

 TR-IIS-06-004

A Test for Interval Graphs on Noisy
Data –

DNA Fragment Assembly

Wei-Fu Lu and Wen-Lian Hsu

May 23, 2006 || Technical Report No. TR-IIS-06-004
http://www.iis.sinica.edu.tw/LIB/TechReport/tr2006/tr06.html

A Test for Interval Graphs on Noisy Data

– DNA Fragment Assembly

Wei-Fu Lu

Institute of Computer and Information Science

National Chiao Tung University, Hsin-chu, Taiwan, ROC

email: gis84812@cis.nctu.edu.tw

TEL: 886-2-7883799 EXT. 1602

Wen-Lian Hsu*

Institute of Information Science

Academia Sinica, Taipei, Taiwan, ROC

email: hsu@iis.sinica.edu.tw

TEL: 886-2-7883799 EXT. 1804

FAX: 886-2-7824814

* The corresponding author.

1

ABSTRACT
An interval graph is the intersection graph of a collection of intervals. One
important application of interval graph is the construction of physical maps in
genome research, that is, to reassemble the clones to determine the relative
position of fragments of DNA along the genome. The linear time algorithm by
Booth and Lueker (1976) for this problem has a serious drawback: the data must
be error-free. However, laboratory work is never flawless. We devised a new
iterative clustering algorithm based on local structure matching, which is robust
enough to accommodate a certain percentage of noisy data and to produce a
likely interval model realizing the original graph.

Key Word: interval graph recognition, physical mapping, DNA sequence assembly,

probe hybridization, clustering algorithm.

2

1. INTRODUCTION

A graph is an interval graph if it is the intersection graph of a collection of intervals

on a straight line. This class of graphs has a wide range of applications. An important

application of interval graphs is the construction of physical maps for the genome

research. Physical maps are critical in hunting for specific genes of interest, and also

useful for further physical examination of DNA required for other genome project.

The term “physical mapping” means the determination of the relative position of

fragments of DNA along the genome by physicochemical and biochemical methods.

The construction of physical maps is generally accomplished as follows. Long DNA

sequences are broken to smaller fragments, and then each fragment is reproduced into

the so-called clones. After deciding some fingerprints for each clone, two clones are

considered overlapping if their fingerprints are sufficiently similar. Finally,

information on pairwise overlapping determines the relative positions of clones, thus

completing the construction of physical maps [OHCD1985], [CB1989], [CS1989],

[GC1987], [OD1989], [GO1990], [MCZ1987].

 The error free version of the mapping problem can be modeled as an interval

graph recognition problem: given a graph G=(V,E), finding a family of intervals such

that each interval corresponding to one vertex of the graph, and two vertices are

adjacent if and only if their corresponding intervals are overlapping [BL1976],

[KM89], [HM1991], [Hsu 1992]. However, data collected from laboratories

unavoidably contain errors, such as false positives (FPs, two overlapping clones are

actually non-overlapping) and false negatives (FNs, two non-overlapping clones are

actually overlapping). Traditional recognition algorithms can hardly be applied on

noisy data directly, because a single error might cause the clone assembly to fail.

Moreover, no straightforward extension of traditional algorithm can overcome the

drawbacks.

 Four typical models have been proposed for dealing with errors. The definitions

are as follows: 1) interval graph completion problem: assume the input data only

contain FNs and minimize the number of edges whose addition makes the graph an

interval [KS1996, KST1999, NS1998]. 2) interval graph deletion problem: assume

there are only FPs in the input data, and minimize the number of edges whose deletion

makes the graph an interval graph [GGKS1995]. 3) interval sandwich problem:

assume that some pairs of clones are definite overlaps, some are definite non-overlaps,

3

and the rest are unknown, then construct an interval graph under these overlapping

constraints [GKS1994], [KS1999]. 4) intervalizing k-color graph problem: assume

that clones are created from k copies of DNA molecule, and some pairs of clones are

definite overlaps. The objective is to generate a k-colorable interval graph with the

overlapping conditions [GKS1994], [GGKS1995], [FHW1993], [BF1996]. However,

the above models suffer from the following two unpleasant phenomena: 1. all of the

above models have been shown to be NP-hard [Y1981], [FHW1993], [GKS1994],

[GGKS1995], and it would be difficult to define an associated “single objective

optimization problem” for approximation since the errors could be intertwined

together; 2. even if one can find a perfect solution under certain restrictions, such a

solution might not make any biological sense.

To cope with this dilemma, consider the nature of error treatment. Generally, data

collected in real life contain a small percentage of errors. Suppose the error

percentage is 5% with careful control. The challenge is thus to discover the 95%

correct information versus the 5% incorrect information automatically. We designed

an algorithm to deal with errors based on local structure matching. The idea is very

similar to the one employed in [Hsu 2003]. Our philosophy is that, in order to

determine whether certain overlapping information is valid or noisy, we check the

neighborhood data to see if it conforms “approximately” to a particular local structure

dictated by the problem. The probability that an isolated piece of spurious information

has a well-behaved neighborhood structure is nil. More precisely, in our analysis, if

there is enough valid information in the input data, then a certain monotone structure

of the overlapping information on the neighborhood will emerge, allowing us to weed

out most errors. We do not set any “global” objective to optimize. Rather, our

algorithm tries to maintain (or restore) such a “local” monotone structure as much as

we can. In doing that, it is sometimes advantageous to “delete” noisy intervals,

namely, those that corrupt the monotone structure.

 The kind of error-tolerant behavior considered here are similar in nature to

algorithms for voice recognition or character recognition problems. Thus, it would be

difficult to “guarantee” that the clustering algorithm always produces a desirable

solution (such as one that is a fixed percentage away from the so-called “optimal

solution”); the result should be justified through benchmark data and real life

experiences. Our experimental results show that, when the error percentage is small,

our clustering algorithm is robust enough to discover certain errors and to correct

4

them automatically most of the time.

 The remaining sections are organized as follows. Section 2 gives the basic

definitions of some notations. An interval graph test based on [LH2003] is discussed

in Section 3, which forms the basis of our clustering algorithm. Section 4, the main

part of this paper, illustrates how to deal with errors in the input data. The

experimental results are shown in Section 5. Section 6 contains some concluding

remarks.

5

2. BASIC DEFINITIONS

In this section, we give definitions and terminologies that we will need in the sequel.

For other graph-theoretical definitions see [G1980].

 All graphs are assumed to be undirected, simple, and finite in this paper. For a

graph G = (V,E), denote its number of vertices by n and its number of edges by m.

Given a vertex u in G, define N[u] to be the set of vertices including u and those

vertices adjacent to u in G; define N(u) to be N[u]-{u}. For some subset M of V,

define N(M) be the set of those vertices that are not in M but adjacent to some vertices

in M. Thus, we have N(N[u]) = { x | x is not in N[u] but adjacent to some vertices in

N[u] }, which is the second-tier neighborhood in a breadth-first-search from u. This

kind of neighborhood plays a crucial role on our clustering analysis. We define

relations between two adjacent vertices using the above set of neighbors. Two

adjacent vertices u, v in G are said to be strictly adjacent (STA), if none of N[u] and

N[v] is contained in the other. We denote the set of vertices strictly adjacent to u by

STA(u). A vertex u is said to be contained in another vertex v, if N[u] is contained in

N[v].

 Each interval graph has a corresponding interval model in which two intervals

overlap if and only if their corresponding vertices are adjacent
§
. However, the

corresponding interval model is usually far from unique, because of variations of the

endpoint orderings. To obtain the unique interval model representation, consider the

following block structure of endpoints: Denote the right (resp. left) endpoint of an

interval u by R(u) (resp. L(u)). In an interval model, define a maximal contiguous set

of right (resp. left) endpoints as an R-block (resp. L-block). Thus, the endpoints can be

grouped as an alternating left-right block sequence. Since an endpoint block is a set,

the endpoint orderings within the block are ignored. The overlapping relationship

remains unchanged if one permutes the endpoint order within each block. Denote the

right block containing R(u) by B
BR(u), the left block containing L(u) by BLB (u), and the

set of block subsequence from B (u) to BR(u) by [B (u),BR(u)]. An endpoint R(w)
BL BLB B

§
For convenience, we shall not distinguish between these two terms, “vertex” and its corresponding

“interval”.

6

(resp. L(w)) is said to be contained in an interval u if B (w) (resp. BRBL B

(w)) is contained

in [B (u), B
BL R(u)].

 Let G be an interval graph. Consider an interval model for G. For an interval u, the

neighborhood of u can be partitioned into A(u), B(u), C(u) and D(u) as follows:

A(u) = { w | w strictly overlaps u from the left side }

B(u) = { w | w strictly overlaps u from the right side }

C(u) = { w | w properly contains u }

D(u) = { w | w is properly contained in u }

We call these sets A(u), B(u), C(u), D(u), the left neighborhood, the right

neighborhood, the outer neighborhood, and the inner neighborhood. Furthermore, the

second-tier neighborhood of u can be partitioned into LL(u) and RR(u) as follows:

LL(u) = { w | w is completely to the left of u and overlaps some neighbors of u }

RR(u) = { w | w is completely to the right of u and overlaps some neighbors of u}

We call LL(u) the left second-tier neighborhood and RR(u) the right second-tier

neighborhood. An example of A(u), B(u), C(u), D(u), LL(u), and RR(u) is shown in

Figure 2.1.

2
3

4
5

6

7

8

9

11

1 10

12

u

Figure 2.1. An example of A(u), B(u), C(u), D(u), LL(u), and RR(u), where

A(u)={4,5}, B(u) ={9,10}, C(u) ={6,7}, D(u) ={8}, LL(u) ={1,2,3}, and RR(u)

={11,12}.

 Note that the above sets can be easily derived if an interval model is given. It is

more difficult to derive them if only the edge adjacency is known. Such a

neighborhood classification is a main step in our test.

7

3. AN INTERVAL GRAPH TEST

To our best knowledge, no straightforward extension of existing linear time

algorithms can handle errors. The idea of [LH2003], however, can be modified to

yield a clustering version that can deal with noisy data. In this section, we describe a

quadratic time interval graph test, which adopts some techniques similar to [LH2003].

This algorithm will be modified to deal with noisy data in Section 4. Notably, the time

complexity is not a major concern for algorithms on noisy data.

The basic idea of this algorithm is very simple: The vertices are processed one by

one according to an ascending order of their degree. For each vertex u, we decide the

unique left-right block sequence that records the relative positions of endpoints within

u, based on a robust local structure on its neighbors. If the unique left-right block

sequence within u intersects other existing left-right block sequences, all the left-right

block sequences are further merged into a new left-right block sequence. Finally, if

graph G is an interval graph, after all vertices have been processed, we will obtain the

unique left-right block sequence that realize graph G; otherwise, the algorithm will

terminate in some iteration due to the failure of left-right block sequence construction.

 For each vertex u in G, our algorithm performs three main steps: 1) neighborhood

classification, 2) block sequence determination, and 3) vertex replacement. The first

step, neighborhood classification, classifies vertices adjacent to u into A(u), B(u), C(u)

and D(u). Since the block sequence within u relates to a robust local structure on A(u)

and B(u), this classification is significant for our interval graph test. The second step,

block sequence determination, decides the unique left-right block sequence within u

according to a monotone structure on A(u) and B(u), and merge this block sequence

with another existing block sequence, if necessary. The last step, vertex replacement,

generates a "special vertex" us
 which is adjacent to all neighbors of u and special

vertices strictly adjacent to u. We shall associate us
 with the corresponding left-right

block sequence of u constructed in the second step. Remove vertices whose endpoints

are both contained in the block sequence of us
, and delete all edges between A(us

) and

B(us
), since information about those deleted edges and vertices is no longer needed.

After vertex replacement, the graph is further reduced.

8

 The main iteration of our interval graph test is described in Figure 3.1, and an

example is shown in Figure 3.2. The following definitions are needed to describe the

algorithm.

Definition 3.1 A collection of sets is said to be monotone if every two sets S , Si j in the

collection are comparable, that is, either S S or S S .i j j i

Definition 3.2 A interval u is said to be compatible with a left-right block sequence

LB , RB , LB , RB , ... , LB , RB1 1 2 2 d d if

(1) the left (resp. right) endpoints within u are contained in LB LB ... LBd1 2

(resp. RB1 RB2 ... RB), and d

(2) let RBj1 (resp. LBj2) be the leftmost R-block (resp. rightmost L-block) having

nonempty intersection with endpoints within u. Then all blocks in between (but

excluding) RBj1 and LBj2 are contained in N(u).

9

The Interval-graph-test: Process an original vertex u.

1 Neighborhood Classification:

1.1 Construct the following set: C(u) { w | N(w) N(u) }, D(u) { w | N(w) N(u)} and

STA(u) N(u) – C(u) – D(u).

1.2 Partition STA(u) into A(u) and B(u):

(1) Let u* be a vertex in STA(u) with the largest |N(u*) (N(STA(u)) - N(u)) |.

(2) Let LL(u) {w | w N(u*) (N(STA(u)) - N(u)) },

and RR(u) N(STA(u)) - N(u) - LL(u).

(3) Let A(u) STA(u) N(LL(u))and B(u) STA(u) - A(u).

1.3 Let uSL be the special interval, if any, in A(u), and u the special interval, if any, in B(u).SR

2 Block sequence determination:

2.1 Find the collection of sets { N(w) B(u) | w A(u) }.

2.2 Check the following:

(1) The collection { N(w) B(u) | w A(u) } is monotone such that the right endpoints of

intervals in A(u) and the left endpoints of intervals in B(u) can be uniquely partitioned

with R(uSL) located in the first R-block and L(u) located in the last L-block. SR

(2) Every interval in D(u) is compatible with the block sequence determined by the above

two sets and the remaining intervals in D(u).

2.3 If there is any violation, G is not an interval graph and the test is terminated

3 Vertex replacement:

3.1 Create new special interval us
 with N(us

) N(uSL) N(u) N(u).SR

3.2 Suppose that x is a vertex with its right endpoint in us
 but not its left endpoint, and y is a

vertex with its left endpoint in us
 but not its eight endpoint. Remove edge (x, y) if it exists.

3.3 Remove u, uSL and uSR and vertices whose left endpoints and right endpoints are both

contained in us
.

Figure 3.1. The Interval-graph-test.

10

u
uSL

uS

1

2

3

4

5

6

7

8

9

13
14

14

3

1

12

11

10

15

uSR

10

11

12

15

13

1616

2

Figure 3.2. An example of the Interval-graph-test.

 The left half of Figure 3.2 is the interval graph at the beginning of the iteration

that interval u is processed. Intervals uSL and uSR are the two special intervals strictly

overlapping u. The corresponding block sequence of uSL is {L(uSL)}, {R(1)}, {L(4),

L(5)}, {R(2), R(3)}, {L(6), L(u)}, {R(uSL)}, and the corresponding block sequence of

uSL is {L(uSR)}, {R(7), R(8)}, {L(10), L(11)}, {R(9), R(u)}, {L(12)}, {R(uSL)}. In

neighborhood classification, the neighborhood of u is classified into A(u) = {14, 15},

B(u) = {13} and C(u) = {16}, and D(u) = {4, 5, 6, 7, 8, 9}. Based on the monotone

structures of A(u) and B(u), compatible property of D(u) and the block sequence

decided by A(u) and B(u), we can obtain the block sequence within u, say {L(u)},

{R(uSL)}, {L(9), L(13)}, {R(6)}, {L(8)}, {R(4), R(5)}, {L(7)}, {R(14)}, {L(uSR)},

{R(u)}. In the vertex replacement step, do the following:

(1) create a new special interval us
 with N(us

) = N(uSL) N(u) N(uSR) = { 1, 2, 3, 4,

5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}, and associates us
 with the block sequence

that records the relative positions of endpoints within us
.

(2) delete all edges connecting vertices in {4, 5, 6, 14, 15} and {7, 8, 9, 13}.

(3) remove intervals uSL, uSR, and intervals contained in us
 (namely, intervals 4, 5, 6, 7,

8, and 9).

At the end of this iteration, the corresponding interval graph becomes the right half of

Figure 3.2.

11

 We shall prove in Theorem 3.6 that, for a graph G, our algorithm correctly decides

whether G is an interval graph or not. Several lemmas are needed for the proof of

Theorem 3.6.

 Below, we shall adopt the notations used in the Interval-graph-test in Figure 3.1.

Lemma 3.3 If graph G is an interval graph, then the collections { N(w) B(u) | w

A(u) } and { N(w) A(u) | w B(u) } are both monotone.

Proof. We shall prove that { N(w) B(u) | w A(u) } is monotone. Because intervals

in A(u) overlap u from the left and intervals in B(u) overlap u from the right, we have

that right endpoints of intervals in B(u) are to the right of right endpoints of intervals

in A(u). Let intervals w1 and w be two intervals in A(u) such that R(w2 1) is to the left

of R(w). Each interval v in B(u) adjacent to w is also adjacent to w2 1 2, since L(v) is to

the left of R(w) and R(w). Thus N(w) B(u) N(w1 2 1 2) B(u) and we have that

{ N(w) B(u) | w A(u) } is monotone. The proof of that { N(w) A(u) | w B(u)

 DB(u) } is monotone is symmetric. B

Lemma 3.4 If {N(w) B(u) | w A(u) } and { N(w) A(u) | w B(u) } are

monotone, then the right endpoints in A(u) and the left endpoints in B(u) can be

partitioned into LB , … ,LB and RB , RB2 n 1 2, …, RB respectively, such that LBn-1 1,

RB , …, LB , RB1 n n is the left-right block sequence within u, where LB1 = {L(u)}and

RBn = {R(u)}.

Proof. Let { N(w) B(u) | w A(u) } and { N(w) A(u) | w B(u) } be monotone.

Partition intervals in A(u) into ordered set RB1, RB , …, RBn-12 such that for any two

vertices w and w1 2 in A(u), N(w1) B(u) = N(w) B(u), if w and w2 1 2 in the same set;

and N(w1) B(u) N(w) B(u), if w2 1 RB and wi 2 RBj such that i < j. Similarly,

partition intervals in B(u) into ordered set LB2, LB , …, LBn3 such that for any two

intervals w and w1 2 in B(u), N(w) A(u) = N(w) A(u), if w and w1 2 1 2 in the same set;

and N(w) A(u) N(w) A(u), if w LR and w LRi j1 2 1 2 such that i < j. Let

LB ={L(u)} and RB ={R(u)}. It is easy to check that LB , RB , …, LB , RBn n n1 1 1 is the

left-right block sequence that induces the relative positions of the right endpoints of

intervals in A(u) {u}and the left endpoints of intervals in B(u) {u}.

Theorem 3.5 A graph is an interval graph iff the following conditions hold at each

iteration of the interval-graph-test:

12

1. The collections of sets { N(w) B(u) | w A(u) } and { N(w) A(u) | w B(u) }

are monotone and the right endpoints of A(u) and the left endpoints of B(u) can

be uniquely partitioned with R(uSL) located on the first right block and L(uSR)

located on the last left block.

2. Every interval in D(u) is compatible with the block sequence determined by the

above two sets and the remaining intervals in D(u).

If the given graph G is an interval graph, then the proposed algorithm will yield

an interval model of graph G, otherwise, the algorithm will terminate in step 2 of the

Interval-graph-testing.

Proof. We first show the “only if” part. From lemma 3.3 one can easily check the

necessity of these conditions for an interval graph. The reason that R(uSL) should be

located in the first right block and L(uSR) should be located in the last left block could

be argued as follows. Assume that R(uSL) be not located in the first right block, there

exists interval w such that R(w) is in the first right block. Since the right endpoint of w

is located to the right of L(u) and to the left of R(uSL), we have w A(uSL) and u B(uSL)

and w N(u) when u is being processed. This is a contradiction to that edge (w,u)

should have been removed at the iteration that uSL was processed, we conclude that

R(uSL) should be located in the first right block. Similarly, L(uSR) should be located in

the last left block. Note that condition 2 simply indicates that we can merge an

existing special interval into our ongoing block sequence correctly.

 Now, consider the “if” part, we shall use induction on |E(G)|. Assume the

statement is true for graphs smaller than G. From lemma 3.4, if these conditions are

satisfied at every iteration, then for each interval u processed, the main iteration of our

algorithm could determines the unique left-right block partition of right endpoints of

intervals in A(u) DA(u) {u}and the left endpoints of intervals in B(u) DB(u)

{u}. Further, refine this partition by bringing in compatible interval in D

B

S (u) one by

one. Let k be the first iteration that some edges are deleted in step (3.2) of the main

iteration. Let uk
S

be the special vertex that is generated at the k-th iteration, and G' be

the reduced graph. Since |E(G’)| < |E(G)| and the two conditions in Theorem 3.5 are

satisfied at every iteration after iteration k, by the induction hypothesis, G' is an

interval graph. Consider any interval model of interval graph G', say LB' , RB'1 1, LB'2,

… , LB'd, RB'd. Let the corresponding block sequence of uk
S

be LB , RB1 1, LB 2, … ,

LB , RB . Consider the following two cases. h h

13

Case 1. Only one endpoint of interval uk
S

is contained in LB'1, RB'1, LB' … , LB'd2, ,

RB' .d

 Without lost of generality, assume that uk
S A(ut) for some t > k. We have that

LB , RB1 1, LB 2, … , LB , RB'h 1, LB'2, … , LB' , RB'd d is the left-right block sequence

that is the interval model realizing graph G.

Case 2. Both two endpoints of interval uk
S

are contained in LB' , RB'1 1, LB'2, … , LB'd,

RB' .d

We have that LB , RB LB1 1, 2, … , LB , RB is compatible with LB'h h 1, RB'1,

LB'2, … , LB'd, RB' . Thus, RB RB' and LB LB' for some i, where RB = RBd i i+1 1

RB 2 … RB and LB = LBh-1 2 LB 3 … LB . Now, merge LB , RBh 1 1,

LB 2, … , LB with LB' , RB'h 1 1, LB'2, … , LB' , we get a left-right block sequence LB'd 1,

RB'1, LB' … , LB' , RB'2, i i - RB , {L(uk)}, RB'i RB , LB' LB , {R(ui+1 k)}, LB'i+1 -

LB , RB' LB' , RB'i +1, …, d d that realizes the interval model for G. Therefore, these

conditions are also sufficient.

14

4. TREATING ERRORS

In this section, we present a clustering version of the interval graph test. We shall

consider FPs and FNs simultaneously. Assume the number of FPs is at most a quarter

of that of FNs (which seems to be practical for most biological experiments). Such an

assumption is important because FPs are much more troublesome than FNs. In these

clustering algorithms, we need to set different threshold values to detect various errors.

Whenever possible, we shall provide motivations for these threshold values by

proving some lemmas for the more ideal situations. The method to perform neighbor

classification on noisy data will be discussed in Section 4.1. Section 4.2 illustrates the

block sequence determination while taking FNs and FPs into account. The complete

clustering version of interval graph test (under noise) is summarized in Section 4.3.

4.1 The error-tolerant neighborhood classification

If the input data contain errors, it is more intricate for neighborhood classification.

However, based on clustering analysis on the neighborhood and second-tier

neighborhood of u, we are able to classify neighbors of interval u roughly into four

sets A(u), B(u), C(u), and D(u). Our strategy is to classify the second-tier neighbors of

u, N(N[u]), into LL(u) and RR(u) first, and then classify the neighbors of u into A(u),

B(u), C(u) and D(u) based on LL(u) and RR(u). Let OV(w,v) = |N[w] N[v]| denote

the overlap function between two intervals w and v. The overlap function is used to

measure the degree of overlapping for each pair of intervals in N(N[u]). The clustering

of LL(u) and RR(u) uses a greedy strategy based on the overlap function. The

classification of LL(u) and RR(u) is described in Figure 4.1 below.

The LL-RR-classification Algorithm

1. For each interval in N(N[u]), associate it with a cluster consisting of that interval initially.

2. Calculate OV(w,v) for each pair of intervals in N(N[u]).

3. Select a pair of intervals w and v, from two different clusters, attaining the highest OV(u,v) value.

Merge the corresponding clusters of w and v into one cluster.

4. Reiterate Step 3 until are two clusters left.

5. Let one cluster be LL(u) and the other be RR(u).

Figure 4.1. The LL-RR-classification Algorithm

 We now classify STA(u) into A(u) and B(u) based on the following heuristic rule:

intervals in A(u) should not overlap any interval in RR(u), and intervals in B(u) should

15

not overlap any interval in LL(u). Thus, any overlapping relations between A(u) and

RR(u), and those between B(u) and LL(u) could be considered as FPs. For each

interval w in SAT(u), classify w into A(u) if the number of FPs created by classifying

w into A(u) is less than the number of FPs created by classifying w into B(u).

Otherwise, classify w into B(u). Such a classification scheme is summarized in Figure

4.2.

The A-B-classification Algorithm

For each interval w in STA(u):

1. Calculate the error functions of w as follows:

EA(w) |{(w, v) | v N(w) RR(u)}|

E (w) |{(w, v) | v N(w) LL(u)}|.B

2. Classify w into A(u), B(u):

If EA(w) < EB (w) then classify w into A(u)

 else classify w into B(u)

B

Figure 4.2. The A-B-classification Algorithm.

 The above sets A(u), B(u), LL(u) and RR(u) could still be misclassified due to

those FPs and FNs related to interval u itself. To prevent this kind of errors (or to

minimize its effect), we shall reclassify intervals currently in LL(u) A(u) into new

LL(u) and A(u) as follows (The reclassification of RR(u) B(u) into new RR(u) and

B(u) can be done similarly).

Denote LL(u) A(u) by L-part(u), and RR(u) B(u) by R-part(u). To reclassify

intervals currently in LL(u) A(u) into new LL(u) and A(u), it suffices to determine

the location of L(u). Once L(u) is located, then those intervals of L-part(u) whose

right endpoints are to the right (respectively, left) of L(u) are considered neighbors,

A(u) (respectively, non-neighbors, LL(u)), of u. We shall locate the right endpoint of

intervals in L-part(u) first, and then decide the position of L(u). To do that, we need to

determine the relative positions among right endpoints of intervals in L-part(u).

Interestingly enough, R-part(u) will play an important role in this process based on

the following simple lemma.

Lemma 4.1.1 Let S and T be two sets of intervals. If the right (respectively, left)

endpoint of every interval in T is to the right (respectively, left) of the right

(respectively, left) endpoint of every interval in S, then the right (respectively, left)

endpoint of interval w in S with the largest | N(w) T | value is the rightmost right

16

endpoint (respectively, leftmost left endpoint) among all right (respectively, left)

endpoints of intervals in S.

Based on Lemma 4.1.1, we shall order right endpoints of intervals in L-part(u)

from right to left iteratively as follows. Initially, set S to be L-part(u) and T to be

R-part(u). Note that S and T will be changed at each iteration. We shall maintain that

the right endpoint of every interval in T is to the right of the right endpoints of

intervals in S. Thus, we shall make the right endpoint of interval w| L-part(u) | in S with

the largest | N(w|L-part(u)|) T | value to be the rightmost right endpoint of intervals in S

(= L-part(u)). Next, delete interval w| L-part(u) | from S and add w| L-part(u) | into T. Now,

make the right endpoint of interval w| L-part(u) | - 1 in the resultant S with the largest |

N(w2) T | value to be the rightmost right endpoint of intervals in the remaining S (=

L-part(u) - {w|L-part(u)|}). Thus, R(w) is to the left of R(w| L-part(u) | - 1 | L-part(u)|), but to the

right of all right endpoints of other intervals in L-part(u). Then, delete interval w|

L-part(u) | - 1 from S and add w| L-part(u) | - 1 into T. Reiterate the above process until all right

endpoints of intervals in L-part(u) have been ordered.

After that, call the ordered right endpoints of intervals in L-part(u) from left to

right as R(w), R(w), …, R(w| L-part(u) |1 2). However, in some cases due to noise, although

| N(x) T | > | N(y) T | (which would entail that R(x) is to the right of R(y)) , R(x)

might be, in fact, to the left of R(y). However, if the error rate is quite small, (say, no

more than 5%), we can expect that R(x) will be ordered to the right of R(y) with high

probability. Thus, we can obtain the approximate ordering of the right endpoints of

intervals in L-part(u). Similarly, we can also locate left endpoints of intervals in

R-part(u) form left to right as L(v1), L(v2),…,L(v |R-part(u) |).

To decide the position of L(u), we calculate the “cost” of L(u) for each position

that L(u) could be placed. If L(u) is placed between R(w) and R(wi i+1), u must overlap

all intervals w with j > i, otherwise (u, w) is a FN. Moreover, intervals wj j j and wk such

that j, k > i must overlap each other, otherwise (w w,j k) is a FN. On the other hand,

intervals w with j i should not overlap u, otherwise (wj i, u) is a FP. Let ErrL(u, i) be

the total number of FNs and FPs, if L(u) is placed between R(w) and R(wi i+1). Thus,

ErrL(u, i) = |{(u, w) | (u, w) E(G) and j > i }| + |{(wj j j, wk) | (wj, wk) E(G) and j, k

> i }| + |{(w , u) | (wi i, u) E(G) and j i }|. Note that ErrL(u, 0) is defined as the total

number of errors that place L(u) to the left of all the right endpoints of intervals in

L-part(u). We conclude that L(u) should be placed between R(w) and R(w), if i i+1

17

ErrL(u, i) is the minimum among all of the ErrL values. Similar strategy can be used

to decide the position of R(u). The heuristic to distinguish neighbors and

non-neighbors of u is described in Figure 4.3.

The Neighborhood-decision Algorithm

1. Order the right endpoints of intervals in L-part(u) from left to right as R(w1), R(w2), … ,

R(w|L-part(u)|) as follows :

(1) Let S be L-part(u), T be R-part(u), and i be |L-part(u)|.

(2) Let w* be an interval in S with the largest | N(w*) T |, and denote L(w*) by L(wi).

(3) Delete wi from S and add wi into T.

(4) Decrease i by 1.

(5) Reiterate Step (2) to Step (4), until S is empty.

2. For 0 i | L-part(u) |, let ErrL(u, i) = |{(u, wj) | (u, wj) E(G) and j > i }| + |{(wj, w) | (w wk j, k)

E(G) and j, k > i }| + |{(wi, u) | (wi, u) E(G) and j i }|,

3. If ErrL(u, t) is the minimum among all ErrL’s, we conclude that L(u) should be placed between

R(wt) and R(wt+1). Let A(u) = {wi | i > t} and LL(u) = { wj | j t}.

4. Order the left endpoints of intervals in R-part(u) from left to right as L(v1), L(v2), … ,L(v |R-part(u)|)

as follows:

(1) Let S be R-part(u), T be L-part(u), and i be 1.

(2) Let v* be an interval in S with the largest | N(w*) T |, and denote L(v*) by L(wi).

(3) Delete vi from S and add vi into T.

(4) Increase i by 1.

(5) Reiterate Step (2) to Step (4), until S is empty.

5. For 0 i | R-part(u) |, let ErrR(u, i) = |{(u, vj) | (u, vj) E(G) and j i }| + |{(v v) | (vj, k j, vk)

E(G) and j, k i }| + |{(vi, u) | (vi, u) E(G) and j > i }|.

6. If ErrR(u, t) is the minimum among all ErrR’s, we conclude that R(u) should be placed between

L(vt) and L(vt+1), and let B(u) = {vi | i t} and RR(u) = { vj | j > t}.

Figure 4.3. The Neighborhood-decision Algorithm.

An example illustrating the idea of the neighborhood decision algorithm is shown in

Figure 4.4.

18

4

1

2

5 6

7

8

9

12

10

11

3

u

Figure 4.4. An example of neighborhood decision. In this case, the input data are

noisy, but we can only depict part of errors in this figure. The solid lines and the

dotted lines represent intervals overlapping u and those not overlapping u in the input

data, respectively. All intervals depicted are located at the original “correct” position.

Thus, 4 overlaps u originally but does not overlap u in the input data due to FN, and

10 does not overlap u originally but overlap u in the input data due to FP. Furthermore,

assume that there are FPs between 1 and 11 and between 2 and 11. At the first

iteration, merge the corresponding clusters of 1 and 2 into one cluster, since OV(1,2) =

4 is the highest. At the second and the third iterations, merge the corresponding

clusters of 2 and 4, and the corresponding clusters of 9 and 11, respectively. Finally,

we have that LL(u) = {1, 2, 4} and RR(u) = {9,11}. In the example of Figure 4.2,

FPA(3) = 0, FPB(3) = 3, FPB A(5) = 0, FPBB(5) = 2, FPA(6) = 1, FPB(6) = 1, FPAB (7) = 1,

FPBB(7) = 0, FPA(8) = 2, FPB(8) = 0, FPA(10) = 2, FPBB B(10) = 0. Thus, A(u) = {3, 5},

B(u) = {6, 7, 8, 10}. We can order right endpoints of intervals in L-part(u) from left to

right as R(1), R(2), R(5), R(4), R(3), and order left endpoints of intervals in R-part(u)

from left to right as L(7), L(6), L(8), L(9), L(10), L(11). Furthermore, ErrL(u,2) = 1 is

the minimum among all ErrL’s, and ErrR(u,3) = 1 is the minimum among all ErrR’s.

Thus, we conclude that L(u) should be located between R(5) and R(2), and R(u)

should be located between L(8) and L(9). Hence, L-part(u) and R-part(u) could be

reclassified into LL(u)={1, 2}, A(u)={3, 4, 5}, B(u)={9, 10, 11}, RR(u)={6, 7, 8}, and

the FPs and FNs relative to u itself have been corrected.

19

4.2 Deciding endpoint block sequence under the influence of FNs and FPs

In this section we determine the left-right block sequence within u on noisy data.

The monotone collection { N(w) B(u) | w A(u) } provides a very strong structural

property for interval graphs. This property is stable enough for us to obtain a “good”

left-right block sequence within interval u. In case the above collection of sets does

not satisfy the monotone property, one could remove some elements and/or add some

elements into the sets to make it satisfy the monotone property. We denote the

removed elements as removals and the added elements as fill-ins. The removals and

fill-ins could be considered as FPs and FNs, respectively. Note that it is a relative

matter to decide removals and fill-ins, and there is a trade-off in determining FPs and

FNs. Suppose we suspect an edge to be a FP. There are two possibilities. One is that

we simply remove this edge. The other is that we let it stay, which would possibly

create some FN(s) we need to fill in to preserve the monotone property. Our strategy

is to detect and remove potential FPs first, and then deal with the FNs. Note that the

minimum fill-in problem is NP-complete [Y1981] and a polynomial approximation

for the problem has been proposed in [NS1998].

We use the FP-Screening algorithm in Figure 4.6 to determine a FP. Let w1, w2 , … ,

w|A(u)| be a list in A(u) ordered according to their ascending |N(w) B(u)| values. If

{N(w) B(u) | w A(u) } is monotone, we should have N(w) B(u) N(wi j) B(u)

for all i < j. Since data is noisy, this condition might not hold for all i < j, but it should

hold with high probability due to low error rate. So for each v N(wi) B(u), if |{ j | j

> i and v N(w) B(u)}| 3, the entry (wj i, v) is considered a FP. The threshold is

set to be 3 since the probability that there are more than three FPs in the same interval

is relatively low.

The FP-screening Algorithm

1. Sort intervals in A(u) into a list {w , w1 2,…,w|A(u) |} according to their ascending | N(w) B(u) |

values.

2. For each w A(u), if |{ j | i < j and v N(wi) B(u) and v N(wj) B(u) }| 3, the pair of

intervals (wi, v) is considered a FP. Remove edge (wi, v).

Figure 4.6. The FP-screening algorithm

 After the FPs are determined and removed, we determine fill-ins that make the

collection { N(w) B(u) | w A(u) } monotone using the following greedy strategy

20

shown in Figure 4.7. Initially, consider all intervals in A(u) unselected. For each

unselected interval w in A(u), define its “fill-in cost” to be the minimum number of

edges whose addition will satisfy N(w) B(u) N(w) B(u) for every unselected

interval w in A(u), namely, define fill-in(w) = | { (w ,v) | v N(w) B(u) and v

N(w’) B(u) for all w A(u), w’ is unselected, and w w }|. Each time, select the

interval, say w*, with the minimum “fill-in cost” among unselected intervals in A(u).

Once w* has been selected, add all edges counted in fill-in(w*) and mark w* a

selected interval. Reiterate the above process until all intervals in A(u) are selected.

The FN-Screening Algorithm

1. Select an unselected interval w* in A(u) with the minimum | fill-in(w*) | value.

2. Consider each element (w’,v) counted in fill-in(w*) as a FN and add edge (w’,v).

3. Mark w* a selected interval.

4. Reiterate Step 1 to Step3 until all intervals in A(u) have been selected.

Figure 4.7. The FN-screening Algorithm

4.3. The clustering algorithm for interval graph recognition

Finally, we summarize the algorithms of the above two sections in Figure 4.8 below.

The intervals are processed according to an ascending order of their degrees. Note that

an interval is considered “deleted” if it turns out that after the deletion and insertion of

edges, this interval does not overlap strictly with any other interval. This is because

the placement of such an interval does not affect the ordering of the other intervals.

Thus, it is possible for our algorithm to create more islands (though it does not happen

very often).

The Interval-graph-clustering-test

1 Neighbor Classification:

1.1 Let C(u) { w | N(w) N(u) }, D(u) { w | N(w) N(u)} and STA(u) N(u) – C(u) –

D(u).

1.2 Construct LL(u) and RR(u) using the LL-RR-classification algorithm.

1.3 Partition STA(u) into A(u), B(u) using the A-B-classification algorithm.

1.4 Distinguish the neighbors and non-neighbor of u using the Neighborhood-decision

algorithm.

A(u), and u1.5 Let uSL be the special interval such that uSL SR be the special interval such that

uSR B(u).

2 Block sequence determination

2.1 Screen out FPs using the FP-screening algorithm.

2.2 Fill in FNs using the FN-screening algorithm.

21

2.3 Construct the left-right block sequence within u using the collection { N(w) B(u) | w

A(u) } and intervals in D(u).

3 Vertex replacement:

3.1 Create a new special interval us
 with N(us

) N(uSL) N(u) N(u).SR

3.2 Suppose that x is a vertex only with its right endpoint in us
 and y is a vertex only with its

left endpoint in us
. Remove edge (x, y) if it exists.

3.3 Remove u, uSL, uSR and vertices whose left endpoints and right endpoint are both contained

in us
.

Figure 4.8. The Interval-graph-clustering-test.

22

5. Experimental Results

We conduct experiments based on synthetic data. We start with a fixed interval model

and, in each experiment, randomly generate errors on the edge connections, then feed

the resultant graph to our algorithm to get a left-right block ordering. Three fixed

graphs of sizes 100, 200, and 400 are used. These graphs are generated randomly

under the constraint that the number of endpoints an interval contains (roughly

corresponds to its “coverage”) ranges from 5 to 15. The combined error rates of FPs

and FNs are set to be 3%, 5% and 10%, respectively. Within each error percentage,

set the ratio of the number of FPs and that of FNs to be 1 to 4, namely, every

generated FP accompanies 4 FNs. For various combination of graph size and error

rate, we repeat the experiment 50 times using different random seeds. The results are

evaluated by comparing the resultant interval ordering from that of the original

ordering, based on the measurement defined below.

Regard the position of an interval as the position of the “left endpoint” of the

interval. For an interval u, let d1 be the number of intervals ordered to the left of u but

whose indices are greater than u and d2, the number of intervals ordered to the right of

u whose indices are less than u. Let the displacement d(u) of interval u be the larger of

d and d1 2. The displacement d(u) gives an approximate measure of the distance of

interval u from its “correct” position. It should be noted that defining an exact

measure is difficult here since many other intervals have to be moved simultaneously

in order to place a particular interval “correctly”. We use the following criterion for

measuring the total deviation of the resultant ordering from the original one: If the

displacement of an interval u is more than 4, we say u is a jump interval, which means

that the position of u is quite far from its ordinary position (so the algorithm does not

place u well). For example, in Figure 5.1, d(2) = 6 (there are 6 intervals ordered to the

left of interval 2 whose indices are greater than 2), d(6) = 1, and d(8) = 6 (there are 6

intervals ordered to the right of interval 8 whose indices are less than 8). Thus,

intervals 2 and 8 are jump intervals.

1 78 3 4 5 6 2 9 10

Jump Interval

Jump Interval

Figure 5.1. An example of jump intervals.

23

 We measure the performance of our algorithm by counting the number of jump

intervals in the resultant interval model. Table 1 lists the statistics for the number of

jump intervals. As one can see, when the error rate is less than 5%, the number of

jump intervals is less than 10, and even when the error rate is increased to 10%, the

number of jump intervals remains less than 15 in most runs, indicating that the final

interval ordering produced by the algorithm is a good approximation for the original.

Table 1. Statistics for the jump intervals.

100 intervals 200 intervals 400 intervals Number of

Jump Intervals 3% 5% 10% 3% 5% 10% 3% 5% 10%

0~5 48 34 20 38 28 4 48 40 27

6~10 1 4 17 12 17 11 1 5 13

11~15 0 0 9 0 4 23 0 3 6

16~20 1 2 1 0 1 7 1 1 3

21~25 0 0 2 0 0 1 0 0 0

26~30 0 0 1 0 0 0 0 1 0

31~35 0 0 0 0 0 1 0 0 0

 An example of our experiments is shown in Figure 5.1. There are 25 intervals in

the graph, and the error rate is 5%. The original interval model is shown on the left

half, and the interval model generated by our program is shown on the right half. Note

that some FPs and FNs are generated but not depicted in this figure.

24

25

————— ——————

——————— ————————

———————— ————————

 ————————— —————————

 ———————————— ————————————

 ———————— —————————

 —————————— ——————————

 ————————— —————————

 ————————— —————————

 ——————————— ———————————

 ———————— ————————

 ———————————— ————————————

 ————————————— —————————————

 ——————— ———————

 ——————— ———————

 ——————————————— ———————————————

 ——————————— ———————————

 ————————— —————————

 ———————— ————————

 ————————————— —————————————

 —————————— ———————————

 ———————— ————————

 ————————— —————————

 ———————— ————————

 ————
 ————

26

Figure 5.1 An interval graph with 25 intervals at error rate 5%

27

6. CONCLUDING REMARKS

The physical mapping problem in human genome research can be modeled as an

interval graph recognition problem, if the overlap information is error-free. However,

data collected from laboratories unavoidably contain errors. Traditional recognition

algorithms can hardly be applied directly on noisy data, and related models for the

imperfection are shown to be NP-hard. In this paper we propose a clustering

algorithm for interval graph test on noisy data. The design of our algorithm is based

on the philosophy of local structure matching. For two typical error types FPs and

FNs, we check the neighborhood data to see whether they conform “approximately”

to a particular local structure dictated by interval graphs to determine whether

overlapping information is valid or noisy. The experimental results show that, when

the error percentage is small, our clustering algorithm is robust enough to discover

certain errors and to correct them automatically most of the time.

References

[BF1996] H. L. Bodlaender, B. de Fluiter. On Intervalizing k-Colored Graphs for

DNA Physical Mapping. Discrete Applied Math.s, 71, 55-77, 1996.

[BL1976] K.S. Booth and G.S. Lueker, Testing for the Consecutive Ones Property,

Interval Graphs, and Graph Planarity Using PQ-tree Algorithms, J. Comput Syst. Sci.

13 , 335-379, 1976.

[CB1989] A.V. Carrano, P.J. de John, E. Branscomb, T. Slezak, B.W Watkins.

Constructing chromosome and region-specific cosmid map of the human genome,

Genome 31, 1059-1065, 1989.

[CS1989] A. Coulson, J. Sulston, S. Brenner, J. Karn. Towatrd a physical map of the

genome of the nematode, Caenorhabditis Elegans. Proc. Natl. Acad. Sci. USA 83,

7821-7825, 1987.

28

[FHW1993] M.R. Fellows, M.T. Hallett, H.T. Wareham. DNA Physical Mapping:

Three Ways Difficult. ESA 1993 (LNCS 726)

[GC1987] R.M. Gemmil, J.F. Coyle-Morris, F.D. Jr. McPeek, L.F. Wara-Uribe, F.

Hecht. Construction of long-range restriction maps in human DNA using pulsed filed

gel electrophoresis. Gene Anal. Technol. 4, 119-131, 1987.

[GGKS1995] P.W. Goldberg. M.C. Golumbic, H. Kaplan and R. Shamir. Four strikes

against physical mapping of DNA. J. Comput. Biol. 2, 139-152.1995.

[GK1994] M.C. Golumbic, H. Kaplan and R. Shamir, On the Complexity of DNA

Physical Mapping, Advances in Applied Mathematics 15, 251-261, 1994.

[GKS1994] M.C. Golumbic, H. Kaplan, R. Shamir. On the complexity of DNA

physical mapping. Advances in Applied Mathematics 15, 251—261, 1994.

[GO1990] E.D. Green and M.V. Olson. Chromosomal region of the cystic fibrosis

gene in yeast artificial chromosomes: a model for human genome mapping, Science

250, 94-98, 1990.

[Hsu 1992] W.L. Hsu, A simple test for interval graphs, LNCS 657, 11-16, 1992.

[HM 1991] W.L. Hsu and T. H. Ma, Substitution Decomposition on Chordal Graphs

and Applications, LNCS 557, 52-60, 1991.

[KM89] N. Korte and R. H. Möhring, An Incremental Linear-Time Algorithm for

Recognizing Interval Graphs, SIAM J. Comput. 18, 1989, 68-81.

[KS1996] H. Kaplan, R. Shamir. Pathwidth, bandwidth, and completion problems to

proper interval graphs with small cliques. SIAM J. Comput. 25:3, 540-561,1996.

[KS1999] H. Kaplan, R. Shamir. Bounded Degree Interval Sandwich Problems.

Algorithmica 24:96-104, 1999.

[KST1999] H. Kaplan, R. Shamir, R.E. Tarjan. Tractability of Parameterized

Completion Problems on Chordal, Strongly Chordal, and Proper Interval Graphs.

SIAM Journal on Computing, 28(5), 1906-1922, 1999.

29

[LH 2003] W.F. Lu and W.L. Hsu. A test for the Consecutive Ones Property on Noisy

Data. To appear in Journal of Computational Biology.

[MCZ1987] F. Michiels, A.G. Craig, G. Zehetner, G.P. Smith, and H. Lehrach.

Molecular approaches to genome analysis: A strategy for the construction of ordered

overlapping clone libraries. Comput. App. Biosci. 3(3),203-210.1987.

[NS1998] A. Natanzon, R. Shamir, R. Sharan. A Polynomial Approximation

Algorithm for the Minimum Fill-In Problem. STOC 1998, 41-47.

[OD1989] M.V. Olson, E. Dutchik, M.Y. Graham, G.M. Brodeur, C. Helms, M.

Frank, M. MacCollin, R. Acheinman, T. Frand. Random-clone strategy for genomic

restriction mapping in yeast, Proc. Natl. Acad. Sci. USA 83, 7826-7830, 1989.

[OHCD1985] M.V. Olson, L. Hood, C. Cantor, and D. Botstein, A common language

for physical mapping of the human genome, Science 234,1434-1435, 1985.

[S 1997] Stoer, Mechthild and Wagner, Frank. A simple min-cut algorithm. Journal

of the ACM, v.44 n.4, p.585-591, 1997.

[Y1981] Yannakakis, M. Computing the Minimum Fill-In is NP-Complete, SIAM J.

Alg. Disc. Meth 2, 1981

30

