

 TR-IIS-06-005

A Semantic Approach to Internet
Tabular Information Extraction

Shih-Hung Wu, Huei-Long Wang, I-Chi Wang, Cheng-Lung Sung,
Wei-Kuan Shih and Wen-Lian Hsu*

May 23, 2006 || Technical Report No. TR-IIS-06-005
http://www.iis.sinica.edu.tw/LIB/TechReport/tr2006/tr06.html

A Semantic Approach to Internet Tabular Information

Extraction

A short version appeared in CIKM 2004

Shih-Hung Wu
 a
, Huei-Long Wang

c
, I-Chi Wang

b
, Cheng-Lung Sung

c
,

Wei-Kuan Shih
c
 and Wen-Lian Hsu

bc*

a
 Department of Computer Science and Information Engineering, Chaoyang University of

Technology, Taichung County, Taiwan, R.O.C
b
Institute of Information Science, Academia Sinica.

Taipei, Taiwan, R.O.C.
c
 Department of Computer Science, National Tsing Hua University

Hsin-Chu, Taiwan, R.O.C.

Abstract—Extracting information from tables is essential for Internet information

extraction. However, most web tables are designed in HTML format. To decipher

their semantic meanings a system needs to deal with various layouts, which is quite

cumbersome. Previous works have two major approaches: layout enumeration

approach and wrapper approach. The first approach is to match the table with

presorted layout. This approach normally does not perform appropriate information

integration since it does not use table semantics. The second approach treats different

tables in a case-by-case manner laboriously. We present a semantic approach to

automatically recognize tables (in specified knowledge domains) with various layouts.

Our system first tags table cells using domain knowledge, solve the multiple tagging

ambiguities, and then apply layout-syntax rules to transform tables into database

format. Experimental results show that the precision and recall are higher than 93%

and 82% respectively in four different domains. Our approach has high precision and

is suitable as a front end for wrapper construction.

Keywords: Table Understanding; Data Integration; Tabular information extraction,

Domain Knowledge, Table layout syntax

*
 Corresponding Author

Tel: 886-2-27883799ext.1804

Fax: 886-2-27824814

E-mail: hsu@iis.sinica.edu.tw (W.L. Hsu), shwu@cyut.edu.tw (S.H.Wu)

1

1. INTRODUCTION

Tables are a concise way to represent information; massive useful information in

table is available on the Web. Table layouts might vary widely, it is hard for machine

to understand the logical meaning of a table [20, 27]. Furthermore, to integrate

information from different sources, domain knowledge is necessary [3, 4, 6, 36]. A

recent survey of table recognition from Zanibbi et al. describes that table recognition

is an interaction of table models, observations, transformations and inferences [37].

However, the core problem is to recognize the table logic, i.e., the relationships of

table cells.

Previous works for table recognition have two major approaches, one is

document understanding with layout enumeration approach for tables in general

documents [5, 11, 21-24, 33], another is a wrapper approach for Internet documents [1,

2, 7, 10, 12-15, 25, 26, 30]. The two approaches have different assumptions and

achieve different level of understanding.

Layout enumeration approach focuses on finding the right layout of a table with

least human intervention. Systems have predefined knowledge of all possible layouts

but no domain knowledge of table content. Wang analyzes characteristic information

on tabular layouts [33]. Douglas and Hurst present an approach to enumerate all

possible layouts to recognize and interpret tables in plain text. They also presents the

cell cohesion function and area templates to distinguish labels and entries [5, 21-24].

This approach can recognize most of the tables but fails on special cases, where tables

contain unexpected information. Thus, human intervention is still necessary.

Supervised machine learning technique can be applied once there are enough training

set [29].

2

On the other hand, wrapper approach relies on human editors for each table and

treat different tables in a case-by-case manner through manual tagging, even though

the information content of the table is within the same domain. The advantage of

wrapper construction is that it works for any given table and can have some tolerance

of table layout with the help of machine learning technique [10, 28, 29]. However,

each table must be processed first by a human editor. A method with less human

intervention is desirable.

The previous works focus on extracting a table’s logical structure and do not

emphasize on the semantic relation of the table cells. Without the semantics, tables

might not be recognized correctly and user might not be able to query them easily.

Transferring the table into database is a practical way for further information

integration. However, number of fields, names of fields, and types of fields are

necessary to construct a database table. Therefore, a controlled vocabulary and

relation between concepts are necessary. In our previous work [32], we proposed a

way to recognize the table with the help of semantic relations of cells. We find that the

concept-instance relation of cells could help to recognize the table in various layouts.

Embley et al. also suggest a way that can recognize HTML tables to a given target

database schema [8].

A practical approach of table recognition should combine the fully automatic

approach with manual approach. For example, if one wants to collect timetable

information for all hospitals in an area, the number of tables to wrap is enormous and

manual tagging is almost impossible. However, with pre-designed hospital-timetable

domain knowledge, our approach can automatically transform these tables into

database correctly. Only a little effort is required to resolve the ambiguities in the

remaining tables (less than 5% of total) by human editors. Thus, with our system can

3

serve as a front end tagging system for wrapper construction, we can get a practical

system.

In this paper, we propose a method that can reuse the knowledge of human editor,

such that the system can deal with tables in the same knowledge domain without

respect to various layouts. The paper is organized as follows. In section 2, we describe

the problem definition and analyze the problem. In section 3, we present the system

that we implement base on the analysis. In section 4, we report our results of

experiments. In the last section, we make conclusions and list some future works.

2. PROBLEM DEFINITION AND ANALYSIS

The table recognition problem can be defined as: given an HTML table T and the

domain knowledge of the information to be extracted, the system outputs a database

table D, containing the information extracted from T.

In the following subsections, we analyze the difficulties of this problem. To solve

the problem, we first describe the table we want deal with. Next, we analyze the

necessary knowledge. Then, we define the model of table syntax. Finally, we define

the table transformation as a result of table recognition.

2.1. General tables and HTML tables

Due to presentation space, the size of a HTML table is often quite limited. Since

tables are usually used to arrange or compare a lot of data, the length of the string in a

cell is often short. We assume that strings in tables are the representation of concepts

and their instances. Table headers often represent concepts, and table body entries

represent instances of the concepts. However, since nested headers are very usual,

header and the nested header are often concept-instance pair too. In Figure 1(a)

Column Header located at the first row and the Nested Column Headers at the second

row do have concept-instance relation. That is. Ass1, Ass2, and Ass3 are instances of

4

the concept “Assignment”, and the data are instances of the concepts of Ass1, Ass2,

and Ass3. Figure 1 (a) shows a general table anatomy, while Figure 1 (b) shows the

same table in HTML style.

Since there is no specific tags in HTML to indicate the stub part. To recognize

which cells of an HTML table belonging to header or body require more semantic

knowledge. Since a string in a cell is a representation of a concept or an instance of

certain concept, a system can recognize the string through template matching, and

then tag the string with the concept. However, due to the ambiguity of natural

language, sometimes multiple tags for a string is quite common. Domain knowledge

of the semantic relations is necessary to disambiguate the multiple tags. It should be

noted that even if the table is given in XML format, extracting cell information could

be still very difficult since the semantic relations among the XML tags are not

necessarily specified.

2.2. Knowledge to understand a table

There is no any generic algorithm that can understand all kinds of tables. To

decipher the meaning of a table, a system requires the knowledge of table layout and

domain knowledge. Some tables cannot be understood without domain knowledge.

For example, consider the train timetable in Figure 2. Human can use the concept

train number and knowledge of train number to access the information. That is, read

the second row and can get the train code (CHU KUANG), departure station

(TAI-TUNG NEW), and destination station (KAO-HSIUNG). However, there is no

explicit clue for a machine to do the same thing. The concepts of train code,

departure station and destination station are hidden concepts of the table. Human

with common sense can understand this table, but machines fail to recognize such

hidden concepts. Domain knowledge must be brought into the system before

5

machines can read such table.

We investigate three kinds of knowledge that a system requires to understanding

tables. 1. Basic table layout knowledge, 2 Knowledge to distinguish concept and

instance, and 3 Knowledge to distinguish different layouts. Systems with different

kinds of knowledge achieve different kinds of understanding.

Level-1: Basic table layout knowledge is supported. With the level-1

knowledge, a system can recognize the position of each text string, and than separate

label and data. Traditional table recognizing systems understand a table in this way.

Level-2: Knowledge to distinguish concept and instance is supported. With

level-2 knowledge, system can identify the semantics in each cell. Wrapper approach

uses human editors to achieve this level of knowledge.

Level-3: Knowledge to distinguish different layouts is supported. With

level-3 knowledge, we can determine which algorithm should be applied to different

layouts. Our idea is to denote the possible layouts by layout syntax grammar in

different table domains and use these denotations to do template matching. The

matched templates will be used to determine the semantics of cells’ content. After that,

a semantic preserving transition will be applied to transform the layout. Finally, a

database form is acquired. In this paper, we test tables in 4 domains with level-3

knowledge.

2.3. Table Classification

Previous works on table recognition focused on extracting a table’s logical

structure, however, this is insufficient to extract the semantic meaning of the table. We

classify tables based on both semantics and layout knowledge.

In the layout aspect, we propose three table classes: 1-dimensional tables,

6

2-dimensional tables, and complex tables. The first two classes are used more often

than the complex tables. Herein, table cells are divided into labels and entries

according to semantic identification.

1-Dimensional Tables:

1-dimension tables have one row of labels over several rows of entries. In this

paper we have a stricter definition. The relations between labels and entries should be

concepts and instances in the same column.

The tables in a relational database are 1-dimensional. Entries in different

columns represent instances of different concepts. The label of each column identifies

the categories of concepts by which we access entries in the column. Figure 3(a)

illustrates the style of a normal 1-dimensional table and Figure 3(b) provides an

1-dimensional table example. The notation of the abstract table will be described in

section 2.4.

2-Dimensional Tables:

2-dimensional tables have a rectangular area of similar entries. Each entry in this

rectangular area represents an instance of the same concept. One or several rows of

labels are above the rectangular area. These labels are instances of other concepts.

Instances in different rows belong to different concepts. The left-hand side of the

rectangular area could have one or several columns of labels. These labels are also

instances of different concepts. Instances in the same column belong to the same

concept. Instances in different columns belong to different concepts. At times, table

designers did not include a label concept either because it is intrinsically understood,

or there is no common way to define it. Figures 4(a) & (b) show the styles of

2-dimensional tables, and Figures 4(c) & (d) provide examples.

Complex Tables:

Complex tables are variants of 1-dimension and 2-dimension tables and can have

7

various features. For each feature, a corresponding heuristics can be designed. There

is no way to list all the features, since the table constructor might have different

reason to design a special table. Here, according to our observation, we list seven

common features.

a. Partition label: Special labels appear in the data entries area making several

partitions of the data entries. Each partition shares the same labels at the top of the

table. For example, Figure 5(a) illustrates this situation with an example in Figure 8.

Semantic identification of cells in these tables is complicated, and concept-instance

relation cannot be obtained in neighboring cells.

b. Over-expanded label: In Figure 5(b), each entry IX spans two or three IY

under the same label CX. For example, in Figure 7, each “Fixed Deposit” spans six

rows and “Regular Fixed Deposit” spans three rows under the same label “Items &

Periods”.

c. Combination: Some large tables are a combination of several similar smaller

tables. In Figure 5(c), four small tables merge into a larger one. In Figure 6, two tables

merge into a larger one.

d. Multiple items in a cell: Some cells may contain two or more items that can

be recognized as instances of the same or different concepts. In Figure 5(d), each

entry has two instances in the second column. In Figure 6, many cells have two

different items: doctor name and doctor ID number
1
. The relations between items in

the same cell are referred to as inner cell relations [21, 22].

e. Vertical writing: The sequence of text is presented vertically in a cell, which

commonly occurs in Chinese web pages. For example, in Figure 5(e), the words

“ABC” and “DEF” are written vertically in a cell. However, the original sequence in

1
 Multiple items can occasionally be represented as one item if the distribution in every cell is

regular. For example, the doctor name and ID is an example of the concept: ‘doctor name & id’.

8

the HTML source is “ADBECF”.

f. Forward reduction: Comparing Figure 5(f) and Figure 5(g) reveals two

empty cells in Figure 5(f), which are omissions. It is an intentional omission that is

named as forward reduction.

g. Footnotes: Some tables have one or more cells containing special information

with descriptions in footnotes. These footnotes often produce many tags, which will

create noises when selecting a correct tag for cells in the same columns and the same

rows.

2.4. Layout Syntax

In order to represent the complex tables, we design a layout syntax grammar

that can represent the semantic relations of all the HTML tables. Our layout syntax

consists of two kinds of symbols. They are used as area notations and concatenation

operators.

Semantic Cell Notation:

CX denotes a string that represents concept X in a cell.

IX denotes a string that represents an instance of concept X in a cell.

? is a don’t-care symbol, it can be any kinds of cell.

 denotes an empty cell.

Empty cells can be also matched by the above denotations.

Area Notation:

*c
 denotes a repetition in a column. I*c

 X represents Figure 9(a).

*r
 denotes a repetition in a row. I*r

 X represents Figure 9(b).

,
 denotes a repetition in a rectangle area. I*,*

 X represents Figure 9(c). The first
*

is the row size and the second
*
 is the column size.

All of the above
*
 can be replaced by numbers, variables or expressions to denote

9

a deterministic size of repetition. For example, I3r
X represents 3 concatenated cells of

IX in the same row.

Concatenation Operator:

| is an operator to concatenate two layouts from top to bottom. For example, CX|

I*c
 X represents Figure 9(d).

- is an operator to concatenate two layouts from left to right. CX-I*r
 X represents

Figure 9(f).

 represents a repetition of left-to-right concatenation. In Figure 9(e),
n
i=1 (C

Xi|I
*c

Xi) = (C X1|I
*c

X1)-…-(C Xn|I
*c

Xn) and I
nr

X =
n

i=1IXi.

 represents a repetition of top-to-bottom concatenation. In Figure. 9(g),
n

i=1(C

Xi-I
*r

Xi) = (C X1-I
*c

X1)|…|(C Xn-I
*c

Xn) and I
nc

X =
n

i=1IXi.

2.5. The Representation Lemma

The layout syntax grammar is induced from the complex tables, and is general

enough to represent all the tables we observed. The following lemma gives a

theoretical description on how general it is.

Definition: A monotonic area is an area of cells in the same concept. Monotonic

areas are CX, IX, C*r
 X, I*r

 X, C*c
 X, I*c

 X, C*,*
 X, and I*,*

 X. See figure 9 for details.

Definition: A binary-partition is to divide a table into two partitions, vertically

or horizontally, without breaking any monotonic area.

Representation Lemma: If a table can be recursively binary-partitioned until

each partition is a monotonic area, then the table can be represented by layout syntax

grammar.

Proof. The lemma can be proofed by mathematical induction. First, for any

monotonic area, it can be represented by the layout syntax grammar. Then, for any

10

table partition P, a binary partition produces two partitions PX and PY. We assume that

each of PX and PY can be represented by the layout syntax grammar G(PX) and G(PY)

respectively. Since PX and PY are produced by a binary partition, they are either

concatenated from top to bottom or from left to right. Hence, G(P) = PX|PY if they are

concatenated from top to bottom, G(P) = PX-PY if they are concatenated from left to

right. Since PX and PY can be further binary partition into smaller partition until the

partition is a monotonic area, and the monotonic area can be represented by the layout

syntax grammar. The whole table can be represented by layout syntax grammar.

2.6. Semantics Preserving Transition

The semantic preserving transition maps from layout to layout while preserving

relations between cells. We find that the transition from 1-dimensional or

2-dimensional tables into a standard database can be automatic. However, the

complex tables ins section 2.3 must be divided into 1-dimensional or 2-dimensional

tables before the transition can take place.

We define an operator to denote a set of layouts. For example,
n
i=1(IXi-I

*r
Y) is

a set of tables in the form of IXi-I
*r

Y. For 1-dimensional and 2-dimensional tables, the

transformations are in Table 1.

Consider the table in Figure 4(c), with the semantics in domain knowledge it is

recognize as a 2-dimensional table as the abstract table in Figure 10 (a). The abstract

table can then be transformed into the database format in Figure 10 (b) by the

transformation rules in Table 1. In the database format table, every row is a reading

path of the table in Figure 4(c).

2.7. Semantic Support Database Queries

The database form of Figure 4(c) is shown in Figure 10(b). In a traditional

database table, the first row is field names and the following rows are field values. In

11

order to support semantic queries, we define the semantic database table to be a

restricted database table in which its field values must be instance values of the same

concept and their field names must be the names of concepts. Therefore, the query

constraints listed in the WHERE closure of SQL queries are composed by field names

and field values. This would pave the way to transform a natural language queries into

SQL queries, where field names and field values in query constraints are concepts and

instances.

3. METHODOLOGY

According to the analysis in section 2, finding the relation between cells is an

important step of table recognition. In this section, we describe how a system can tag

the cells and find the relations among the cells based on manually edited domain

knowledge. A brief review of our ontological knowledge representation framework,

INFOMAP, is in section 3.2.

3.1. Table Recognition Process

A four-step process is designed for a system to recognize tables in a given

domain. 1. Normalize the HTML tables into virtual tables, 2. Tag each cell with

semantic tags, 3. Resolve the ambiguity, and 4. Restructure a tagged table into a

semantic database table. Figure 11 shows the processes.

Normalization of the HTML tables

The first step is to normalize the HTML table because the source files might

contain excess information. A virtual table is a two dimensional array with the same

number of columns and rows as the original HTML table. A virtual cell contains the

tuple (index of column, index of row, size of column span, size of row span, content).

The content is the original text string in the HTML cell. The information in virtual

cells is necessary for the following processing.

12

Our system ignore the function of <th> and <td> HTML tags since their original

functions are often ignored by table creators. Our system expands the HTML

spanning cells, where the attributes “rowspan” or “colspan” are used. That is, a

spanning cell will be normalized into cells with the same content.

Tagging cells

The core of the tagging process is template matching. The template matching

technique is to tag the string in each cell with the concepts or instances in domain

knowledge.

A tag contains the tuple (type, concept index, location). The value of the tag type

can be concept or instance. The concept index is the semantic index on INFOMAP.

The location is the location of the substring that matches the representation of the

information described by type and concept index, both the starting and ending point of

the substring is recorded.

Our system can use the concept index to compare the relation between tags. If

one concept index is on a sub-tree of another, we say that the former concept is a

descent concept of the latter.

Ambiguity resolving process

When there is more than one tag in a cell, our system applies an ambiguity

resolution process and an omission refill process based on heuristics.

To disambiguate tags in a cell, our system applies two heuristics, longer-first

heuristic and left-first heuristic, to eliminate ambiguity by comparing the string

length and position. When there are two or more tags exactly overlapped, we need to

use a neighbor-reference heuristic. Our system estimates the likelihood of these

overlapped tags to the tags of the neighboring cells, and then selects the tag with the

best correlation. This is based on the analysis that related data usually arranged in the

13

same row or column. A detailed algorithm is presented in section 3.3.

Restructuring of a tagged table into a database table

After the process of recognizing information in a string through template

matching, the system can recognize the table layout and transfer the table into a

semantic database. The system recognizes the layout according to the layout syntax

grammar. In section 2.6, we present layout transition rules to convert generic table

layout to semantic database table layout.

3.2. Domain Knowledge Editing

Ontological domain knowledge of a table domain contains the concepts and

relationships of the concepts. Templates of various wording are also included. For

each domain, we construct the domain knowledge by our ontological knowledge

representation framework, INFOMAP [19], which is a concept-modeled ontology [7]

that can use various semantic template to representation domain concepts. We develop

it from the result of our previous works [16-18]. Our knowledge map has a tree

structure where each information node represents a concept and the relationship

between two concepts is labeled by a relation node, such as hyponym, synonym or

attribute. Each relation node contains a name that defines the relation between its

parent information node and its children information nodes. Figure 12(b) gives an

example of domain knowledge in INFOMAP that are used to recognize the table in

Figure 12(a). In this domain, there are four important concepts: Flight, Depart Info,

Arrive Info, and Aircraft. The target content is the Flight, that is, the number of rows

of the database is depends on the number of Flight cells.

14

The concept-instance relation can be defined on the tree structure. An

information node is treated as a concept. Information nodes are treated as instances

of another concept if they are within a sub-tree connected to it’s the given concept and

the relation nodes are “hyponym”. Information nodes are treated as synonyms if they

are within a sub-tree connected to its parent information node by a relation node

called as “synonym”.

The INFOMAP template syntax can represent various wordings of a concept.

Table 2 shows some examples of templates. A template can be denoted as a sequence

of template unit groups separated by colons.

A template unit can be a string of keywords quoted by two quotation marks. For

example, in Figure 12, there are two instances of “City”. Each “City” is a template

unit.

A template unit can also be a selection of a set of template units. We use braces

to enclose all the template units, double quotation to enclose a string, and comma to

separate two template units. For example, {“Mr.”, ”Dr.”} is a selection of two

template units “Mr.” and “Dr.”. A template unit group can be repeated.

A template unit group is repeated when we append two numbers separated by

two dots and enclosed by parentheses. The first number denotes the minimum number

of repetitions and the second number denotes the maximum number of repetitions.

For example, “0”(3..5) is a template unit group that repeats the template unit “0” at

least 3 times and at most 5 times. It can be “000”, “0000”, or “00000”.

A template unit can also be a substitution by any representation of instances of a

concept. Such template units are denoted by the concept reference quoted by brackets.

For example, ‘[Airline Timetable, Departure, City]’
2
 is a substitution of the sub-tree

defined for the instances of the concept Departure-City in the Airline Timetable

domain. Such template units are called reference template units.

3.3. Tag Selection

The meaning of the string in a cell sometimes cannot be clearly identified

without referring to neighboring cells. For example, consider the airline timetable in

Figure 12(a), the meaning of “City” in this table is not clear, because our system does

2
 We call it a concept pathname because we can look up the real location through the tree structure

one by one. In the map of “Airline Timetable” there is only one node named as “Departure”. There is

also only one node named as “City” in the sub-tree of “Departure”.

15

not know whether it describes an arrival or departure city. The tagging system can

create two tags for “City” in concepts of “Arrival City” and “Departure City”. In

order to resolve the ambiguity, referring to other cells is necessary.

For the second row, “TPE” and “YVR” have two different meanings. The right

and the left cells cannot help resolving the ambiguity. However, if one observes the

cells above, the “Departing” has a greater correlation to “Departure City” than to

“Arrival City”.

In our tag selection process, our system computes the correlation degree of a tag

to other tags vertically and horizontally. Based on the assumption that table designer

tend to put related information in the same row or column [31, 34].

The relation scoring function, relation-score(T1, T2), computes the score of the

relation between two tags T1 and T2. The score values of all relations are defined as

follows:

(1) s1: concept - instance relation.

(2) s2: concept - descent concept relation.

(3) s3: concept - descent instance relation.

(4) s4: concept - same concept.

(5) s5: instance - same instance.

(6) s6: otherwise.

Given a tag T, its total vertical relation scoring function is defined as:

v-score (T) := relation-score (T, T
i i), Ti tags in cells in the same column

with T.

Its total horizontal relation scoring function is defined as:

v-score (T) := relation-score (T, T
j j), Tj tags in cells in the same

column with T.

16

Its total relation scoring function is defined as:

score (T) := wh * h-score (T) + wv * v-score (T), where wh and wv are weights for

the importance of a relationship in different directions.

For example, the “City” in cell (1, 1)
3
 is tagged as concept T1: “Departure City”

and concept T2:“Arrival City”. Therefore, the values of s1 to s5 are 1, and 0 for s6, and

1 for wh and wv. The total relation score of T1 is

score (T1) = 1 * (0+0+1+0+0) + 1 * (1+1+1+1+1+1+1+1) = 9,

and the total relation score of T2 is

score (T2) = 1 * (0+0+1+0+0) + 1 * (0+1+1+1+1+1+1+1) = 8.

Since score (T1) > score (T2), the “City” in cell (1, 1) should be tagged as the

concept “Departure City”.

3.4. An Illustrative example

Figure 14(a) shows a hospital outpatient timetable and the corresponding domain

knowledge is shown in Figure 15. Figure 14(b) shows the concept tagging result of

each cell. In this table, cells are grouped into four monotonic areas as shown in the

table of Figure 14(c). Applying the transformation mechanism for 2-dimension tables,

our system rearranges the cells in the form of Figure 14(d). Finally the table in Figure

14(a) is transformed into the database format table in Figure 14(e), where each row is

a target content.

4. EXPERIMENTATIONS
4

We conducted four experiments on four independent domains: 1. interest rate, 2.

transportation information, 3. faculty list, and 4. hospital service. We collect tables

from different websites, and manually edit the domain knowledge. With the domain

knowledge, the system recognizes the table structure and performs table

3
 The coordinate of the top-left corner is (0, 0)

4
 All example tables are in Chinese originally. We translate them in to English for reader's

convenience.

17

transformation automatically. For each table, we evaluate the precision and recall

according to the expected number of rows in the output database table, which should

be the number of cells with target content in the original table. For each domain, the

experimental results are divided into 2 groups, where group 1 are tables that our

system can recognize the structure of the table and group 2 are tables that our system

cannot recognize the table.

The Table Reading Application is implemented using Microsoft Visual Studio. We

use C++.Net, HTML Tidy Library[http://tidy.sourceforge.net/] to build our kernel,

Visual Basic.Net to build our Windows application, and C#.Net to run as standard

Microsoft Windows ASP Web application.

4.1. Tables in four different domains

(1) For the interest rate domain, we collect all available interest rate tables from

web sites of 15 banks in Taiwan, 14 of them are in HTML.

We manually read the first three tables and built the domain knowledge. There

are five important concepts: interest rate, fix interest or non-fix interest, period, type,

and mixed of type and period. Each concept has several instances, the interest rate’s

instance are all real numbers between 0% and 100%. The period concept’s instances

are 1 month to 36 months. The type concept’s instances are a personal deposit account

or a special account. All the concepts are common sense to human, however, in

various wordings.

Our program recognizes 11 tables out of the 14 tables. The precision and recall

are 96% and 82%, respectively. It is very interesting that no two tables shared the

same layout in this experiment, but our system can recognize most of them.

The detailed result is shown in Table 3. The tagging detail shows that there are

many omissions and some ambiguity of the meaning of cells. There are three tables

18

that our program cannot read, they are complicated tables as we mentioned in section

2.

(2) For the Transportation Information domain, we collect 368 transportation

information tables from web pages of 4 highways in the Real Time Transportation

Information System (http://road.iot.gov.tw/). We also manually read the first three

tables and built the domain knowledge.

The recall and precision is 100%. We believe that they are machine-generate

tables. Therefore, they are regular and easier to understand. The result is shown in

Table 4.

(3) For faculty domain, we select 28 faculty tables from the web sites of 7

colleges. 26 tables are recognizable. The precision is 94% and the recall is 98.4%. The

result is shown in Table 5. In this domain we cannot report how many tables are read

manually to build the domain knowledge. Since our editor uses reference from

educational web pages other than the ones used in the experiment.

(4) For the hospital domain, we select 683 outpatient service timetables from

web pages of 17 medical service centers. 16 tables are recognizable. The record level

precision is 94% and the recall is 82%. The result detail is shown in Table 5I. In this

domain we also cannot report how many tables are read manually to build the domain

knowledge. Since our editor uses reference from medical web pages other than the

ones used in the experiment.

4.2. Discussion on the experimental result

According to the analysis in section 2. If the structure of a table is recognized as

1-dimainsional or 2-dimansional, the table can be transferred fully automatically.

However, since the domain knowledge cannot cover all possible wordings, in some

cases, the system tag the concept and instance based on heuristics.

19

The experiments show that the precision and recall rate are quit high, it support

our selection of the heuristics. The precisions and recalls of the four domains in our

experiment are above 93% and 82% respectively. There is a clear boundary between

Group 1 (we can recognize the structure of the table) and Group 2 (we can not

recognize the table). Our approach can (1) extract information into database from

common layout structures once the semantic characteristic of data are identified, and

(2) identify the semantic characteristic of data if it is supported by a well-defined

knowledge model.

In faculty tables, a lot of tables use special repeated layouts. Since there is no

general rule to define the layouts of these tables, and data in these tables has repeated

semantic characteristics, we believe a frame-based approach should work better. Also,

our approach cannot process tables containing sentences with footnotes since the

program could misunderstand the information in a cell when it contains too many

words.

5. CONCLUSIONS & FUTURE WORKS

We have described a semantic approach to extract tabular information from the web.

In this approach, we transform HTML tables into a relational database table.

Our semantic approach can extract tabular information from web tables that have

various layouts. In order to recognize the content in each cell, we build templates to

describe possible representations of concepts and instances. These templates help to

label semantic tags on each cell. In many cases, there are multiple tags for a cell

because several templates are matched. However, by comparing the semantic

relationships between neighbor cells, we can often determine a unique tag for the cell.

We design layout syntax grammar to denote the layout descriptions so that we can

transfer various layouts of tables into a relational database. The program recognizes

these layout descriptions automatically. We also design a semantic preserving

transition to rearrange the information into database tables for the 1-dimsional and

20

2-dimsional tables.

The experimental results show a high success rate in different domains. A

systematic post-processing can fix most of the fail cases that our approach cannot

recognize the table layout. For tables containing multiple items in cells, we need to

split each multi-concept cell into several cells. To deal with complex cells, such as

footnote cells, we will need a preprocessing filter to isolate them.

An important future work is automatic ontology acquisition. Due to the

requirement of table recognition, concept hierarchy is important. There are two

possible ways to acquire the hyponym relationship. 1.) A prior approach: given

domain documents, find all the concept-instance pairs.[9] We have done some

preliminary work in this area [35]. 2.) Online testing approach: given a table,

enumerate all possible concept-instance pairs and then check the concept-instance

pairs by the search engine. Which approach should be adopted depends on the

application.

REFERENCES

[1] N. Ashish and C. A. Knoblock, Wrapper generation for

semi-structured Internet sources, ACM SIGMOD Record (Special Issue

on Managment of Semi-Structured Data) (1997) 8-15

[2] R. Baumgartner, S. Flesca and G. Gottlob, Visual Web information

extraction with Lixto, in proceedings of 27th International Conference on

Very Large Data Bases (VLDB 2001), (2001), 119-128

[3] H.-H. Chen, S.-C. Tsai and J.-H. Tsai, Mining Tables from Large

Scale HTML Texts, in proceedings of 18th International Conference on

Computational Linguistics, (2000), 166-172

[4] H. H. Chen and G. W. Bian, White Page Construction from web Pages

for finding People on the Internet, International Journal of Computational

Linguistics and Chinese Language Processing 3 (1) (1998) 75-100

[5] S. Douglas and M. Hurst, Layout and Language: Lists and Tables in

Technical Documents, in proceedings of ACL SIGPARSE Workshop on

21

Punctuation in Computational Linguistics, (1996), 19-24

[6] D. Embley, D. Campbell, R. Smith and S. Liddle, Ontology-based

extraction and structuring of information from data-rich unstructured

documents, in proceedings of the Conference on Information and

Knowledge Management (CIKM98), (1998), 52-59

[7] D. W. Embley, D. M. Campbell, Y. S. Jiang, S. W. Liddle, D. W.

Lonsdale, Y.-K. Ng and R. D. Smith, Conceptual-model-based data

extraction from multiple-record web pages, Data & Knowledge

Engineering 31 (1999) 227-251

[8] D. W. Embley, C. Tao and S. W. Liddle, Automating the extraction of

data from HTML tables with unknown structure, Data & Knowledge

Engineering 54 (1) (2005) 3-28

[9] M. Fleischman, E. Hovy and A. Echihabi, Offline Strategies for

Online Question Answering: Answering Questions Before They Are

Asked, in proceedings of ACL-2003, (2003), 1-7

[10] D. Freitag, Information Extraction from HTML: Application of a

General Machine Learning Approach, in proceedings of AAAI, (1998),

517-523

[11] E. Green and M. Krishnamoorthy, Model-based analysis of printed

tables, (Springer-Verlag, 1996)

[12] C.-N. Hsu, Initial Results on Wrapping Semi-structured web Pages

with Finite-States Transducers and Contextual Rules, Technical Report

WS-98-01, (Menlo Park, CA, AAAI Press., 1998)

[13] C.-N. Hsu and C.-C. Chang, Finite-State Transducers for

Semi-Structured Text Mining, in proceedings of IJCAI-99 Workshop on

Text Mining: Foundations, Techniques and Applications, (1999),

[14] C.-N. Hsu and C. A. Knoblock, Semantic Query Optimization for

Query Plans of Heterogeneous Multi-Database Systems, IEEE

Transactions on Knowledge and Data Engineering 12 (6) (2000) 959-978

[15] J. Y.-j. Hsu and W.-t. Yih, Template-Based Information Mining from

HTML Documents, in proceedings of the Fourteenth National Conference

on Artificial Intelligence (AAAI-97), (1997), 256-262

[16] W.-L. Hsu, Chinese parsing in a phoneme-to-character conversion

system based on semantic pattern matching, International Journal on

Computer Processing of Chinese and Oriental Languages 40 (1995)

227-236

[17] W.-L. Hsu, Y.-S. Chen and Y.-K. Wang, A Context sensitive model

for concept understanding, in proceedings of ITALLC 98, (1998),

22

161-169

[18] W.-L. Hsu, Y.-S. Chen and Y.-K. Wang, Natural language agents - An

agent society on the Internet, in proceedings of PRIMA, (1999),

[19] W.-L. Hsu, S.-H. Wu and Y.-S. Chen, Event Identification Based On

The Information Map - INFOMAP, in proceedings of Natural Language

Processing and Knowledge Engineering Symposium of the IEEE Systems,

Man, and Cybernetics Conference, (2001), 1661-1672

[20] J. Hu, R. Kashi, D. Lopresti, G. Nagy and G. Wilfong, Why table

ground-truthing is hard, in proceedings of Proc. 6th International

Conference on Document Analysis and Recognition (ICDAR01), (2001),

129-133

[21] M. Hurst, Layout and Language: A Corpus of Documents Containing

Tables, in proceedings of AAAI Fall Symposium Using Layout for the

Generation, Understanding and Retrieval of Documents, (1999),

[22] M. Hurst, Layout and Language: Beyond Simple Text for

Information Interaction - Modeling The Table, in proceedings of The 2nd

International Conference on Multi-modal Interfaces, (1999),

[23] M. Hurst and S. Douglas, Layout & Language: Preliminary

experiments in assigning logical structure to table cells, in proceedings of

the Fifth Conference on Applied Natural Language Processing, (1997),

[24] M. Hurst and S. Douglas, Layout and Language: Preliminary

investigations in recognizing the structure of tables, in proceedings of the

Fourth International Conference on Document Analysis and Recognition,

(1997),

[25] N. Kushmerick, Wrapper Induction for Information Extraction, Ph.D.

thesis, Department of Computer Science and Engineering, University of

Washington, (1997)

[26] L. Liu, C. Pu and W. Han, XWrap: An XML-enabled Wrapper

Construction System for Web Information Sources, in proceedings of

International Conference on Data Engineering (ICDE 2000), (2000),

[27] D. Lopresti and G. Nagy, A tabular survey of automated table

processing, (Springer Verlag, 2000)

[28] I. Muslea, S. Minton and C. Knoblobk, STALKER: Learning

Extraction Rules for Semi-structured web-based Information Source, in

proceedings of AAAI-98 Workshop on AI and Information Integration,

(1998),

[29] D. Pinto, A. McCallum, X. Wei and W. B. Croft, Table extraction

23

using conditional random fields, in proceedings of the 26th annual

international ACM SIGIR conference on Research and development in

information retrieval, (2003), 235 - 242

[30] A. Sahuguet and F. Azavant, Building Intelligent Web Applications

Using Lightweight Wrappers, Data and Knowledge Engineering (2000)

[31] M. Thompson, A tables manifesto, in proceedings of SGML Europe

1996, (1996), 151-153

[32] H.-L. Wang, S.-H. Wu, I.-C. Wang, C.-L. Sung, W.-L. Hsu and W. K.

Shih, Semantic Search on Internet Tabular Information Extraction for

Answering Queries, in proceedings of Proceedings of Ninth International

Conference on Information and Knowledge Management, (2000),

[33] X. Wang, Tabular abstraction, editing, and formatting, PhD Thesis

thesis, Department of Computer Science, University of Waterloo, (1996)

[34] P. Wright, A user oriented approach to the design of tables and

flowcharts, The Technology of Text, (Educational Technology

Publications, 1982)

[35] S.-H. Wu and W.-L. Hsu, SOAT: A Semi-Automatic Domain

Ontology Acquisition Tool from Chinese Corpus, in proceedings of 19th

International Conference on Computational Linguistics (Coling-02),

(2002), 1313-1317

[36] M. Yoshida, K. Torisawa and J. Tsujii, A method to integrate tables

of the world wide web, in proceedings of International Workshop on Web

Document Analysis, (2001), 31-34

[37] R. Zanibbi, D. Blostein and J. R. Cordy, A Survey of Table

Recognition: Models, Observations, Transformations and Inferences,

International Journal on Document Analysis and Recognition 7 (1) (2004)

1 - 16

Start Arrival
Time Time

CHU KUANG 11 TAI-TUNG NEW To KAO-HSIUNG 05:15 07:52 Every Day
FU HSING 101 MKEE-LUNG To PING-TUNG 06:03 09:08 Every Day
TZE CHIANG 1003 MSUNG-SHAN To KAO-HSIUNG 07:00 09:16 Every Day
TZE CHIANG 1005 MSUNG-SHAN To KAO-HSIUNG 07:40 09:46 FRI SAT SUN only
TZE CHIANG 1007 MSUNG-SHAN To KAO-HSIUNG 07:55 10:11 Every Day
CHU KUANG 41 MKEE-LUNG To CHIA-I 08:23 11:06 Every Day
TZE CHIANG 1009 MKEE-LUNG To KAO-HSIUNG 08:40 10:40 Every Day
TZE CHIANG 1011 MSUNG-SHAN To KAO-HSIUNG 09:00 11:15 Every Day

Train Number Remark

Figure 2. A train timetable

24

C1 … Cn

(b)

I1
*c

… In
*c

(a)

Figure 3. (a) an abstract 1-dimensional table, (b) a 1-dimensional table
example of (a). CX denotes a string representing concept X in a cell, and IX

denotes a string that representing an instance of concept X in a cell. *c denotes a
repetition in a column and *r denotes a repetition in a row. *,* denotes a repetition

in a rectangular area. See the next sub-section for detail.

? IY
*r C1 … Cn I Y

 * Time Morning Afternoon
Mon John Wang (2002) Indy Lai (2005)
Tue Jimmy Lin (2007) Wendy Lee (2001)
Wen Indy Lai (2005) John Wang (2002)
Thr Jimmy Lin (2007) John Wang (2002)
Fri Wendy Lee (2001) Indy Lai (2005)
Sat John Wang (2002)

(c)(b)

IX
*c

I Z
 ,

I1
*c

… In
*c

I Z
,

(a)

Room Mon Tue Wed Thu Fri Sat
1 Joe Jiang Jean Tasi Joe Huang Hellon Yuo Hellon Yuo Collin Lee
2 Joe Jiang Collin Lee Jean Tasi Joe Jiang
3 Jean Tasi Collin Lee Jean Tasi Joe Huang Collin Lee Hellon Yuo
1 Collin Lee Jean Tasi Hellon Yuo Joe Jiang Joe Huang
2 Joe Jiang Jean Tasi
3 Joe Huang Collin Lee Hellon Yuo Collin Lee

Morning

Afternoon

(d)

Figure 4. Tables (a) & (b) are abstract 2-dimensional tables, (c) is an
example of (a), and (d) is an example of (b).

CX1 … CXn CZ CX CY CX CY CX CY CZ

IY IZ IX IY IZ

I
*c

X1 … I
*c

Xn IY IZ IX IY IZ

IY IZ CX CY CX CY IX IY IZ

IY IZ IX IY IZ

IY IZ IX IY IZ

CX

IP

IX I
*c

X I
*c

Y I
*c

X I
*c

Y

IP

IXI
*c

X1 … I
*c

Xn I
*c

X I
*c

Y

(d)

I
*c

X I
*c

Y

(a) (b) (c)

25

A D Date Room Doctor Date Room Doctor
B E Mon 1 Jenny 1 Jenny
C F 2 Penny 2 Penny

Tue 1 David 1 David
1 Josh 1 Josh

(e)

Mon

Tue

(f) (g)

Figure 5. Complex tables. (a) Partition labels. (b) Over-spanned labels. (c)
Combination. (d) Multiple items in a cell. (e) Vertical writing. (f) Forward

reduction. (g) Original form of (f).

Room Mon Tue Wed Thu Fri Sat
1 Yi-Chung Chen 10201 Hong-Tai Hur 10201 Hsi-Sang Yang 10201 Yi-Chung Chen 10201 Hsi-Sang Yang 10201 Hsi-Sang Yang 10201

2 Jean-Lin Chen 10202 Ching-Hue Lee 10202 Hong-Tai Hur10202 Hsi-Sang Yang 10202 Hong-Tai Hur10202 Ching-Hue Lee 10202

3 Tung-Long Tsai 10213 Tung-Long Tsai 10203 Hong-Tai Hur10203 Jean-Lin Chen 10203

4

Room Mon Tue Wed Thu Fri Sat
1 Tung-Long Tsai 20201 Len-Hue Huang 20201 Jean-Lin Chen 20201 Jean-Lin Chen 20201 Tung-Long Tsai 20201

2 Ching-Hue Lee 20202 An-Ching Lai 20202 Ching-Hue Lee 20202

3
4

Morning

Afternoon

Figure 6. An illustrative example of combination and multiple items in a cell

26

Regular Float
3 Monthes 4.40 4.40
6 Monthes 4.95 4.95
9 Monthes 5.05 5.05
1 Year 5.15 5.15
2 Years 5.25 5.25
3 Years 5.25 5.25
1 Year 5.25 5.25
2 Years 5.35 5.35
3 Years 5.35 5.35

Items & Periods

Fixed
Deposit

Regular
Fixed

Deposit

Figure 7. A table with over-spanned labels

Rate (%) Regular Float

1 Year 5.05 5.05
2 Years 5.10 5.10
3 Years 5.10 5.10

3 Monthes 4.35 4.35
6 Monthes 4.60 4.60
9 Monthes 4.70 4.70
1 Year 5.00 5.00
2 Years 5.05 5.05
3 Years 5.05 5.05

Regular Fixed Deposit

Fixed Deposit

Figure 8. A table with partition labels

27

IX IX … IX

…

IX

I
*c

X

I
*r

X

I
*c

X … I
*c

X I
,

X

(a) (b) (c)

CX CX1 … CXn

I
*c

X

C X|I
*c

X

I
*c

X1 … I
*c

Xn

 n
i=1 (C Xi|I

*c
Xi)

(d) (e)

CX I
*r

X CX1 I
*r

X1

…

CXn I
*r

XnCX-I
*r

X

n
i=1(C Xi-I

*r
Xi)

(f) (g)

Figure 9. Areas represented by layout syntax grammars.

CX I
2r

Y

I
6c

X I
6,2

Z

(a) Abstract table of Figure 4(c)

CX CY CZ

CX(1) CY(1) CZ(1,1)

CX(1) CY(2) CZ(1,2)

… … …

CX(6) CY(1) CZ(6,1)

CX(6) CY(2) CZ(6,2)

Figure 10 (b) Transformed from Figure 10 (a) by the transition rules

28

Transfer the HTML tables into virtual tables

Remove overlapped tags

Resolve the ambiguity of multiple tags

Create a tagged table from a virtual table

Cell tagging by template matching

Restructure a tagged table into a database

table

Ontology base

Begin

End

HTML tables

Figure 11. Table reading flowchart

29

City Date & Time City Date & Time
EVA Airways 10 TPE 07/14 11:50pm YVR 07/14 07:40pm 744
American Airlines 6647 YVR 07/14 09:00pm LAX 07/14 11:45pm 737
Air Canada 9800 TPE 07/14 11:50pm YVR 07/14 07:40pm 744
American Airlines 6501 YVR 07/15 06:35am LAX 07/15 09:27am 737
China Airlines 61 TPE 07/14 08:10pm FRA 07/15 06:50am M11
American Airlines 83 FRA 07/15 10:40am ORD 07/15 01:05pm 763
American Airlines 473 ORD 07/15 02:30pm LAX 07/15 04:35pm 738

Flight
Departing Arriving

Aircraft

(a) An airline timetable

…

Airline Schedule Timetable

Flight Depart Info Arrive Info Aircraft

City Date & Time

MM/DD hh:mm {am.pm} SEA TPE ORD

hyponym

attribute

hyponym hyponym

… … …

Target content

(b) The knowledge map for airline timetables (some details are omitted)

Figure 12. An airline timetable and the corresponding knowledge map

30

Algorithm TagginSelection

Input: tagged table

Output: tagged table with at most one tag in every cell

for c = 0 to .max_columns – 1

 for r = 0 to .max_rows – 1

 best_tag := nil

 for every tag Ti in .cell (c, r)

 Ti.score := score (Ti)

 if best_tag = nil or best_tag.score < Ti.score then

 best_tag = ti

 remove all tags except best_tag in .cell (c, r)

Algorithm TaggingSelection processes the tag selection for all cells.

Figure 13. Tagging Algorithm

31

Time Morning Afternoon CTime IPeriod IPeriod

Mon John Wang (2002) Indy Lai (2005) IDate IName+ID IName+ID

Tue Jimmy Lin (2007) Wendy Lee (2001) IDate IName+ID IName+ID

Wed Indy Lai (2005) John Wang (2002) IDate IName+ID IName+ID

Thu Jimmy Lin (2007) John Wang (2002) IDate IName+ID IName+ID

Fri Wendy Lee (2001) Indy Lai (2005) IDate IName+ID IName+ID

Sat John Wang (2002) IDate IName+ID ?

(a) (b)

W X(1) Y(1) Z(1, 1)

W X(1) Y(2) Z(2, 1)

… … … …

W=CTime W X(6) Y(1) Z(1, 6)

W X(6) Y(2) Z(2, 6)

Time Date Period Name & ID

Time Mon Morning John Wang (2002)

Time Mon Afternoon Indy Lai (2005)

… … … …

Time Sat Morning John Wang (2002)

Time Sat Afternoon

(d)

(e)

(c)

Y=H(Iperiod, 2)

X= V(Idate,6)
Z=R(IName+ID, 6,

2)

Figure 14. (a) The original table, (b) The outcome after the tagging step, (c)
the outcome after the layout recognition step, 4 monotonic areas, (d) the

transformed outcome by applying the transformation rules, (e) The outcome in
the original strings.

32

Hospital Timetable

Time Place Department Doctor Name & ID

attribute

Date Period

Morning

Sun Tue Mon

hyponym

hyponym

hyponym

Building Floor

([title]):[name]:[Id]

hyponym

hyponym

hyponym

Afternoon

…

Room

$$(2..4):building

… …

target content

…

Figure 15. The Domain knowledge for the outpatient service timetables

(templates of each concept’s synonyms are omitted)

TABLE 1.
 Table transformation rules

Table Dimension Original Layout Database Layout

1-dim table CX-I
*r

X CX|I
*r

X

2-dim table (?|I
mc

X)-(I
nr

Y|I
m,n

Z) (CX-CY-CZ)|(
m

i=1,
n
j=1IX(i)-IY(j)-IZ(i,j))

TABLE 2. INFOMAP template syntax
Concept Template of Instances Example

Date [digit](2..2):”/”:[digit](2..2) 12/25

Title {“Mr.”, “Dr.”, “Prof.”}:[family name] Dr. Wang

Phone number [digit](3..3):”-“(0..1):[digit](4..4) 594-3388

33

Table 3
Experimental Results of Interest Rate Table

The second column shows the number of data in the original tables, the
fourth column shows the number of records that the program reports and the

third column is the number of correct records. The last four columns report the
detail of cell tagging, including the number of tagged cells, the number of cells

with multiple tags, the number of cells whose tags are decided by our algorithm
and the number of cells with empty tag.

ID

of

record

of

correct

record

cell

with

data Precision Recall

of

Tagged

cell

Cell with

Multiple

tag

of cell that

the tag is

Guessed

of cell

with

Empty

tag

Group 1

Bank1 54 52 53 98.1% 96.3% 114 0 0 2

Bank2 30 30 30 100.0% 100.0% 47 0 0 1

Bank3 39 37 38 97.4% 94.9% 113 0 25 60

Bank4 68 39 39 100.0% 57.4% 71 14 22 4

Bank5 72 59 59 100.0% 81.9% 96 0 13 80

Bank6 43 43 43 100.0% 100.0% 68 0 1 4

Bank7 51 30 31 96.8% 58.8% 74 0 0 57

Bank8 38 37 37 100.0% 97.4% 76 0 4 8

Bank9 39 26 28 92.9% 66.7% 54 4 5 31

Bank13 16 10 14 71.4% 62.5% 23 0 0 1

Bank14 44 39 39 100.0% 88.6% 89 0 2 14

average 44.9 36.5 37.4 96.0% 82.2% 75.0 1.6 6.5 23.8

Group 2

Bank10 38 0 37 0.0% 0.0% 46 1 1 19

Bank11 48 3 43 7.0% 6.3% 56 0 0 44

Bank15 48 10 48 20.8% 20.8% 72 0 0 40

average 44.7 4.3 42.7 9.3% 9.0% 58.0 0.3 0.3 34.3

Table 4

Experiment results of transportation information tables

34

ID

Number of

tables

Number of tables

extracted correctly recall Precision

Highway #1 92 92 100% 100%

Highway #2 92 92 100% 100%

Highway #3 92 92 100% 100%

Highway #1 Hsichih-WuKu Branch 92 92 100% 100%

368 368 100% 100%

Table 5

Experiment result of faculty tables

35

Department

of

record

of

correct

record

cell with

data Precision Recall

of

Tagged

cell

Cell with

Multiple

tag

of cell

that the

tag is

Guessed

Group 1

NTU FL 101 101 106 95.3% 100.0% 359 59 65

NTU Phil 28 28 28 100.0% 100.0% 99 21 17

NCTU AM 25 25 28 89.3% 100.0% 93 12 16

NCKU LS 13 13 13 100.0% 100.0% 45 2 8

NCKU Aero 43 43 43 100.0% 100.0% 146 4 30

NCKU UP 19 19 21 90.5% 100.0% 65 6 21

NCKU Econ 4 4 4 100.0% 100.0% 17 2 1

NCCU Turkish 7 7 7 100.0% 100.0% 23 0 8

NCCU English 45 44 45 97.8% 97.8% 64 10 32

NCCU RM 25 25 25 100.0% 100.0% 83 6 20

NCCU IB 17 17 17 100.0% 100.0% 55 10 17

NCCU CS 10 10 10 100.0% 100.0% 44 5 9

NCCU AM 15 14 15 93.3% 93.3% 68 3 10

NTNU Arts 45 38 46 82.6% 84.4% 127 15 55

NCNU Edu&Psy 28 28 28 100.0% 100.0% 159 15 14

NCCU Arab 14 12 13 92.3% 85.7% 42 5 12

NCCU RTV 7 7 11 63.6% 100.0% 36 4 5

NTHU Math 32 32 32 100.0% 100.0% 132 5 31

NTHU Mech1 7 7 8 87.5% 100.0% 26 1 7

NTHU Mech2 9 9 10 90.0% 100.0% 39 7 4

NTHU Mech3 8 8 8 100.0% 100.0% 33 4 3

NTHU Mech4 8 8 9 88.9% 100.0% 36 5 3

FJU Psy 12 12 12 100.0% 100.0% 55 4 6

FJU Japanese 8 8 8 100.0% 100.0% 33 4 3

average 22.1 21.6 22.8 94.6% 98.4% 78.3 8.7 16.5

Group 2

NTU History 13 0 14 0.0% 0.00% 30 2 13

NTNU Music 50 0 0 0.00% 0.00% 79 10 42

average 31.5 0 7 0% 0% 54.5 6 27.5

Table 6

Experiment results of outpatient service timetable

36

Hospital

or

record

of

correct

record

cell

with

data Precision Recall

of

Tagged

cell

Cell

with

Multiple

tag

of cell

that the

tag is

Guessed

of cell

with

Empty

tag

Group 1

ChungShan 347 221 245 90.20% 63.69% 1172 98 14 770

Taipei

XiuChuan 46 34 34 100.00% 73.91% 59 3 5 142

ZhuShan

XiuChuan 197 172 172 100.00% 87.31% 317 10 3 312

ZhongXiau 19 19 19 100.00% 100.00% 29 17 0 6

GengShen 139 73 125 58.40% 52.52% 302 11 5 300

YuLi CiJi 63 61 62 98.39% 96.83% 210 8 1 493

CiJi 323 265 279 94.98% 82.04% 624 138 36 385

XinGuang 581 560 572 97.90% 96.39% 1348 65 2 803

Taipei 12 12 12 100.00% 100.00% 19 0 0 23

GuanShan CiJi 35 27 34 79.41% 77.14% 161 2 0 304

CMUH 363 347 365 95.07% 95.59% 718 260 1 314

ZhangHua

XiuChuan 596 547 554 98.74% 91.78% 1246 93 56 1591

TaiAn 74 54 54 100.00% 72.97% 162 52 1 241

GuangFu

XiuChuan 136 90 90 100.00% 66.18% 210 24 1 201

XinLou 13 13 14 92.86% 100.00% 45 14 0 45

CKU 118 80 88 90.91% 67.80% 195 22 39 287

average 181.0 156.9 164.9 93.6% 82.8% 376.3 47.9 10.0 363.1

Group 2

TauYuan 44 8 75 18.18% 10.67% 123 55 10 44

average 44 8 75 18.18% 10.67% 123 55 10 44

37

