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ABSTRACT 
An interval graph is the intersection graph of a collection of intervals. One 
important application of interval graph is the construction of physical maps in 
genome research, that is, to reassemble the clones to determine the relative 
position of fragments of DNA along the genome. The linear time algorithm by 
Booth and Lueker (1976) for this problem has a serious drawback: the data must 
be error-free. However, laboratory work is never flawless. We devised a new 
iterative clustering algorithm based on local structure matching, which is robust 
enough to accommodate a certain percentage of noisy data and to produce a 
likely interval model realizing the original graph. 

Key Word: interval graph recognition, physical mapping, DNA sequence assembly, 

probe hybridization, clustering algorithm.
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1. INTRODUCTION 

A graph is an interval graph if it is the intersection graph of a collection of intervals 

on a straight line. This class of graphs has a wide range of applications. An important 

application of interval graphs is the construction of physical maps for the genome 

research. Physical maps are critical in hunting for specific genes of interest, and also 

useful for further physical examination of DNA required for other genome project. 

The term “physical mapping” means the determination of the relative position of 

fragments of DNA along the genome by physicochemical and biochemical methods. 

The construction of physical maps is generally accomplished as follows. Long DNA 

sequences are broken to smaller fragments, and then each fragment is reproduced into 

the so-called clones. After deciding some fingerprints for each clone, two clones are 

considered overlapping if their fingerprints are sufficiently similar. Finally, 

information on pairwise overlapping determines the relative positions of clones, thus 

completing the construction of physical maps [OHCD1985], [CB1989], [CS1989], 

[GC1987], [OD1989], [GO1990], [MCZ1987].

 The error free version of the mapping problem can be modeled as an interval 

graph recognition problem: given a graph G=(V,E), finding a family of intervals such 

that each interval corresponding to one vertex of the graph, and two vertices are 

adjacent if and only if their corresponding intervals are overlapping [BL1976], 

[KM89], [HM1991], [Hsu 1992]. However, data collected from laboratories 

unavoidably contain errors, such as false positives (FPs, two overlapping clones are 

actually non-overlapping) and false negatives (FNs, two non-overlapping clones are 

actually overlapping). Traditional recognition algorithms can hardly be applied on 

noisy data directly, because a single error might cause the clone assembly to fail. 

Moreover, no straightforward extension of traditional algorithm can overcome the 

drawbacks. 

 Four typical models have been proposed for dealing with errors. The definitions 

are as follows: 1) interval graph completion problem: assume the input data only 

contain FNs and minimize the number of edges whose addition makes the graph an 

interval [KS1996, KST1999, NS1998]. 2) interval graph deletion problem: assume 

there are only FPs in the input data, and minimize the number of edges whose deletion 

makes the graph an interval graph [GGKS1995]. 3) interval sandwich problem:

assume that some pairs of clones are definite overlaps, some are definite non-overlaps, 
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and the rest are unknown, then construct an interval graph under these overlapping 

constraints [GKS1994], [KS1999]. 4) intervalizing k-color graph problem: assume 

that clones are created from k copies of DNA molecule, and some pairs of clones are 

definite overlaps. The objective is to generate a k-colorable interval graph with the 

overlapping conditions [GKS1994], [GGKS1995], [FHW1993], [BF1996]. However, 

the above models suffer from the following two unpleasant phenomena: 1. all of the 

above models have been shown to be NP-hard [Y1981], [FHW1993], [GKS1994], 

[GGKS1995], and it would be difficult to define an associated “single objective 

optimization problem” for approximation since the errors could be intertwined 

together; 2. even if one can find a perfect solution under certain restrictions, such a 

solution might not make any biological sense.  

To cope with this dilemma, consider the nature of error treatment. Generally, data 

collected in real life contain a small percentage of errors. Suppose the error 

percentage is 5% with careful control. The challenge is thus to discover the 95% 

correct information versus the 5% incorrect information automatically. We designed 

an algorithm to deal with errors based on local structure matching. The idea is very 

similar to the one employed in [Hsu 2003]. Our philosophy is that, in order to 

determine whether certain overlapping information is valid or noisy, we check the 

neighborhood data to see if it conforms “approximately” to a particular local structure 

dictated by the problem. The probability that an isolated piece of spurious information 

has a well-behaved neighborhood structure is nil. More precisely, in our analysis, if 

there is enough valid information in the input data, then a certain monotone structure 

of the overlapping information on the neighborhood will emerge, allowing us to weed 

out most errors. We do not set any “global” objective to optimize. Rather, our 

algorithm tries to maintain (or restore) such a “local” monotone structure as much as 

we can. In doing that, it is sometimes advantageous to “delete” noisy intervals, 

namely, those that corrupt the monotone structure.  

 The kind of error-tolerant behavior considered here are similar in nature to 

algorithms for voice recognition or character recognition problems. Thus, it would be 

difficult to “guarantee” that the clustering algorithm always produces a desirable 

solution (such as one that is a fixed percentage away from the so-called “optimal 

solution”); the result should be justified through benchmark data and real life 

experiences. Our experimental results show that, when the error percentage is small, 

our clustering algorithm is robust enough to discover certain errors and to correct 
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them automatically most of the time. 

 The remaining sections are organized as follows. Section 2 gives the basic 

definitions of some notations. An interval graph test based on [LH2003] is discussed 

in Section 3, which forms the basis of our clustering algorithm. Section 4, the main 

part of this paper, illustrates how to deal with errors in the input data. The 

experimental results are shown in Section 5. Section 6 contains some concluding 

remarks. 
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2. BASIC DEFINITIONS 

In this section, we give definitions and terminologies that we will need in the sequel. 

For other graph-theoretical definitions see [G1980]. 

 All graphs are assumed to be undirected, simple, and finite in this paper. For a 

graph G = (V,E), denote its number of vertices by n and its number of edges by m.

Given a vertex u in G, define N[u] to be the set of vertices including u and those 

vertices adjacent to u in G; define N(u) to be N[u]-{u}. For some subset M of V,

define N(M) be the set of those vertices that are not in M but adjacent to some vertices 

in M. Thus, we have N(N[u]) = { x | x is not in N[u] but adjacent to some vertices in 

N[u] }, which is the second-tier neighborhood in a breadth-first-search from u. This 

kind of neighborhood plays a crucial role on our clustering analysis. We define 

relations between two adjacent vertices using the above set of neighbors. Two 

adjacent vertices u, v in G are said to be strictly adjacent (STA), if none of N[u] and

N[v] is contained in the other. We denote the set of vertices strictly adjacent to u by

STA(u). A vertex u is said to be contained in another vertex v, if N[u] is contained in 

N[v].

 Each interval graph has a corresponding interval model in which two intervals 

overlap if and only if their corresponding vertices are adjacent
§
. However, the 

corresponding interval model is usually far from unique, because of variations of the 

endpoint orderings. To obtain the unique interval model representation, consider the 

following block structure of endpoints: Denote the right (resp. left) endpoint of an 

interval u by R(u) (resp. L(u)). In an interval model, define a maximal contiguous set 

of right (resp. left) endpoints as an R-block (resp. L-block). Thus, the endpoints can be 

grouped as an alternating left-right block sequence. Since an endpoint block is a set, 

the endpoint orderings within the block are ignored. The overlapping relationship 

remains unchanged if one permutes the endpoint order within each block. Denote the 

right block containing R(u) by B
BR(u), the left block containing L(u) by BLB (u), and the 

set of block subsequence from B (u) to BR(u) by [B (u),BR(u)]. An endpoint R(w)
BL BLB B

§
For convenience, we shall not distinguish between these two terms, “vertex” and its corresponding 

“interval”.
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(resp. L(w)) is said to be contained in an interval u if B (w) (resp. BRBL B

(w)) is contained 

in [B (u), B
BL R(u)].

 Let G be an interval graph. Consider an interval model for G. For an interval u, the 

neighborhood of u can be partitioned into A(u), B(u), C(u) and D(u) as follows:  

A(u) = { w | w strictly overlaps u from the left side }  

B(u) = { w | w strictly overlaps u from the right side }  

C(u) = { w | w properly contains u }  

D(u) = { w | w is properly contained in u }

We call these sets A(u), B(u), C(u), D(u), the left neighborhood, the right 

neighborhood, the outer neighborhood, and the inner neighborhood. Furthermore, the 

second-tier neighborhood of u can be partitioned into LL(u) and RR(u) as follows:  

LL(u) = { w | w is completely to the left of u and overlaps some neighbors of u }

RR(u) = { w | w is completely to the right of u and overlaps some neighbors of u}

We call LL(u) the left second-tier neighborhood and RR(u) the right second-tier 

neighborhood. An example of A(u), B(u), C(u), D(u), LL(u), and RR(u) is shown in 

Figure 2.1. 

2
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11

1 10 

12

u

Figure 2.1. An example of A(u), B(u), C(u), D(u), LL(u), and RR(u), where 

A(u)={4,5}, B(u) ={9,10}, C(u) ={6,7}, D(u) ={8}, LL(u) ={1,2,3}, and RR(u)

={11,12}.

 Note that the above sets can be easily derived if an interval model is given. It is 

more difficult to derive them if only the edge adjacency is known. Such a 

neighborhood classification is a main step in our test. 
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3. AN INTERVAL GRAPH TEST 

To our best knowledge, no straightforward extension of existing linear time 

algorithms can handle errors. The idea of [LH2003], however, can be modified to 

yield a clustering version that can deal with noisy data. In this section, we describe a 

quadratic time interval graph test, which adopts some techniques similar to [LH2003]. 

This algorithm will be modified to deal with noisy data in Section 4. Notably, the time 

complexity is not a major concern for algorithms on noisy data. 

The basic idea of this algorithm is very simple: The vertices are processed one by 

one according to an ascending order of their degree. For each vertex u, we decide the 

unique left-right block sequence that records the relative positions of endpoints within 

u, based on a robust local structure on its neighbors. If the unique left-right block 

sequence within u intersects other existing left-right block sequences, all the left-right 

block sequences are further merged into a new left-right block sequence. Finally, if

graph G is an interval graph, after all vertices have been processed, we will obtain the 

unique left-right block sequence that realize graph G; otherwise, the algorithm will 

terminate in some iteration due to the failure of left-right block sequence construction. 

 For each vertex u in G, our algorithm performs three main steps: 1) neighborhood

classification, 2) block sequence determination, and 3) vertex replacement. The first 

step, neighborhood classification, classifies vertices adjacent to u into A(u), B(u), C(u)

and D(u). Since the block sequence within u relates to a robust local structure on A(u)

and B(u), this classification is significant for our interval graph test. The second step, 

block sequence determination, decides the unique left-right block sequence within u

according to a monotone structure on A(u) and B(u), and merge this block sequence 

with another existing block sequence, if necessary. The last step, vertex replacement, 

generates a "special vertex" us
 which is adjacent to all neighbors of u and special 

vertices strictly adjacent to u. We shall associate us
 with the corresponding left-right 

block sequence of u constructed in the second step. Remove vertices whose endpoints 

are both contained in the block sequence of us
, and delete all edges between A(us

) and 

B(us
), since information about those deleted edges and vertices is no longer needed. 

After vertex replacement, the graph is further reduced.  
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 The main iteration of our interval graph test is described in Figure 3.1, and an 

example is shown in Figure 3.2. The following definitions are needed to describe the 

algorithm. 

Definition 3.1 A collection of sets is said to be monotone if every two sets S , Si j in the 

collection are comparable, that is, either S S  or S  S .i j j i

Definition 3.2 A interval u is said to be compatible with a left-right block sequence 

LB , RB , LB , RB , ... , LB , RB1 1 2 2 d d if  

(1) the left (resp. right) endpoints within u are contained in LB LB ... LBd1 2

(resp. RB1 RB2 ... RB ), and  d

(2) let RBj1 (resp. LBj2) be the leftmost R-block (resp. rightmost L-block) having 

nonempty intersection with endpoints within u. Then all blocks in between (but 

excluding) RBj1 and LBj2 are contained in N(u).
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The Interval-graph-test: Process an original vertex u.

1 Neighborhood Classification: 

1.1 Construct the following set: C(u)  { w | N(w) N(u) }, D(u)  { w | N(w) N(u)} and 

STA(u) N(u) – C(u) – D(u). 

1.2 Partition STA(u) into A(u) and B(u):

(1) Let u* be a vertex in STA(u) with the largest |N(u*)  (N(STA(u)) - N(u)) |. 

(2) Let LL(u)  {w | w N(u*)  (N(STA(u)) - N(u)) }, 

and RR(u) N(STA(u)) - N(u) - LL(u).

(3) Let A(u) STA(u) N(LL(u))and B(u) STA(u) - A(u). 

1.3 Let uSL be the special interval, if any, in A(u), and u  the special interval, if any, in B(u).SR

2 Block sequence determination: 

2.1 Find the collection of sets { N(w) B(u) | w A(u) }. 

2.2 Check the following: 

(1) The collection { N(w) B(u) | w A(u) } is monotone such that the right endpoints of 

intervals in A(u) and the left endpoints of intervals in B(u) can be uniquely partitioned 

with R(uSL) located in the first R-block and L(u ) located in the last L-block. SR

(2) Every interval in D(u) is compatible with the block sequence determined by the above 

two sets and the remaining intervals in D(u).

2.3 If there is any violation, G is not an interval graph and the test is terminated  

3 Vertex replacement: 

3.1 Create new special interval us
 with N(us

) N(uSL) N(u) N(u ).SR

3.2 Suppose that x is a vertex with its right endpoint in us
 but not its left endpoint, and y is a 

vertex with its left endpoint in us
 but not its eight endpoint. Remove edge (x, y) if it exists. 

3.3 Remove u, uSL and uSR and vertices whose left endpoints and right endpoints are both 

contained in us
.

Figure 3.1. The Interval-graph-test.
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Figure 3.2. An example of the Interval-graph-test.

 The left half of Figure 3.2 is the interval graph at the beginning of the iteration 

that interval u is processed. Intervals uSL and uSR are the two special intervals strictly 

overlapping u. The corresponding block sequence of uSL is {L(uSL)}, {R(1)}, {L(4), 

L(5)}, {R(2), R(3)}, {L(6), L(u)}, {R(uSL)}, and the corresponding block sequence of 

uSL is {L(uSR)}, {R(7), R(8)}, {L(10), L(11)}, {R(9), R(u)}, {L(12)}, {R(uSL)}. In 

neighborhood classification, the neighborhood of u is classified into A(u) = {14, 15}, 

B(u) = {13} and C(u) = {16}, and D(u) = {4, 5, 6, 7, 8, 9}. Based on the monotone 

structures of A(u) and B(u), compatible property of D(u) and the block sequence 

decided by A(u) and B(u), we can obtain the block sequence within u, say {L(u)},

{R(uSL)}, {L(9), L(13)}, {R(6)}, {L(8)}, {R(4), R(5)}, {L(7)}, {R(14)}, {L(uSR)},

{R(u)}. In the vertex replacement step, do the following:  

(1) create a new special interval us
 with N(us

) = N(uSL) N(u) N(uSR) = { 1, 2, 3, 4, 

5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}, and associates us
 with the block sequence 

that records the relative positions of endpoints within us
.

(2) delete all edges connecting vertices in {4, 5, 6, 14, 15} and {7, 8, 9, 13}. 

(3) remove intervals uSL, uSR, and intervals contained in us
 (namely, intervals 4, 5, 6, 7, 

8, and 9). 

At the end of this iteration, the corresponding interval graph becomes the right half of 

Figure 3.2. 
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 We shall prove in Theorem 3.6 that, for a graph G, our algorithm correctly decides 

whether G is an interval graph or not. Several lemmas are needed for the proof of 

Theorem 3.6. 

 Below, we shall adopt the notations used in the Interval-graph-test in Figure 3.1. 

Lemma 3.3 If graph G is an interval graph, then the collections { N(w) B(u) | w

A(u) } and { N(w) A(u) | w  B(u) } are both monotone.

Proof. We shall prove that { N(w) B(u) | w A(u) } is monotone. Because intervals 

in A(u) overlap u from the left and intervals in B(u) overlap u from the right, we have 

that right endpoints of intervals in B(u) are to the right of right endpoints of intervals 

in A(u). Let intervals w1 and w  be two intervals in A(u) such that R(w2 1) is to the left 

of R(w ). Each interval v in B(u) adjacent to w  is also adjacent to w2 1 2, since L(v) is to 

the left of R(w ) and R(w ). Thus N(w ) B(u) N(w1 2 1 2) B(u) and we have that 

{ N(w) B(u) | w A(u) } is monotone. The proof of that { N(w) A(u) | w  B(u)

 DB(u) } is monotone is symmetric. B

Lemma 3.4 If {N(w) B(u) | w A(u) } and { N(w) A(u) | w B(u) } are

monotone, then the right endpoints in A(u) and the left endpoints in B(u) can be 

partitioned into LB , … ,LB  and RB , RB2 n 1 2, …, RB  respectively, such that LBn-1 1,

RB , …, LB , RB1 n n is the left-right block sequence within u, where LB1 = {L(u)}and

RBn = {R(u)}.

Proof. Let { N(w) B(u) | w A(u) } and { N(w) A(u) | w B(u) } be monotone. 

Partition intervals in A(u) into ordered set RB1, RB , …, RBn-12 such that for any two 

vertices w  and w1 2 in A(u), N(w1) B(u) = N(w ) B(u), if w  and w2 1 2 in the same set; 

and N(w1) B(u) N(w ) B(u), if w2 1 RB  and wi 2 RBj such that i < j. Similarly,

partition intervals in B(u) into ordered set LB2, LB , …, LBn3 such that for any two 

intervals w  and w1 2 in B(u), N(w ) A(u) = N(w ) A(u), if w  and w1 2 1 2 in the same set; 

and N(w ) A(u) N(w )  A(u), if w LR  and w LRi j1 2 1 2  such that i < j. Let 

LB ={L(u)} and RB ={R(u)}. It is easy to check that LB , RB , …, LB , RBn n n1 1 1  is the 

left-right block sequence that induces the relative positions of the right endpoints of 

intervals in A(u)  {u}and the left endpoints of intervals in B(u)  {u}.

Theorem 3.5 A graph is an interval graph iff the following conditions hold at each 

iteration of the interval-graph-test:
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1. The collections of sets { N(w) B(u) | w  A(u) } and { N(w) A(u) | w  B(u) }

are monotone and the right endpoints of A(u) and the left endpoints of B(u) can 

be uniquely partitioned with R(uSL) located on the first right block and L(uSR)

located on the last left block.

2. Every interval in D(u) is compatible with the block sequence determined by the 

above two sets and the remaining intervals in D(u).

If the given graph G is an interval graph, then the proposed algorithm will yield 

an interval model of graph G, otherwise, the algorithm will terminate in step 2 of the 

Interval-graph-testing.

Proof. We first show the “only if” part. From lemma 3.3 one can easily check the 

necessity of these conditions for an interval graph. The reason that R(uSL) should be 

located in the first right block and L(uSR) should be located in the last left block could 

be argued as follows. Assume that R(uSL) be not located in the first right block, there 

exists interval w such that R(w) is in the first right block. Since the right endpoint of w

is located to the right of L(u) and to the left of R(uSL), we have w A(uSL) and u B(uSL)

and w N(u) when u is being processed. This is a contradiction to that edge (w,u)

should have been removed at the iteration that uSL was processed, we conclude that 

R(uSL) should be located in the first right block. Similarly, L(uSR) should be located in 

the last left block. Note that condition 2 simply indicates that we can merge an 

existing special interval into our ongoing block sequence correctly. 

 Now, consider the “if” part, we shall use induction on |E(G)|. Assume the 

statement is true for graphs smaller than G. From lemma 3.4, if these conditions are 

satisfied at every iteration, then for each interval u processed, the main iteration of our 

algorithm could determines the unique left-right block partition of right endpoints of 

intervals in A(u) DA(u)  {u}and the left endpoints of intervals in B(u) DB(u)

{u}. Further, refine this partition by bringing in compatible interval in D

B

S (u) one by 

one. Let k be the first iteration that some edges are deleted in step (3.2) of the main 

iteration. Let uk
S

be the special vertex that is generated at the k-th iteration, and G' be 

the reduced graph. Since |E(G’)| < |E(G)| and the two conditions in Theorem 3.5 are 

satisfied at every iteration after iteration k, by the induction hypothesis, G' is an 

interval graph. Consider any interval model of interval graph G', say LB' , RB'1 1, LB'2, 

… , LB'd, RB'd. Let the corresponding block sequence of uk
S

be LB , RB1 1, LB 2, … ,

LB , RB . Consider the following two cases.  h h
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Case 1. Only one endpoint of interval uk
S

is contained in LB'1, RB'1, LB' … , LB'd2, ,

RB' .d

  Without lost of generality, assume that uk
S A(ut) for some t > k. We have that 

LB , RB1 1, LB 2, … , LB , RB'h 1, LB'2, … , LB' , RB'd d is the left-right block sequence 

that is the interval model realizing graph G.

Case 2. Both two endpoints of interval uk
S

are contained in LB' , RB'1 1, LB'2, … , LB'd,

RB' .d

We have that LB , RB  LB1 1, 2, … , LB , RB is compatible with LB'h h 1, RB'1,

LB'2, … , LB'd, RB' . Thus, RB RB'  and LB LB'  for some i, where RB  = RBd i i+1 1

RB 2 … RB  and LB  = LBh-1 2 LB 3 … LB . Now, merge LB , RBh 1 1,

LB 2, … , LB  with LB' , RB'h 1 1, LB'2, … , LB' , we get a left-right block sequence LB'd 1,

RB'1, LB' … , LB' , RB'2, i i - RB , {L(uk)}, RB'i RB , LB' LB , {R(ui+1 k)}, LB'i+1 -

LB , RB'  LB' , RB'i +1, …, d d that realizes the interval model for G. Therefore, these 

conditions are also sufficient. 
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4. TREATING ERRORS

In this section, we present a clustering version of the interval graph test. We shall 

consider FPs and FNs simultaneously. Assume the number of FPs is at most a quarter 

of that of FNs (which seems to be practical for most biological experiments). Such an 

assumption is important because FPs are much more troublesome than FNs. In these 

clustering algorithms, we need to set different threshold values to detect various errors. 

Whenever possible, we shall provide motivations for these threshold values by 

proving some lemmas for the more ideal situations. The method to perform neighbor 

classification on noisy data will be discussed in Section 4.1. Section 4.2 illustrates the 

block sequence determination while taking FNs and FPs into account. The complete 

clustering version of interval graph test (under noise) is summarized in Section 4.3.  

4.1 The error-tolerant neighborhood classification  

If the input data contain errors, it is more intricate for neighborhood classification. 

However, based on clustering analysis on the neighborhood and second-tier 

neighborhood of u, we are able to classify neighbors of interval u roughly into four 

sets A(u), B(u), C(u), and D(u). Our strategy is to classify the second-tier neighbors of 

u, N(N[u]), into LL(u) and RR(u) first, and then classify the neighbors of u into A(u), 

B(u), C(u) and D(u) based on LL(u) and RR(u). Let OV(w,v) = |N[w] N[v]| denote 

the overlap function between two intervals w and v. The overlap function is used to 

measure the degree of overlapping for each pair of intervals in N(N[u]). The clustering 

of LL(u) and RR(u) uses a greedy strategy based on the overlap function. The 

classification of LL(u) and RR(u) is described in Figure 4.1 below.  

The LL-RR-classification Algorithm 

1. For each interval in N(N[u]), associate it with a cluster consisting of that interval initially. 

2. Calculate OV(w,v) for each pair of intervals in N(N[u]). 

3. Select a pair of intervals w and v, from two different clusters, attaining the highest OV(u,v) value. 

Merge the corresponding clusters of w and v into one cluster. 

4. Reiterate Step 3 until are two clusters left.

5. Let one cluster be LL(u) and the other be RR(u).

Figure 4.1. The LL-RR-classification Algorithm 

 We now classify STA(u) into A(u) and B(u) based on the following heuristic rule: 

intervals in A(u) should not overlap any interval in RR(u), and intervals in B(u) should 
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not overlap any interval in LL(u). Thus, any overlapping relations between A(u) and 

RR(u), and those between B(u) and LL(u) could be considered as FPs. For each 

interval w in SAT(u), classify w into A(u) if the number of FPs created by classifying 

w into A(u) is less than the number of FPs created by classifying w into B(u). 

Otherwise, classify w into B(u). Such a classification scheme is summarized in Figure 

4.2.

The A-B-classification Algorithm 

For each interval w in STA(u):

1. Calculate the error functions of w as follows:  

EA(w)  |{(w, v) | v  N(w) RR(u)}|  

E (w)  |{(w, v) | v N(w) LL(u)}|.B

2. Classify w into A(u), B(u):

If EA(w) < EB (w) then classify w into A(u)

  else classify w into B(u)

B

Figure 4.2. The A-B-classification Algorithm. 

 The above sets A(u), B(u), LL(u) and RR(u) could still be misclassified due to 

those FPs and FNs related to interval u itself. To prevent this kind of errors (or to 

minimize its effect), we shall reclassify intervals currently in LL(u) A(u) into new 

LL(u) and A(u) as follows (The reclassification of RR(u) B(u) into new RR(u) and 

B(u) can be done similarly).  

Denote LL(u) A(u) by L-part(u), and RR(u) B(u) by R-part(u). To reclassify 

intervals currently in LL(u) A(u) into new LL(u) and A(u), it suffices to determine 

the location of L(u). Once L(u) is located, then those intervals of L-part(u) whose 

right endpoints are to the right (respectively, left) of L(u) are considered neighbors, 

A(u) (respectively, non-neighbors, LL(u)), of u. We shall locate the right endpoint of 

intervals in L-part(u) first, and then decide the position of L(u). To do that, we need to 

determine the relative positions among right endpoints of intervals in L-part(u).

Interestingly enough, R-part(u) will play an important role in this process based on 

the following simple lemma. 

Lemma 4.1.1 Let S and T be two sets of intervals. If the right (respectively, left)

endpoint of every interval in T is to the right (respectively, left) of the right 

(respectively, left) endpoint of every interval in S, then the right (respectively, left)

endpoint of interval w in S with the largest | N(w)  T | value is the rightmost right 
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endpoint (respectively, leftmost left endpoint) among all right (respectively, left)

endpoints of intervals in S.

Based on Lemma 4.1.1, we shall order right endpoints of intervals in L-part(u)

from right to left iteratively as follows. Initially, set S to be L-part(u) and T to be 

R-part(u). Note that S and T will be changed at each iteration. We shall maintain that 

the right endpoint of every interval in T is to the right of the right endpoints of 

intervals in S. Thus, we shall make the right endpoint of interval w| L-part(u) | in S with 

the largest | N(w|L-part(u)|)  T | value to be the rightmost right endpoint of intervals in S

(= L-part(u)). Next, delete interval w| L-part(u) | from S and add w| L-part(u) | into T. Now, 

make the right endpoint of interval w| L-part(u) | - 1 in the resultant S with the largest | 

N(w2)  T | value to be the rightmost right endpoint of intervals in the remaining S (= 

L-part(u) - {w|L-part(u)|}). Thus, R(w ) is to the left of R(w| L-part(u) | - 1 | L-part(u)|), but to the 

right of all right endpoints of other intervals in L-part(u). Then, delete interval w|

L-part(u) | - 1 from S and add w| L-part(u) | - 1 into T. Reiterate the above process until all right 

endpoints of intervals in L-part(u) have been ordered. 

After that, call the ordered right endpoints of intervals in L-part(u) from left to 

right as R(w ), R(w ), …, R(w| L-part(u) |1 2 ). However, in some cases due to noise, although 

| N(x)  T | > | N(y)  T | (which would entail that R(x) is to the right of R(y)) , R(x)

might be, in fact, to the left of R(y). However, if the error rate is quite small, (say, no 

more than 5%), we can expect that R(x) will be ordered to the right of R(y) with high 

probability. Thus, we can obtain the approximate ordering of the right endpoints of 

intervals in L-part(u). Similarly, we can also locate left endpoints of intervals in 

R-part(u) form left to right as L(v1), L(v2),…,L(v |R-part(u) |).

To decide the position of L(u), we calculate the “cost” of L(u) for each position 

that L(u) could be placed. If L(u) is placed between R(w ) and R(wi i+1), u must overlap 

all intervals w with j > i, otherwise (u, w ) is a FN. Moreover, intervals wj j j and wk such

that j, k > i must overlap each other, otherwise (w w,j k) is a FN. On the other hand, 

intervals w with j i should not overlap u, otherwise (wj i, u) is a FP. Let ErrL(u, i) be 

the total number of FNs and FPs, if L(u) is placed between R(w ) and R(wi i+1). Thus, 

ErrL(u, i) = |{(u, w ) | (u, w ) E(G) and j > i }| + |{(wj j j, wk) | (wj, wk) E(G) and j, k

> i }| + |{(w , u) | (wi i, u) E(G) and j i }|. Note that ErrL(u, 0) is defined as the total 

number of errors that place L(u) to the left of all the right endpoints of intervals in 

L-part(u). We conclude that L(u) should be placed between R(w ) and R(w ), if i i+1
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ErrL(u, i) is the minimum among all of the ErrL values. Similar strategy can be used 

to decide the position of R(u). The heuristic to distinguish neighbors and 

non-neighbors of u is described in Figure 4.3. 

The Neighborhood-decision Algorithm 

1. Order the right endpoints of intervals in L-part(u) from left to right as R(w1), R(w2), … , 

R(w|L-part(u)|) as follows : 

(1) Let S be L-part(u), T be R-part(u), and i be |L-part(u)|.

(2) Let w* be an interval in S with the largest | N(w*)  T |, and denote L(w* ) by L(wi).

(3) Delete wi from S and add wi into T.

(4) Decrease i by 1. 

(5) Reiterate Step (2) to Step (4), until S is empty. 

2. For 0 i  | L-part(u) |, let ErrL(u, i) = |{(u, wj) | (u, wj) E(G) and j > i }| + |{(wj, w ) | (w wk j, k)

E(G) and j, k > i }| + |{(wi, u) | (wi, u) E(G) and j i }|,  

3. If ErrL(u, t) is the minimum among all ErrL’s, we conclude that L(u) should be placed between 

R(wt) and R(wt+1). Let A(u) = {wi | i > t} and LL(u) = { wj | j t}.

4. Order the left endpoints of intervals in R-part(u) from left to right as L(v1), L(v2), … ,L(v |R-part(u)|)

as follows: 

(1) Let S be R-part(u), T be L-part(u), and i be 1. 

(2) Let v* be an interval in S with the largest | N(w*)  T |, and denote L(v* ) by L(wi).

(3) Delete vi from S and add vi into T.

(4) Increase i by 1. 

(5) Reiterate Step (2) to Step (4), until S is empty. 

5. For 0 i  | R-part(u) |, let ErrR(u, i) = |{(u, vj) | (u, vj) E(G) and j i }| + |{(v v ) | (vj, k j, vk)

E(G) and j, k i }| + |{(vi, u) | (vi, u) E(G) and j > i }|. 

6. If ErrR(u, t) is the minimum among all ErrR’s, we conclude that R(u) should be placed between 

L(vt) and L(vt+1), and let B(u) = {vi | i t} and RR(u) = { vj | j > t}. 

Figure 4.3. The Neighborhood-decision Algorithm. 

An example illustrating the idea of the neighborhood decision algorithm is shown in 

Figure 4.4.
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Figure 4.4. An example of neighborhood decision. In this case, the input data are 

noisy, but we can only depict part of errors in this figure. The solid lines and the 

dotted lines represent intervals overlapping u and those not overlapping u in the input 

data, respectively. All intervals depicted are located at the original “correct” position. 

Thus, 4 overlaps u originally but does not overlap u in the input data due to FN, and 

10 does not overlap u originally but overlap u in the input data due to FP. Furthermore, 

assume that there are FPs between 1 and 11 and between 2 and 11. At the first 

iteration, merge the corresponding clusters of 1 and 2 into one cluster, since OV(1,2) = 

4 is the highest. At the second and the third iterations, merge the corresponding 

clusters of 2 and 4, and the corresponding clusters of 9 and 11, respectively. Finally, 

we have that LL(u) = {1, 2, 4} and RR(u) = {9,11}. In the example of Figure 4.2, 

FPA(3) = 0, FPB(3) = 3, FPB A(5) = 0, FPBB(5) = 2, FPA(6) = 1, FPB(6) = 1, FPAB (7) = 1, 

FPBB(7) = 0, FPA(8) = 2, FPB(8) = 0, FPA(10) = 2, FPBB B(10) = 0. Thus, A(u) = {3, 5}, 

B(u) = {6, 7, 8, 10}. We can order right endpoints of intervals in L-part(u) from left to 

right as R(1), R(2), R(5), R(4), R(3), and order left endpoints of intervals in R-part(u)

from left to right as L(7), L(6), L(8), L(9), L(10), L(11). Furthermore, ErrL(u,2) = 1 is 

the minimum among all ErrL’s, and ErrR(u,3) = 1 is the minimum among all ErrR’s.

Thus, we conclude that L(u) should be located between R(5) and R(2), and R(u)

should be located between L(8) and L(9). Hence, L-part(u) and R-part(u) could be 

reclassified into LL(u)={1, 2}, A(u)={3, 4, 5}, B(u)={9, 10, 11}, RR(u)={6, 7, 8}, and 

the FPs and FNs relative to u itself have been corrected. 
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4.2 Deciding endpoint block sequence under the influence of FNs and FPs 

In this section we determine the left-right block sequence within u on noisy data. 

The monotone collection { N(w) B(u) | w A(u) } provides a very strong structural 

property for interval graphs. This property is stable enough for us to obtain a “good” 

left-right block sequence within interval u. In case the above collection of sets does 

not satisfy the monotone property, one could remove some elements and/or add some 

elements into the sets to make it satisfy the monotone property. We denote the 

removed elements as removals and the added elements as fill-ins. The removals and 

fill-ins could be considered as FPs and FNs, respectively. Note that it is a relative 

matter to decide removals and fill-ins, and there is a trade-off in determining FPs and 

FNs. Suppose we suspect an edge to be a FP. There are two possibilities. One is that 

we simply remove this edge. The other is that we let it stay, which would possibly 

create some FN(s) we need to fill in to preserve the monotone property. Our strategy 

is to detect and remove potential FPs first, and then deal with the FNs. Note that the 

minimum fill-in problem is NP-complete [Y1981] and a polynomial approximation 

for the problem has been proposed in [NS1998]. 

We use the FP-Screening algorithm in Figure 4.6 to determine a FP. Let w1, w2 , … ,

w|A(u)| be a list in A(u) ordered according to their ascending |N(w) B(u)| values. If 

{N(w) B(u) | w A(u) } is monotone, we should have N(w ) B(u) N(wi j) B(u)

for all i < j. Since data is noisy, this condition might not hold for all i < j, but it should 

hold with high probability due to low error rate. So for each v N(wi) B(u), if |{ j | j

> i and v  N(w ) B(u)}|  3, the entry (wj i, v) is considered a FP. The threshold is 

set to be 3 since the probability that there are more than three FPs in the same interval 

is relatively low.  

The FP-screening Algorithm

1. Sort intervals in A(u) into a list {w , w1 2,…,w|A(u) |} according to their ascending | N(w) B(u) | 

values. 

2. For each w A(u), if |{ j | i < j and v N(wi) B(u) and v  N(wj) B(u) }|  3, the pair of 

intervals (wi, v) is considered a FP. Remove edge (wi, v). 

Figure 4.6. The FP-screening algorithm 

 After the FPs are determined and removed, we determine fill-ins that make the 

collection { N(w) B(u) | w A(u) } monotone using the following greedy strategy 
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shown in Figure 4.7. Initially, consider all intervals in A(u) unselected. For each 

unselected interval w in A(u), define its “fill-in cost” to be the minimum number of 

edges whose addition will satisfy N(w) B(u) N(w ) B(u) for every unselected 

interval w  in A(u), namely, define fill-in(w) = | { (w ,v) | v N(w) B(u) and v

N(w’) B(u) for all w  A(u), w’ is unselected, and w w }|. Each time, select the 

interval, say w*, with the minimum “fill-in cost” among unselected intervals in A(u). 

Once w* has been selected, add all edges counted in fill-in(w*) and mark w* a 

selected interval. Reiterate the above process until all intervals in A(u) are selected. 

The FN-Screening Algorithm

1. Select an unselected interval w* in A(u) with the minimum | fill-in(w*) | value.  

2. Consider each element (w’,v) counted in fill-in(w*) as a FN and add edge (w’,v).  

3. Mark w* a selected interval. 

4. Reiterate Step 1 to Step3 until all intervals in A(u) have been selected. 

Figure 4.7. The FN-screening Algorithm 

4.3. The clustering algorithm for interval graph recognition 

Finally, we summarize the algorithms of the above two sections in Figure 4.8 below. 

The intervals are processed according to an ascending order of their degrees. Note that 

an interval is considered “deleted” if it turns out that after the deletion and insertion of 

edges, this interval does not overlap strictly with any other interval. This is because 

the placement of such an interval does not affect the ordering of the other intervals. 

Thus, it is possible for our algorithm to create more islands (though it does not happen 

very often). 

The Interval-graph-clustering-test

1 Neighbor Classification: 

1.1 Let C(u)  { w | N(w) N(u) }, D(u)  { w | N(w) N(u)} and STA(u) N(u) – C(u) – 

D(u). 

1.2 Construct LL(u) and RR(u) using the LL-RR-classification algorithm. 

1.3 Partition STA(u) into A(u), B(u) using the A-B-classification algorithm.  

1.4 Distinguish the neighbors and non-neighbor of u using the Neighborhood-decision

algorithm. 

A(u), and u1.5 Let uSL be the special interval such that uSL SR be the special interval such that 

uSR B(u).

2 Block sequence determination 

2.1 Screen out FPs using the FP-screening algorithm. 

2.2 Fill in FNs using the FN-screening algorithm. 
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2.3 Construct the left-right block sequence within u using the collection { N(w) B(u) | w

A(u) } and intervals in D(u).

3 Vertex replacement: 

3.1 Create a new special interval us
 with N(us

) N(uSL) N(u) N(u ).SR

3.2 Suppose that x is a vertex only with its right endpoint in us
 and y is a vertex only with its 

left endpoint in us
. Remove edge (x, y) if it exists. 

3.3 Remove u, uSL, uSR and vertices whose left endpoints and right endpoint are both contained 

in us
.

Figure 4.8. The Interval-graph-clustering-test.
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5. Experimental Results 

We conduct experiments based on synthetic data. We start with a fixed interval model 

and, in each experiment, randomly generate errors on the edge connections, then feed 

the resultant graph to our algorithm to get a left-right block ordering. Three fixed 

graphs of sizes 100, 200, and 400 are used. These graphs are generated randomly 

under the constraint that the number of endpoints an interval contains (roughly 

corresponds to its “coverage”) ranges from 5 to 15. The combined error rates of FPs 

and FNs are set to be 3%, 5% and 10%, respectively. Within each error percentage, 

set the ratio of the number of FPs and that of FNs to be 1 to 4, namely, every 

generated FP accompanies 4 FNs. For various combination of graph size and error 

rate, we repeat the experiment 50 times using different random seeds. The results are 

evaluated by comparing the resultant interval ordering from that of the original 

ordering, based on the measurement defined below.  

Regard the position of an interval as the position of the “left endpoint” of the 

interval. For an interval u, let d1 be the number of intervals ordered to the left of u but 

whose indices are greater than u and d2, the number of intervals ordered to the right of 

u whose indices are less than u. Let the displacement d(u) of interval u be the larger of 

d  and d1 2. The displacement d(u) gives an approximate measure of the distance of 

interval u from its “correct” position. It should be noted that defining an exact 

measure is difficult here since many other intervals have to be moved simultaneously 

in order to place a particular interval “correctly”. We use the following criterion for 

measuring the total deviation of the resultant ordering from the original one: If the 

displacement of an interval u is more than 4, we say u is a jump interval, which means 

that the position of u is quite far from its ordinary position (so the algorithm does not 

place u well). For example, in Figure 5.1, d(2) = 6 (there are 6 intervals ordered to the 

left of interval 2 whose indices are greater than 2), d(6) = 1, and d(8) = 6 (there are 6 

intervals ordered to the right of interval 8 whose indices are less than 8). Thus, 

intervals 2 and 8 are jump intervals.  

1 78 3 4 5 6 2 9 10 

Jump Interval 

Jump Interval

Figure 5.1. An example of jump intervals. 
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 We measure the performance of our algorithm by counting the number of jump 

intervals in the resultant interval model. Table 1 lists the statistics for the number of 

jump intervals. As one can see, when the error rate is less than 5%, the number of 

jump intervals is less than 10, and even when the error rate is increased to 10%, the 

number of jump intervals remains less than 15 in most runs, indicating that the final 

interval ordering produced by the algorithm is a good approximation for the original. 

Table 1. Statistics for the jump intervals. 

100 intervals 200 intervals 400 intervals Number of 

Jump Intervals 3% 5% 10% 3% 5% 10% 3% 5% 10%

0~5 48 34 20 38 28 4 48 40 27

6~10 1 4 17 12 17 11 1 5 13

11~15 0 0 9 0 4 23 0 3 6

16~20 1 2 1 0 1 7 1 1 3

21~25 0 0 2 0 0 1 0 0 0

26~30 0 0 1 0 0 0 0 1 0

31~35 0 0 0 0 0 1 0 0 0

 An example of our experiments is shown in Figure 5.1. There are 25 intervals in 

the graph, and the error rate is 5%. The original interval model is shown on the left 

half, and the interval model generated by our program is shown on the right half. Note 

that some FPs and FNs are generated but not depicted in this figure.
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Figure 5.1 An interval graph with 25 intervals at error rate 5% 
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6. CONCLUDING REMARKS 

The physical mapping problem in human genome research can be modeled as an 

interval graph recognition problem, if the overlap information is error-free. However, 

data collected from laboratories unavoidably contain errors. Traditional recognition 

algorithms can hardly be applied directly on noisy data, and related models for the 

imperfection are shown to be NP-hard. In this paper we propose a clustering 

algorithm for interval graph test on noisy data. The design of our algorithm is based 

on the philosophy of local structure matching. For two typical error types FPs and 

FNs, we check the neighborhood data to see whether they conform “approximately” 

to a particular local structure dictated by interval graphs to determine whether 

overlapping information is valid or noisy. The experimental results show that, when 

the error percentage is small, our clustering algorithm is robust enough to discover 

certain errors and to correct them automatically most of the time. 
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