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Abstract—Extracting information from tables is essential for Internet information 

extraction. However, most web tables are designed in HTML format. To decipher 

their semantic meanings a system needs to deal with various layouts, which is quite 

cumbersome. Previous works have two major approaches: layout enumeration 

approach and wrapper approach. The first approach is to match the table with 

presorted layout. This approach normally does not perform appropriate information 

integration since it does not use table semantics. The second approach treats different 

tables in a case-by-case manner laboriously. We present a semantic approach to 

automatically recognize tables (in specified knowledge domains) with various layouts. 

Our system first tags table cells using domain knowledge, solve the multiple tagging 

ambiguities, and then apply layout-syntax rules to transform tables into database 

format. Experimental results show that the precision and recall are higher than 93% 

and 82% respectively in four different domains. Our approach has high precision and 

is suitable as a front end for wrapper construction. 
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1. INTRODUCTION 

Tables are a concise way to represent information; massive useful information in 

table is available on the Web. Table layouts might vary widely, it is hard for machine 

to understand the logical meaning of a table [20, 27]. Furthermore, to integrate 

information from different sources, domain knowledge is necessary [3, 4, 6, 36]. A 

recent survey of table recognition from Zanibbi et al. describes that table recognition 

is an interaction of table models, observations, transformations and inferences [37]. 

However, the core problem is to recognize the table logic, i.e., the relationships of 

table cells. 

Previous works for table recognition have two major approaches, one is 

document understanding with layout enumeration approach for tables in general 

documents [5, 11, 21-24, 33], another is a wrapper approach for Internet documents [1, 

2, 7, 10, 12-15, 25, 26, 30]. The two approaches have different assumptions and 

achieve different level of understanding.  

Layout enumeration approach focuses on finding the right layout of a table with 

least human intervention. Systems have predefined knowledge of all possible layouts 

but no domain knowledge of table content. Wang analyzes characteristic information 

on tabular layouts [33]. Douglas and Hurst present an approach to enumerate all 

possible layouts to recognize and interpret tables in plain text. They also presents the 

cell cohesion function and area templates to distinguish labels and entries [5, 21-24]. 

This approach can recognize most of the tables but fails on special cases, where tables 

contain unexpected information. Thus, human intervention is still necessary. 

Supervised machine learning technique can be applied once there are enough training 

set [29]. 
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On the other hand, wrapper approach relies on human editors for each table and 

treat different tables in a case-by-case manner through manual tagging, even though 

the information content of the table is within the same domain. The advantage of 

wrapper construction is that it works for any given table and can have some tolerance 

of table layout with the help of machine learning technique [10, 28, 29]. However, 

each table must be processed first by a human editor. A method with less human 

intervention is desirable. 

The previous works focus on extracting a table’s logical structure and do not 

emphasize on the semantic relation of the table cells. Without the semantics, tables 

might not be recognized correctly and user might not be able to query them easily. 

Transferring the table into database is a practical way for further information 

integration. However, number of fields, names of fields, and types of fields are 

necessary to construct a database table. Therefore, a controlled vocabulary and 

relation between concepts are necessary. In our previous work [32], we proposed a 

way to recognize the table with the help of semantic relations of cells. We find that the 

concept-instance relation of cells could help to recognize the table in various layouts.  

Embley et al. also suggest a way that can recognize HTML tables to a given target 

database schema [8]. 

A practical approach of table recognition should combine the fully automatic 

approach with manual approach. For example, if one wants to collect timetable 

information for all hospitals in an area, the number of tables to wrap is enormous and 

manual tagging is almost impossible. However, with pre-designed hospital-timetable 

domain knowledge, our approach can automatically transform these tables into 

database correctly. Only a little effort is required to resolve the ambiguities in the 

remaining tables (less than 5% of total) by human editors. Thus, with our system can 
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serve as a front end tagging system for wrapper construction, we can get a practical 

system.  

In this paper, we propose a method that can reuse the knowledge of human editor, 

such that the system can deal with tables in the same knowledge domain without 

respect to various layouts. The paper is organized as follows. In section 2, we describe 

the problem definition and analyze the problem. In section 3, we present the system 

that we implement base on the analysis. In section 4, we report our results of 

experiments. In the last section, we make conclusions and list some future works. 

2. PROBLEM DEFINITION AND ANALYSIS 

The table recognition problem can be defined as: given an HTML table T and the 

domain knowledge of the information to be extracted, the system outputs a database 

table D, containing the information extracted from T.

In the following subsections, we analyze the difficulties of this problem. To solve 

the problem, we first describe the table we want deal with. Next, we analyze the 

necessary knowledge. Then, we define the model of table syntax. Finally, we define 

the table transformation as a result of table recognition.  

2.1. General tables and HTML tables 

Due to presentation space, the size of a HTML table is often quite limited. Since 

tables are usually used to arrange or compare a lot of data, the length of the string in a 

cell is often short. We assume that strings in tables are the representation of concepts 

and their instances. Table headers often represent concepts, and table body entries 

represent instances of the concepts. However, since nested headers are very usual, 

header and the nested header are often concept-instance pair too. In Figure 1(a) 

Column Header located at the first row and the Nested Column Headers at the second 

row do have concept-instance relation. That is. Ass1, Ass2, and Ass3 are instances of 
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the concept “Assignment”, and the data are instances of the concepts of Ass1, Ass2, 

and Ass3. Figure 1 (a) shows a general table anatomy, while Figure 1 (b) shows the 

same table in HTML style. 

Since there is no specific tags in HTML to indicate the stub part. To recognize 

which cells of an HTML table belonging to header or body require more semantic 

knowledge. Since a string in a cell is a representation of a concept or an instance of 

certain concept, a system can recognize the string through template matching, and 

then tag the string with the concept. However, due to the ambiguity of natural 

language, sometimes multiple tags for a string is quite common. Domain knowledge 

of the semantic relations is necessary to disambiguate the multiple tags. It should be 

noted that even if the table is given in XML format, extracting cell information could 

be still very difficult since the semantic relations among the XML tags are not 

necessarily specified.

2.2. Knowledge to understand a table 

There is no any generic algorithm that can understand all kinds of tables. To 

decipher the meaning of a table, a system requires the knowledge of table layout and 

domain knowledge. Some tables cannot be understood without domain knowledge. 

For example, consider the train timetable in Figure 2. Human can use the concept 

train number and knowledge of train number to access the information. That is, read 

the second row and can get the train code (CHU KUANG), departure station 

(TAI-TUNG NEW), and destination station (KAO-HSIUNG). However, there is no 

explicit clue for a machine to do the same thing. The concepts of train code,

departure station and destination station are hidden concepts of the table. Human 

with common sense can understand this table, but machines fail to recognize such 

hidden concepts. Domain knowledge must be brought into the system before 
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machines can read such table. 

We investigate three kinds of knowledge that a system requires to understanding 

tables. 1. Basic table layout knowledge, 2 Knowledge to distinguish concept and 

instance, and 3 Knowledge to distinguish different layouts. Systems with different 

kinds of knowledge achieve different kinds of understanding. 

Level-1: Basic table layout knowledge is supported. With the level-1 

knowledge, a system can recognize the position of each text string, and than separate 

label and data. Traditional table recognizing systems understand a table in this way.  

Level-2: Knowledge to distinguish concept and instance is supported.  With 

level-2 knowledge, system can identify the semantics in each cell. Wrapper approach 

uses human editors to achieve this level of knowledge. 

Level-3: Knowledge to distinguish different layouts is supported. With 

level-3 knowledge, we can determine which algorithm should be applied to different 

layouts. Our idea is to denote the possible layouts by layout syntax grammar in 

different table domains and use these denotations to do template matching. The 

matched templates will be used to determine the semantics of cells’ content. After that, 

a semantic preserving transition will be applied to transform the layout. Finally, a 

database form is acquired. In this paper, we test tables in 4 domains with level-3 

knowledge.

2.3. Table Classification 

Previous works on table recognition focused on extracting a table’s logical 

structure, however, this is insufficient to extract the semantic meaning of the table. We 

classify tables based on both semantics and layout knowledge. 

In the layout aspect, we propose three table classes: 1-dimensional tables, 
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2-dimensional tables, and complex tables. The first two classes are used more often 

than the complex tables. Herein, table cells are divided into labels and entries 

according to semantic identification. 

1-Dimensional Tables:  

1-dimension tables have one row of labels over several rows of entries. In this 

paper we have a stricter definition. The relations between labels and entries should be 

concepts and instances in the same column. 

The tables in a relational database are 1-dimensional. Entries in different 

columns represent instances of different concepts. The label of each column identifies 

the categories of concepts by which we access entries in the column. Figure 3(a) 

illustrates the style of a normal 1-dimensional table and Figure 3(b) provides an 

1-dimensional table example. The notation of the abstract table will be described in 

section 2.4. 

2-Dimensional Tables: 

2-dimensional tables have a rectangular area of similar entries. Each entry in this 

rectangular area represents an instance of the same concept. One or several rows of 

labels are above the rectangular area. These labels are instances of other concepts. 

Instances in different rows belong to different concepts. The left-hand side of the 

rectangular area could have one or several columns of labels. These labels are also 

instances of different concepts. Instances in the same column belong to the same 

concept. Instances in different columns belong to different concepts. At times, table 

designers did not include a label concept either because it is intrinsically understood, 

or there is no common way to define it. Figures 4(a) & (b) show the styles of 

2-dimensional tables, and Figures 4(c) & (d) provide examples. 

Complex Tables:  

Complex tables are variants of 1-dimension and 2-dimension tables and can have 
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various features. For each feature, a corresponding heuristics can be designed. There 

is no way to list all the features, since the table constructor might have different 

reason to design a special table. Here, according to our observation, we list seven 

common features. 

a. Partition label: Special labels appear in the data entries area making several 

partitions of the data entries. Each partition shares the same labels at the top of the 

table. For example, Figure 5(a) illustrates this situation with an example in Figure 8. 

Semantic identification of cells in these tables is complicated, and concept-instance 

relation cannot be obtained in neighboring cells. 

b. Over-expanded label: In Figure 5(b), each entry IX spans two or three IY

under the same label CX. For example, in Figure 7, each “Fixed Deposit” spans six 

rows and “Regular Fixed Deposit” spans three rows under the same label “Items & 

Periods”.

c. Combination: Some large tables are a combination of several similar smaller 

tables. In Figure 5(c), four small tables merge into a larger one. In Figure 6, two tables 

merge into a larger one.

d. Multiple items in a cell: Some cells may contain two or more items that can 

be recognized as instances of the same or different concepts. In Figure 5(d), each 

entry has two instances in the second column. In Figure 6, many cells have two 

different items: doctor name and doctor ID number
1
. The relations between items in 

the same cell are referred to as inner cell relations [21, 22].  

e. Vertical writing: The sequence of text is presented vertically in a cell, which 

commonly occurs in Chinese web pages. For example, in Figure 5(e), the words 

“ABC” and “DEF” are written vertically in a cell. However, the original sequence in 

1
 Multiple items can occasionally be represented as one item if the distribution in every cell is 

regular. For example, the doctor name and ID is an example of the concept: ‘doctor name & id’. 

8



the HTML source is “ADBECF”. 

f. Forward reduction: Comparing Figure 5(f) and Figure 5(g) reveals two 

empty cells in Figure 5(f), which are omissions. It is an intentional omission that is 

named as forward reduction. 

g. Footnotes: Some tables have one or more cells containing special information 

with descriptions in footnotes. These footnotes often produce many tags, which will 

create noises when selecting a correct tag for cells in the same columns and the same 

rows.

2.4. Layout Syntax 

In order to represent the complex tables, we design a layout syntax grammar 

that can represent the semantic relations of all the HTML tables. Our layout syntax 

consists of two kinds of symbols. They are used as area notations and concatenation 

operators.

Semantic Cell Notation: 

CX denotes a string that represents concept X in a cell. 

IX denotes a string that represents an instance of concept X in a cell. 

? is a don’t-care symbol, it can be any kinds of cell. 

 denotes an empty cell. 

Empty cells can be also matched by the above denotations. 

Area Notation: 

*c
 denotes a repetition in a column. I*c

 X represents Figure 9(a). 

*r
 denotes a repetition in a row. I*r

 X represents Figure 9(b). 

*,*
 denotes a repetition in a rectangle area. I*,*

 X represents Figure 9(c). The first 
*

is the row size and the second 
*
 is the column size. 

All of the above 
*
 can be replaced by numbers, variables or expressions to denote 
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a deterministic size of repetition. For example, I3r
X represents 3 concatenated cells of 

IX in the same row. 

Concatenation Operator: 

| is an operator to concatenate two layouts from top to bottom. For example, CX|

I*c
 X represents Figure 9(d). 

- is an operator to concatenate two layouts from left to right. CX-I*r
 X represents 

Figure 9(f). 

 represents a repetition of left-to-right concatenation. In Figure 9(e), 
n
i=1 (C

Xi|I
*c

Xi) = (C X1|I
*c

X1)-…-(C Xn|I
*c

Xn) and I
nr

X = 
n

i=1IXi.

 represents a repetition of top-to-bottom concatenation. In Figure. 9(g), 
n

i=1(C

Xi-I
*r

Xi) = (C X1-I
*c

X1)|…|(C Xn-I
*c

Xn) and I
nc

X = 
n

i=1IXi.

2.5. The Representation Lemma 

The layout syntax grammar is induced from the complex tables, and is general 

enough to represent all the tables we observed. The following lemma gives a 

theoretical description on how general it is. 

Definition: A monotonic area is an area of cells in the same concept. Monotonic 

areas are CX, IX, C*r
 X, I*r

 X, C*c
 X, I*c

 X, C*,*
 X, and I*,*

 X. See figure 9 for details. 

Definition: A binary-partition is to divide a table into two partitions, vertically 

or horizontally, without breaking any monotonic area. 

Representation Lemma: If a table can be recursively binary-partitioned until 

each partition is a monotonic area, then the table can be represented by layout syntax 

grammar. 

Proof. The lemma can be proofed by mathematical induction. First, for any 

monotonic area, it can be represented by the layout syntax grammar. Then, for any 
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table partition P, a binary partition produces two partitions PX and PY. We assume that 

each of PX and PY can be represented by the layout syntax grammar G(PX) and G(PY)

respectively. Since PX and PY are produced by a binary partition, they are either 

concatenated from top to bottom or from left to right. Hence, G(P) = PX|PY if they are 

concatenated from top to bottom, G(P) = PX-PY if they are concatenated from left to 

right. Since PX and PY can be further binary partition into smaller partition until the 

partition is a monotonic area, and the monotonic area can be represented by the layout 

syntax grammar. The whole table can be represented by layout syntax grammar. 

2.6. Semantics Preserving Transition 

The semantic preserving transition maps from layout to layout while preserving 

relations between cells. We find that the transition from 1-dimensional or 

2-dimensional tables into a standard database can be automatic. However, the 

complex tables ins section 2.3 must be divided into 1-dimensional or 2-dimensional 

tables before the transition can take place. 

We define an operator  to denote a set of layouts. For example, 
n
i=1(IXi-I

*r
Y) is 

a set of tables in the form of IXi-I
*r

Y. For 1-dimensional and 2-dimensional tables, the 

transformations are in Table 1. 

Consider the table in Figure 4(c), with the semantics in domain knowledge it is 

recognize as a 2-dimensional table as the abstract table in Figure 10 (a). The abstract 

table can then be transformed into the database format in Figure 10 (b) by the 

transformation rules in Table 1. In the database format table, every row is a reading 

path of the table in Figure 4(c). 

2.7. Semantic Support Database Queries 

The database form of Figure 4(c) is shown in Figure 10(b). In a traditional 

database table, the first row is field names and the following rows are field values. In 
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order to support semantic queries, we define the semantic database table to be a 

restricted database table in which its field values must be instance values of the same 

concept and their field names must be the names of concepts. Therefore, the query 

constraints listed in the WHERE closure of SQL queries are composed by field names 

and field values. This would pave the way to transform a natural language queries into 

SQL queries, where field names and field values in query constraints are concepts and 

instances. 

3. METHODOLOGY 

According to the analysis in section 2, finding the relation between cells is an 

important step of table recognition. In this section, we describe how a system can tag 

the cells and find the relations among the cells based on manually edited domain 

knowledge. A brief review of our ontological knowledge representation framework, 

INFOMAP, is in section 3.2.  

3.1. Table Recognition Process 

A four-step process is designed for a system to recognize tables in a given 

domain. 1. Normalize the HTML tables into virtual tables, 2. Tag each cell with 

semantic tags, 3. Resolve the ambiguity, and 4. Restructure a tagged table into a 

semantic database table. Figure 11 shows the processes. 

Normalization of the HTML tables 

The first step is to normalize the HTML table because the source files might 

contain excess information. A virtual table is a two dimensional array with the same 

number of columns and rows as the original HTML table. A virtual cell contains the 

tuple (index of column, index of row, size of column span, size of row span, content). 

The content is the original text string in the HTML cell. The information in virtual 

cells is necessary for the following processing. 
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Our system ignore the function of <th> and <td> HTML tags since their original 

functions are often ignored by table creators. Our system expands the HTML 

spanning cells, where the attributes “rowspan” or “colspan” are used. That is, a 

spanning cell will be normalized into cells with the same content. 

Tagging cells 

The core of the tagging process is template matching. The template matching 

technique is to tag the string in each cell with the concepts or instances in domain 

knowledge.

A tag contains the tuple (type, concept index, location). The value of the tag type

can be concept or instance. The concept index is the semantic index on INFOMAP. 

The location is the location of the substring that matches the representation of the 

information described by type and concept index, both the starting and ending point of 

the substring is recorded. 

Our system can use the concept index to compare the relation between tags. If 

one concept index is on a sub-tree of another, we say that the former concept is a 

descent concept of the latter. 

Ambiguity resolving process 

When there is more than one tag in a cell, our system applies an ambiguity 

resolution process and an omission refill process based on heuristics. 

To disambiguate tags in a cell, our system applies two heuristics, longer-first 

heuristic and left-first heuristic, to eliminate ambiguity by comparing the string 

length and position. When there are two or more tags exactly overlapped, we need to 

use a neighbor-reference heuristic. Our system estimates the likelihood of these 

overlapped tags to the tags of the neighboring cells, and then selects the tag with the 

best correlation. This is based on the analysis that related data usually arranged in the 
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same row or column. A detailed algorithm is presented in section 3.3. 

Restructuring of a tagged table into a database table 

After the process of recognizing information in a string through template 

matching, the system can recognize the table layout and transfer the table into a 

semantic database. The system recognizes the layout according to the layout syntax 

grammar. In section 2.6, we present layout transition rules to convert generic table 

layout to semantic database table layout.  

3.2. Domain Knowledge Editing 

Ontological domain knowledge of a table domain contains the concepts and 

relationships of the concepts. Templates of various wording are also included. For 

each domain, we construct the domain knowledge by our ontological knowledge 

representation framework, INFOMAP [19], which is a concept-modeled ontology [7] 

that can use various semantic template to representation domain concepts. We develop 

it from the result of our previous works [16-18]. Our knowledge map has a tree 

structure where each information node represents a concept and the relationship 

between two concepts is labeled by a relation node, such as hyponym, synonym or 

attribute. Each relation node contains a name that defines the relation between its 

parent information node and its children information nodes. Figure 12(b) gives an 

example of domain knowledge in INFOMAP that are used to recognize the table in 

Figure 12(a). In this domain, there are four important concepts: Flight, Depart Info, 

Arrive Info, and Aircraft. The target content is the Flight, that is, the number of rows 

of the database is depends on the number of Flight cells. 
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The concept-instance relation can be defined on the tree structure. An 

information node is treated as a concept. Information nodes are treated as instances

of another concept if they are within a sub-tree connected to it’s the given concept and 

the relation nodes are “hyponym”. Information nodes are treated as synonyms if they 

are within a sub-tree connected to its parent information node by a relation node 

called as “synonym”.

The INFOMAP template syntax can represent various wordings of a concept. 

Table 2 shows some examples of templates. A template can be denoted as a sequence 

of template unit groups separated by colons.  

A template unit can be a string of keywords quoted by two quotation marks. For 

example, in Figure 12, there are two instances of “City”. Each “City” is a template 

unit.

A template unit can also be a selection of a set of template units. We use braces 

to enclose all the template units, double quotation to enclose a string, and comma to 

separate two template units. For example, {“Mr.”, ”Dr.”} is a selection of two 

template units “Mr.” and “Dr.”. A template unit group can be repeated.  

A template unit group is repeated when we append two numbers separated by 

two dots and enclosed by parentheses. The first number denotes the minimum number 

of repetitions and the second number denotes the maximum number of repetitions. 

For example, “0”(3..5) is a template unit group that repeats the template unit “0” at 

least 3 times and at most 5 times. It can be “000”, “0000”, or “00000”.  

A template unit can also be a substitution by any representation of instances of a 

concept. Such template units are denoted by the concept reference quoted by brackets. 

For example, ‘[Airline Timetable, Departure, City]’
2
 is a substitution of the sub-tree 

defined for the instances of the concept Departure-City in the Airline Timetable 

domain. Such template units are called reference template units.

3.3. Tag Selection 

The meaning of the string in a cell sometimes cannot be clearly identified 

without referring to neighboring cells. For example, consider the airline timetable in 

Figure 12(a), the meaning of “City” in this table is not clear, because our system does 

2
 We call it a concept pathname because we can look up the real location through the tree structure 

one by one. In the map of “Airline Timetable” there is only one node named as “Departure”. There is 

also only one node named as “City” in the sub-tree of “Departure”. 
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not know whether it describes an arrival or departure city. The tagging system can 

create two tags for “City” in concepts of “Arrival City” and “Departure City”. In 

order to resolve the ambiguity, referring to other cells is necessary. 

For the second row, “TPE” and “YVR” have two different meanings. The right 

and the left cells cannot help resolving the ambiguity. However, if one observes the 

cells above, the “Departing” has a greater correlation to “Departure City” than to 

“Arrival City”. 

In our tag selection process, our system computes the correlation degree of a tag 

to other tags vertically and horizontally. Based on the assumption that table designer 

tend to put related information in the same row or column [31, 34].  

The relation scoring function, relation-score(T1, T2), computes the score of the 

relation between two tags T1 and T2. The score values of all relations are defined as 

follows: 

(1) s1: concept - instance relation. 

(2) s2: concept - descent concept relation. 

(3) s3: concept - descent instance relation. 

(4) s4: concept - same concept. 

(5) s5: instance - same instance. 

(6) s6: otherwise. 

Given a tag T, its total vertical relation scoring function is defined as: 

v-score (T) := relation-score (T, T
i i),  Ti  tags in cells in the same column 

with T. 

Its total horizontal relation scoring function is defined as: 

v-score (T) := relation-score (T, T
j j),  Tj  tags in cells in the same 

column with T. 

16



Its total relation scoring function is defined as: 

score (T) := wh * h-score (T) + wv * v-score (T), where wh and wv are weights for 

the importance of a relationship in different directions. 

For example, the “City” in cell (1, 1)
3
 is tagged as concept T1: “Departure City” 

and concept T2:“Arrival City”. Therefore, the values of s1 to s5 are 1, and 0 for s6, and 

1 for wh and wv. The total relation score of T1 is  

score (T1) = 1 * (0+0+1+0+0) + 1 * (1+1+1+1+1+1+1+1) = 9, 

and the total relation score of T2 is  

score (T2) = 1 * (0+0+1+0+0) + 1 * (0+1+1+1+1+1+1+1) = 8. 

Since score (T1) > score (T2), the “City” in cell (1, 1) should be tagged as the 

concept “Departure City”. 

3.4. An Illustrative example 

Figure 14(a) shows a hospital outpatient timetable and the corresponding domain 

knowledge is shown in Figure 15. Figure 14(b) shows the concept tagging result of 

each cell. In this table, cells are grouped into four monotonic areas as shown in the 

table of Figure 14(c). Applying the transformation mechanism for 2-dimension tables, 

our system rearranges the cells in the form of Figure 14(d). Finally the table in Figure 

14(a) is transformed into the database format table in Figure 14(e), where each row is 

a target content. 

4. EXPERIMENTATIONS
4

We conducted four experiments on four independent domains: 1. interest rate, 2. 

transportation information, 3. faculty list, and 4. hospital service. We collect tables 

from different websites, and manually edit the domain knowledge. With the domain 

knowledge, the system recognizes the table structure and performs table 

3
 The coordinate of the top-left corner is (0, 0) 

4
 All example tables are in Chinese originally. We translate them in to English for reader's 

convenience. 
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transformation automatically. For each table, we evaluate the precision and recall 

according to the expected number of rows in the output database table, which should 

be the number of cells with target content in the original table. For each domain, the 

experimental results are divided into 2 groups, where group 1 are tables that our 

system can recognize the structure of the table and group 2 are tables that our system 

cannot recognize the table. 

The Table Reading Application is implemented using Microsoft Visual Studio. We 

use C++.Net, HTML Tidy Library[http://tidy.sourceforge.net/] to build our kernel, 

Visual Basic.Net to build our Windows application, and C#.Net to run as standard 

Microsoft Windows ASP Web application. 

4.1. Tables in four different domains  

(1) For the interest rate domain, we collect all available interest rate tables from 

web sites of 15 banks in Taiwan, 14 of them are in HTML.  

We manually read the first three tables and built the domain knowledge. There 

are five important concepts: interest rate, fix interest or non-fix interest, period, type, 

and mixed of type and period. Each concept has several instances, the interest rate’s 

instance are all real numbers between 0% and 100%. The period concept’s instances 

are 1 month to 36 months. The type concept’s instances are a personal deposit account 

or a special account. All the concepts are common sense to human, however, in 

various wordings.  

Our program recognizes 11 tables out of the 14 tables. The precision and recall 

are 96% and 82%, respectively. It is very interesting that no two tables shared the 

same layout in this experiment, but our system can recognize most of them. 

The detailed result is shown in Table 3. The tagging detail shows that there are 

many omissions and some ambiguity of the meaning of cells. There are three tables 
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that our program cannot read, they are complicated tables as we mentioned in section 

2.

(2) For the Transportation Information domain, we collect 368 transportation 

information tables from web pages of 4 highways in the Real Time Transportation 

Information System (http://road.iot.gov.tw/). We also manually read the first three 

tables and built the domain knowledge. 

The recall and precision is 100%. We believe that they are machine-generate 

tables. Therefore, they are regular and easier to understand. The result is shown in 

Table 4.  

(3) For faculty domain, we select 28 faculty tables from the web sites of 7 

colleges. 26 tables are recognizable. The precision is 94% and the recall is 98.4%. The 

result is shown in Table 5. In this domain we cannot report how many tables are read 

manually to build the domain knowledge. Since our editor uses reference from 

educational web pages other than the ones used in the experiment. 

(4) For the hospital domain, we select 683 outpatient service timetables from 

web pages of 17 medical service centers. 16 tables are recognizable. The record level 

precision is 94% and the recall is 82%. The result detail is shown in Table 5I. In this 

domain we also cannot report how many tables are read manually to build the domain 

knowledge. Since our editor uses reference from medical web pages other than the 

ones used in the experiment. 

4.2. Discussion on the experimental result 

According to the analysis in section 2. If the structure of a table is recognized as 

1-dimainsional or 2-dimansional, the table can be transferred fully automatically. 

However, since the domain knowledge cannot cover all possible wordings, in some 

cases, the system tag the concept and instance based on heuristics.  
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The experiments show that the precision and recall rate are quit high, it support 

our selection of the heuristics. The precisions and recalls of the four domains in our 

experiment are above 93% and 82% respectively. There is a clear boundary between 

Group 1 (we can recognize the structure of the table) and Group 2 (we can not 

recognize the table). Our approach can (1) extract information into database from 

common layout structures once the semantic characteristic of data are identified, and 

(2) identify the semantic characteristic of data if it is supported by a well-defined 

knowledge model.  

In faculty tables, a lot of tables use special repeated layouts. Since there is no 

general rule to define the layouts of these tables, and data in these tables has repeated 

semantic characteristics, we believe a frame-based approach should work better. Also, 

our approach cannot process tables containing sentences with footnotes since the 

program could misunderstand the information in a cell when it contains too many 

words.

5. CONCLUSIONS & FUTURE WORKS

We have described a semantic approach to extract tabular information from the web. 

In this approach, we transform HTML tables into a relational database table. 

Our semantic approach can extract tabular information from web tables that have 

various layouts. In order to recognize the content in each cell, we build templates to 

describe possible representations of concepts and instances. These templates help to 

label semantic tags on each cell. In many cases, there are multiple tags for a cell 

because several templates are matched. However, by comparing the semantic 

relationships between neighbor cells, we can often determine a unique tag for the cell. 

We design layout syntax grammar to denote the layout descriptions so that we can 

transfer various layouts of tables into a relational database. The program recognizes 

these layout descriptions automatically. We also design a semantic preserving 

transition to rearrange the information into database tables for the 1-dimsional and 
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2-dimsional tables. 

The experimental results show a high success rate in different domains. A 

systematic post-processing can fix most of the fail cases that our approach cannot 

recognize the table layout. For tables containing multiple items in cells, we need to 

split each multi-concept cell into several cells. To deal with complex cells, such as 

footnote cells, we will need a preprocessing filter to isolate them.  

An important future work is automatic ontology acquisition. Due to the 

requirement of table recognition, concept hierarchy is important. There are two 

possible ways to acquire the hyponym relationship. 1.) A prior approach: given 

domain documents, find all the concept-instance pairs.[9] We have done some 

preliminary work in this area [35]. 2.) Online testing approach: given a table, 

enumerate all possible concept-instance pairs and then check the concept-instance 

pairs by the search engine. Which approach should be adopted depends on the 

application.
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1 - 16  

Start Arrival
Time Time

CHU KUANG 11 TAI-TUNG NEW To KAO-HSIUNG 05:15 07:52 Every Day
FU HSING 101 MKEE-LUNG To PING-TUNG 06:03 09:08 Every Day
TZE CHIANG 1003 MSUNG-SHAN To KAO-HSIUNG 07:00 09:16 Every Day
TZE CHIANG 1005 MSUNG-SHAN To KAO-HSIUNG 07:40 09:46 FRI SAT SUN only
TZE CHIANG 1007 MSUNG-SHAN To KAO-HSIUNG 07:55 10:11 Every Day
CHU KUANG 41 MKEE-LUNG To CHIA-I 08:23 11:06 Every Day
TZE CHIANG 1009 MKEE-LUNG To KAO-HSIUNG 08:40 10:40 Every Day
TZE CHIANG 1011 MSUNG-SHAN To KAO-HSIUNG 09:00 11:15 Every Day

Train Number Remark

Figure 2. A train timetable
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C1 … Cn

(b)

I1
*c

… In
*c

(a)

Figure 3. (a) an abstract 1-dimensional table, (b) a 1-dimensional table 
example of (a). CX denotes a string representing concept X in a cell, and IX

denotes a string that representing an instance of concept X in a cell. *c denotes a 
repetition in a column and *r denotes a repetition in a row. *,* denotes a repetition 

in a rectangular area. See the next sub-section for detail. 

? IY
*r C1 … Cn I Y

 * Time Morning Afternoon
Mon John Wang (2002) Indy Lai (2005)
Tue Jimmy Lin (2007) Wendy Lee (2001)
Wen Indy Lai (2005) John Wang (2002)
Thr Jimmy Lin (2007) John Wang (2002)
Fri Wendy Lee (2001) Indy Lai (2005)
Sat John Wang (2002)

(c)(b)

IX
*c

I Z
 *,*

I1
*c

… In
*c

I Z
*,*

(a)

Room Mon Tue Wed Thu Fri Sat
1 Joe Jiang Jean Tasi Joe Huang Hellon Yuo Hellon Yuo Collin Lee
2 Joe Jiang Collin Lee Jean Tasi Joe Jiang
3 Jean Tasi Collin Lee Jean Tasi Joe Huang Collin Lee Hellon Yuo
1 Collin Lee Jean Tasi Hellon Yuo Joe Jiang Joe Huang
2 Joe Jiang Jean Tasi
3 Joe Huang Collin Lee Hellon Yuo Collin Lee

Morning

Afternoon

(d)

Figure 4. Tables (a) & (b) are abstract 2-dimensional tables, (c) is an 
example of (a), and (d) is an example of (b). 

CX1 … CXn CZ CX CY CX CY CX CY CZ

IY IZ IX IY IZ

I
*c

X1 … I
*c

Xn IY IZ IX IY IZ

IY IZ CX CY CX CY IX IY IZ

IY IZ IX IY IZ

IY IZ IX IY IZ

CX

IP

IX I
*c

X I
*c

Y I
*c

X I
*c

Y

IP

IXI
*c

X1 … I
*c

Xn I
*c

X I
*c

Y

(d)

I
*c

X I
*c

Y

(a) (b) (c)

25



A D Date Room Doctor Date Room Doctor
B E Mon 1 Jenny 1 Jenny
C F 2 Penny 2 Penny

Tue 1 David 1 David
1 Josh 1 Josh

(e)

Mon

Tue

(f) (g)

Figure 5. Complex tables. (a) Partition labels. (b) Over-spanned labels. (c) 
Combination. (d) Multiple items in a cell. (e) Vertical writing. (f) Forward 

reduction. (g) Original form of (f). 

Room Mon Tue Wed Thu Fri Sat
1 Yi-Chung Chen 10201 Hong-Tai Hur 10201 Hsi-Sang Yang 10201 Yi-Chung Chen 10201 Hsi-Sang Yang 10201 Hsi-Sang Yang 10201

2 Jean-Lin Chen 10202 Ching-Hue Lee 10202 Hong-Tai Hur10202 Hsi-Sang Yang 10202 Hong-Tai Hur10202 Ching-Hue Lee 10202

3 Tung-Long Tsai 10213 Tung-Long Tsai 10203 Hong-Tai Hur10203 Jean-Lin Chen 10203

4

Room Mon Tue Wed Thu Fri Sat
1 Tung-Long Tsai 20201 Len-Hue Huang 20201 Jean-Lin Chen 20201 Jean-Lin Chen 20201 Tung-Long Tsai 20201

2 Ching-Hue Lee 20202 An-Ching Lai 20202 Ching-Hue Lee 20202

3
4

Morning

Afternoon

Figure 6. An illustrative example of combination and multiple items in a cell
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Regular Float
3 Monthes 4.40 4.40
6 Monthes 4.95 4.95
9 Monthes 5.05 5.05
1 Year 5.15 5.15
2 Years 5.25 5.25
3 Years 5.25 5.25
1 Year 5.25 5.25
2 Years 5.35 5.35
3 Years 5.35 5.35

Items & Periods

Fixed
Deposit

Regular
Fixed

Deposit

Figure 7. A table with over-spanned labels 

Rate (%) Regular Float

1 Year 5.05 5.05
2 Years 5.10 5.10
3 Years 5.10 5.10

3 Monthes 4.35 4.35
6 Monthes 4.60 4.60
9 Monthes 4.70 4.70
1 Year 5.00 5.00
2 Years 5.05 5.05
3 Years 5.05 5.05

Regular Fixed Deposit

Fixed Deposit

Figure 8. A table with partition labels 
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IX IX … IX

…

IX

I
*c

X

I
*r

X

I
*c

X … I
*c

X I
*,*

X

(a) (b) (c)

CX CX1 … CXn

I
*c

X

C X|I
*c

X

I
*c

X1 … I
*c

Xn

 n
i=1 (C Xi|I

*c
Xi)

(d) (e)

CX I
*r

X CX1 I
*r

X1

…

CXn I
*r

XnCX-I
*r

X

n
i=1(C Xi-I

*r
Xi)

(f) (g) 

Figure 9. Areas represented by layout syntax grammars. 

CX I
2r

Y

I
6c

X I
6,2

Z

(a) Abstract table of Figure 4(c) 

CX CY CZ

CX(1) CY(1) CZ(1,1)

CX(1) CY(2) CZ(1,2)

… … …

CX(6) CY(1) CZ(6,1)

CX(6) CY(2) CZ(6,2)

Figure 10 (b) Transformed from Figure 10 (a) by the transition rules 
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Transfer the HTML tables into virtual tables

Remove overlapped tags 

Resolve the ambiguity of multiple tags

Create a tagged table from a virtual table

Cell tagging by template matching

Restructure a tagged table into a database 

table 

Ontology base

Begin 

End 

HTML tables

Figure 11. Table reading flowchart 
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City Date & Time City Date & Time
EVA Airways 10 TPE 07/14 11:50pm YVR 07/14 07:40pm 744
American Airlines 6647 YVR 07/14 09:00pm LAX 07/14 11:45pm 737
Air Canada 9800 TPE 07/14 11:50pm YVR 07/14 07:40pm 744
American Airlines 6501 YVR 07/15 06:35am LAX 07/15 09:27am 737
China Airlines 61 TPE 07/14 08:10pm FRA 07/15 06:50am M11
American Airlines 83 FRA 07/15 10:40am ORD 07/15 01:05pm 763
American Airlines 473 ORD 07/15 02:30pm LAX 07/15 04:35pm 738

Flight
Departing Arriving

Aircraft

(a) An airline timetable 

…

Airline Schedule Timetable 

Flight Depart Info Arrive Info Aircraft 

City Date & Time 

MM/DD hh:mm {am.pm} SEA TPE ORD

hyponym 

attribute 

hyponym hyponym 

… … …

Target content 

(b) The knowledge map for airline timetables (some details are omitted) 

Figure 12. An airline timetable and the corresponding knowledge map 

30



Algorithm TagginSelection

Input: tagged table 

Output: tagged table  with at most one tag in every cell 

for c = 0 to .max_columns – 1 

    for r = 0 to .max_rows – 1 

        best_tag := nil 

        for every tag Ti in .cell (c, r) 

            Ti.score := score (Ti) 

            if best_tag = nil or best_tag.score < Ti.score then 

                best_tag = ti 

        remove all tags except best_tag in .cell (c, r) 

Algorithm TaggingSelection processes the tag selection for all cells. 

Figure 13. Tagging Algorithm 
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Time Morning Afternoon CTime IPeriod IPeriod

Mon John Wang (2002) Indy Lai (2005) IDate IName+ID IName+ID

Tue Jimmy Lin (2007) Wendy Lee (2001) IDate IName+ID IName+ID

Wed Indy Lai (2005) John Wang (2002) IDate IName+ID IName+ID

Thu Jimmy Lin (2007) John Wang (2002) IDate IName+ID IName+ID

Fri Wendy Lee (2001) Indy Lai (2005) IDate IName+ID IName+ID

Sat John Wang (2002) IDate IName+ID ?

(a) (b)

W X(1) Y(1) Z(1, 1)

W X(1) Y(2) Z(2, 1)

… … … …

W=CTime W X(6) Y(1) Z(1, 6)

W X(6) Y(2) Z(2, 6)

Time Date Period Name & ID

Time Mon Morning John Wang (2002)

Time Mon Afternoon Indy Lai (2005)

… … … …

Time Sat Morning John Wang (2002)

Time Sat Afternoon

(d)

(e)

(c)

Y=H(Iperiod, 2)

X= V(Idate,6)
Z=R(IName+ID, 6,

2)

Figure 14. (a) The original table, (b) The outcome after the tagging step, (c) 
the outcome after the layout recognition step, 4 monotonic areas, (d) the 

transformed outcome by applying the transformation rules, (e) The outcome in 
the original strings. 
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Hospital Timetable 

Time Place Department Doctor Name & ID 

attribute 

Date Period 

Morning 

Sun Tue Mon 

hyponym 

hyponym 

hyponym 

Building Floor 

([title]):[name]:[Id] 

hyponym 

hyponym 

hyponym 

Afternoon 

…

Room 

$$(2..4):building 

… …

target content 

…

Figure 15. The Domain knowledge for the outpatient service timetables 

( templates of each concept’s synonyms are omitted)

TABLE 1. 
 Table transformation rules 

Table Dimension  Original Layout Database Layout 

1-dim table CX-I
*r

X CX|I
*r

X

2-dim table (?|I
mc

X)-(I
nr

Y|I
m,n

Z) (CX-CY-CZ)|(
m

i=1,
n
j=1IX(i)-IY(j)-IZ(i,j))

TABLE 2. INFOMAP template syntax 
Concept Template of Instances Example

Date [digit](2..2):”/”:[digit](2..2) 12/25

Title {“Mr.”, “Dr.”, “Prof.”}:[family name] Dr. Wang 

Phone number [digit](3..3):”-“(0..1):[digit](4..4) 594-3388 
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Table 3 
Experimental Results of Interest Rate Table 

The second column shows the number of data in the original tables, the 
fourth column shows the number of records that the program reports and the 

third column is the number of correct records. The last four columns report the 
detail of cell tagging, including the number of tagged cells, the number of cells 

with multiple tags, the number of cells whose tags are decided by our algorithm 
and the number of cells with empty tag. 

ID

# of 

record

# of 

correct

record

cell

with 

data Precision Recall

# of 

Tagged 

cell

Cell with 

Multiple 

tag 

# of cell that 

the tag is 

Guessed 

# of cell 

with 

Empty  

tag 

Group 1 

Bank1 54 52 53 98.1% 96.3% 114 0 0 2

Bank2 30 30 30 100.0% 100.0% 47 0 0 1

Bank3 39 37 38 97.4% 94.9% 113 0 25 60

Bank4 68 39 39 100.0% 57.4% 71 14 22 4

Bank5 72 59 59 100.0% 81.9% 96 0 13 80

Bank6 43 43 43 100.0% 100.0% 68 0 1 4

Bank7 51 30 31 96.8% 58.8% 74 0 0 57

Bank8 38 37 37 100.0% 97.4% 76 0 4 8

Bank9 39 26 28 92.9% 66.7% 54 4 5 31

Bank13 16 10 14 71.4% 62.5% 23 0 0 1

Bank14 44 39 39 100.0% 88.6% 89 0 2 14

average 44.9 36.5 37.4 96.0% 82.2% 75.0 1.6  6.5  23.8 

Group 2 

Bank10 38 0 37 0.0% 0.0% 46 1 1 19

Bank11 48 3 43 7.0% 6.3% 56 0 0 44

Bank15 48 10 48 20.8% 20.8% 72 0 0 40

average 44.7  4.3  42.7  9.3% 9.0% 58.0 0.3  0.3  34.3 

Table 4 

Experiment results of transportation information tables 
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ID

Number of

tables 

Number of tables 

extracted correctly recall Precision

Highway #1 92 92 100% 100% 

Highway #2 92 92 100% 100% 

Highway #3 92 92 100% 100% 

Highway #1 Hsichih-WuKu Branch 92 92 100% 100% 

368 368 100% 100% 

Table 5 

Experiment result of faculty tables
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Department 

# of 

record

# of 

correct

record

cell with 

data Precision Recall

# of 

Tagged 

cell

Cell with 

Multiple 

tag 

# of cell 

that the 

tag is 

Guessed

Group 1 

NTU FL 101 101 106 95.3% 100.0% 359 59 65

NTU Phil 28 28 28 100.0% 100.0% 99 21 17

NCTU AM 25 25 28 89.3% 100.0% 93 12 16

NCKU LS 13 13 13 100.0% 100.0% 45 2 8

NCKU Aero 43 43 43 100.0% 100.0% 146 4 30

NCKU UP 19 19 21 90.5% 100.0% 65 6 21

NCKU Econ 4 4 4 100.0% 100.0% 17 2 1

NCCU Turkish 7 7 7 100.0% 100.0% 23 0 8

NCCU English 45 44 45 97.8% 97.8% 64 10 32

NCCU RM 25 25 25 100.0% 100.0% 83 6 20

NCCU IB 17 17 17 100.0% 100.0% 55 10 17

NCCU CS 10 10 10 100.0% 100.0% 44 5 9

NCCU AM 15 14 15 93.3% 93.3% 68 3 10

NTNU Arts 45 38 46 82.6% 84.4% 127 15 55

NCNU Edu&Psy 28 28 28 100.0% 100.0% 159 15 14

NCCU Arab 14 12 13 92.3% 85.7% 42 5 12

NCCU RTV 7 7 11 63.6% 100.0% 36 4 5

NTHU Math 32 32 32 100.0% 100.0% 132 5 31

NTHU Mech1 7 7 8 87.5% 100.0% 26 1 7

NTHU Mech2 9 9 10 90.0% 100.0% 39 7 4

NTHU Mech3 8 8 8 100.0% 100.0% 33 4 3

NTHU Mech4 8 8 9 88.9% 100.0% 36 5 3

FJU Psy 12 12 12 100.0% 100.0% 55 4 6

FJU Japanese 8 8 8 100.0% 100.0% 33 4 3

average 22.1 21.6 22.8 94.6% 98.4% 78.3  8.7  16.5 

Group 2 

NTU History 13 0 14 0.0% 0.00% 30 2 13

NTNU Music 50 0 0 0.00% 0.00% 79 10 42

average 31.5 0 7 0% 0% 54.5 6 27.5 

Table 6 

Experiment results of outpatient service timetable 
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Hospital 

# or 

record

# of 

correct

record

cell

with 

data Precision Recall

# of 

Tagged 

cell

Cell

with 

Multiple 

tag 

# of cell 

that the 

tag is 

Guessed 

# of cell 

with 

Empty 

tag 

Group 1 

ChungShan 347 221 245 90.20% 63.69% 1172 98 14 770 

Taipei 

XiuChuan 46 34 34 100.00% 73.91% 59 3 5 142 

ZhuShan 

XiuChuan 197 172 172 100.00% 87.31% 317 10 3 312 

ZhongXiau 19 19 19 100.00% 100.00% 29 17 0 6

GengShen 139 73 125 58.40% 52.52% 302 11 5 300 

YuLi CiJi 63 61 62 98.39% 96.83% 210 8 1 493 

CiJi 323 265 279 94.98% 82.04% 624 138 36 385 

XinGuang 581 560 572 97.90% 96.39% 1348 65 2 803 

Taipei 12 12 12 100.00% 100.00% 19 0 0 23

GuanShan CiJi 35 27 34 79.41% 77.14% 161 2 0 304 

CMUH 363 347 365 95.07% 95.59% 718 260 1 314 

ZhangHua 

XiuChuan 596 547 554 98.74% 91.78% 1246 93 56 1591

TaiAn 74 54 54 100.00% 72.97% 162 52 1 241 

GuangFu 

XiuChuan 136 90 90 100.00% 66.18% 210 24 1 201 

XinLou 13 13 14 92.86% 100.00% 45 14 0 45

CKU 118 80 88 90.91% 67.80% 195 22 39 287 

average 181.0  156.9  164.9 93.6% 82.8% 376.3 47.9  10.0  363.1 

Group 2 

TauYuan 44 8 75 18.18% 10.67% 123 55 10 44

average 44 8 75 18.18% 10.67% 123 55 10 44
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