and the Needleman-Wunsch algorithm. Both techniques

are based on dynamic programming, so they need score matrices

to evaluate the alignment results. The score matrix can be

adjusted as necessary to meet different requirements. In this paper,

we adjusted the score matrix to fit our experiments, as detailed in

Appendix 1.

4. CONCLUSION AND FUTURE WORK
Parsing citations is a challenging problem due to the diverse

nature of citation styles. In this paper, we have proposed a

template-based citation parsing system called “BibPro.” It not

only adds new citation templates easily, but also searches for the

most similar templates so that it can extract metadata from

citation strings rapidly. In BibPro, we use the order of punctuation

marks in a citation string as features of the string’s citation style.

We then transform citation strings into protein sequences and

apply two sequence alignment techniques, BLAST and the

Needleman-Wunsch algorithm, to find the most similar template

for the online parsing process. To evaluate the performance of

BibPro, we compare it with some other systems by implementing

experiments with various evaluation measures and datasets. The

experiment results show that BibPro performs well when good

quality template databases are used for training.

There are still several challenges to address when implementing

BibPro in real world applications. One challenge is that it is

difficult to get accurate, large-scale training datasets to cover all

kinds of citation styles. Moreover, the training data we can collect

from the Internet may contain a variety of errors, such as missing

values, spelling errors, inconsistent abbreviations, and extraneous

tokens [9]. Another challenge is that different publication types

use a variety of information fields. It is difficult to extract all the

information fields from each of the publication types. Therefore,

in this paper, we concentrate on the most common information

(fields) for all publication types. In the future, we will try to

determine how we can generate the system templates more

precisely and efficiently, and thus make BibPro more practical for

real-world applications.

5. REFERENCES
[1] Giles, C. L., Bollacker, K. D., and Lawrence, S. CiteSeer: an

automatic citation indexing system. Digital Libraries 98
Pittsburgh PA USA, 1998.

[2] Bollacker, K. D., Lawrence, S., and Giles, C. L. CiteSeer: an

autonous Web agent for automatic retrieval and

identification of interesting publications. In Proceedings of
the Second international Conference on Autonomous Agents,

1998.

[3] Lawrence, S., Giles, C. L., and Bollacker, K. D. Autonomous

citation matching. In Proceedings of the Third Annual
Conference on Autonomous Agents, 1999.

[4] Lawrence, S., Giles, C. L., and Bollacker, K. D. Digital

Libraries and Autonomous Citation Indexing. IEEE
Computer, 32, 1999, 67-71.

[5] F. Peng, A. McCallum. Accurate information extraction from

research papers using conditional random fields.

Proceedings of Human Language Technology Conference
and North American Chapter of the Association for
Computational Linguistics (HLT-NAACL), 2004, 329-336.

[6] Hui Han, Giles, C.L., Manavoglu, E., Hongyuan Zha,

Zhenyue Zhang, Fox, E.A. Automatic document metadata

extraction using support vector machines. Proceedings of the
3rd ACM/IEEE-CS Joint Conference on Digital libraries,

2003, 37-48.

[7] K. Seymore, A. McCallum, R. Rosenfeld. Learning

hiddenMarkov model structure for information extraction.

AAAI-99Workshop on Machine Learning for Information
Extraction, 1999, 37-42.

[8] Takasu, A. Bibliographic attribute extraction from erroneous

references based on a statistical model. Proceedings of the
3rd ACM/IEEE-CS Joint Conference on Digital libraries,

2003, 49-60.

[9] Agichtein, E. and Ganti, V. Mining reference tables for

automatic text segmentation. In Proceedings of the Tenth
ACM SIGKDD international Conference on Knowledge
Discovery and Data Mining (Seattle, WA, USA, August 22 -

25, 2004). KDD '04. ACM Press, New York, NY, 2004, 20-

29.

[10] I-Ane Huang, Jan-Ming Ho, Hung-Yu Kao, and Shian-Hua

Lin. Extracting citation metadata from online publication

lists using BLAST. In PAKDD, 2004, 539-548.

[11] Min-Yuh Day, Tzong-Han Tsai, Cheng-Lung Sung, Cheng-

Wei Lee, Shih-Hung Wu, Chorng-Shyong Ong, Wen-Lian

Hsu. A Knowledge-based Approach to Citation Extraction.

in Proceedings of the IEEE International Conference on
Information Reuse and Integration (IEEE IRI 2005), Las

Vegas, Nevada, USA, 2005, 50-55.

[12] Min-Yuh Day et al. Reference metadata extraction using a

hierarchical knowledge representation framework. Decision
Support Systems, 2006.

[13] S. F. Altschul, W. Gish, W. Miller, E. Myers and D. Lipman.

A basic local alignment search tool. J. Mol. Biol., 215, 1990,

403-410.

[14] http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/similarit

y.html

[15] Needleman, S. B. and Wunsch, C. D. A general method

applicable to the search for similarities in the amino acid

sequence of two proteins. J. Mol. Biol., 48, 1970, 443-453.

[16] http://paracite.eprints.org/

[17] http://www.cs.umass.edu/~mccallum/code-data.html

6. APPENDIX 1: DEFAULT PARAMETER
BLAST and the Needleman-Wunsch algorithm both use score

tables to evaluate their alignment results. Figure 16 shows the

score table used for BLAST, while Figure 17 shows the score

table used for the Needleman-Wunsch algorithm.

Figure 17. The score table used in Needleman-Wunsch
algorithm.

Figure 16. The score table used in BLAST.

