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Abstract

Research on texture synthesis has made substan-

tial progress in recent years, and many patch-based

sampling algorithms now produce quality results in

an acceptable computation time. However, when

such algorithms are applied to textures, whether

they provide good results for specific textures, and

why they do so, are questions that have yet to be

fully resolved. In this paper, we deal specifically

with the second question by modeling the synthe-

sis problem as learning from incomplete data. We

propose an algorithm and show that the solution of

many sampling-based algorithms is an approxima-

tion of finding the maximum-likelihood optimum

by the generalized expectation and maximization

(EM) algorithm.

1 Introduction

Texture synthesis has long been an important topic

in the fields of computer graphics, computer vision,

and image processing because of its practical and

theoretical value. The objective of texture synthe-

sis is to create new images from a given sample tex-

ture image such that, to human observers, the new

images appear to be generated by the same under-

lying process as the sample texture. The technique

of texture synthesis has improved significantly in

recent years so that it is now possible to design al-

gorithms that synthesize some textures efficiently

and yield high quality results.

We are especially interested in texture synthe-

sis approaches that utilize sampling techniques be-

cause they are usually simple and can be imple-

mented easily. Sampling-based methods model tex-

tures as homogeneous Markov random fields, so the

value of a pixel depends on the distribution of its

neighboring pixels’ values. Therefore, by sampling

according to this distribution of local dependency,

these methods generate new textures; [3, 12, 1] are

some examples that fall into this category. Surpris-

ingly, these simple methods produce good results

for a broad range of textures. Many researchers

have addressed the speed issue and developed ef-

ficient algorithms to reduce the complexity of the

sampling procedure [13, 9, 15]. It has been reported

that the methods based on sampling a patch usu-

ally achieve both speed and quality improvements
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over those based on sampling a pixel. The improved

speed results from pasting one block of pixels, in-

stead of a single pixel, as well as searching for that

block in a small pool of candidates. Many new

patch-based algorithms attempt to further improve

the visual quality of the synthesized textures with-

out sacrificing the speed advantage. An important

aspect of improving the visual quality is how to

eliminate artifacts along the boundaries of patches;

another is how to prevent artifacts caused by errors

accumulating over a large range [4, 10, 8]. Mean-

while, the work in [7] addresses the issue of quan-

tifying the global qualtity of a synthesized texture

as a way of overcoming the limitation imposed by

the Markov random field property.

Unlike sampling-based approaches, some syn-

thesizing algorithms model textures as two-

dimensional homogeneous random fields that can

be characterized by a few statistical descriptions.

Thus, the approach is feature-based. The hypoth-

esis for texture synthesis based on this approach

is that: two textures with similar statistical de-

scriptions are likely to be visually indistinguishable.

Thus, a new texture is generated so that its statis-

tical descriptions closely match those of the sample

texture [6, 16, 2, 11]. As noted in [11], the primary

problem of the feature-based approach is that there

is no formal way to verify the sufficiency or neces-

sity of the statistical descriptions used to synthe-

size textures. It is therefore possible that a gener-

ated texture with the same statistical descriptions

as those of the input texture could be perceived as a

different texture. Also, the formulation of this ap-

proach is complex, so finding the optimal solution

is difficult.

Motivation and Contribution

Our study is motivated by the success of sampling-

based algorithms in reproducing a broad range of

texture images. These algorithms search a pool

of candidate patches, and sample the set of blocks

that matches the target boundary region well. The

sampled block is then pasted onto the target image,

and the search for the next block continues until ei-

ther the whole image is covered [9], or a stopping

criterion is reached [8].

Though surprised that the simple algorithms can

achieve such excellent results, we found that it can-

not resolve two questions crucial to the understand-

ing of the texture synthesis problem. First, for

what kind of textures do the algorithms yield per-

ceptually acceptable results? Second, is there an

optimization procedure underlying the algorithms?

The first question asks what kind of process can be

accurately modeled by sampling-based procedures,

while the second asks if the solutions can be quan-

tified. It is clear that modeling textures as Markov

random fields is too general to provide further anal-

ysis of either topic.

In this manuscript, we address the second ques-

tion. We present the texture synthesis task as

a problem of obtaining a maximum-likelihood es-

timation from incomplete data. The input tex-

ture image is the incomplete data that we observe,

while the texture image to be synthesized is the

unobserved data. After making assumptions re-

quired to solve the estimation problem efficiently,

our proposed algorithm performs texture synthe-

sis as a generalized EM algorithm. The synthe-

sized textures are approximations of the maximum-

likelihood solutions estimated from the input tex-
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tures. We then relate some sampling-based algo-

rithms to our approach and demonstrate that they

can be viewed as generalized EM algorithms [5].

The remainder of the paper is organized as fol-

lows. In Section 2, we describe how we formulate

the texture synthesis problem as a process of max-

imum likelihood estimation from incomplete data,

and analyze the problem using the generalized EM

method. In Section 3, we discuss methods for gen-

erating hidden structures and textures. Finally, we

present our conclusions in Section 4.

2 Formulation and Analysis

In this section, we formulate our algorithm as a

process of parameter estimation in a missing data

problem. For convenience, we introduce a param-

eterized hidden structure and, based on the struc-

ture, the synthesized image is constructed.

2.1 Generalized EM Analysis

Let D be the data that includes an input texture, I,

and a synthesized texture, Î; and let R be the pa-

rameters of the auxiliary hidden structure C that

generates Î. Also, let P (D|R) = P (I, Î|R). The

objective of our texture synthesis algorithm is to

maximize log P (I, Î|R) given the input texture I.

For any probability T (C|I, Ît, Rt), the log proba-

bility is

log P (I, Î|R)

= log
∑
C

P (I, Î, C|R)

= log
∑
C

T (C|I, Ît, Rt)
P (I, Î, C|R)

T (C|I, Ît, Rt)

≥
∑
C

T (C|I, Ît, Rt) log
P (I, Î, C|R)

T (C|I, Ît, Rt)
. (1)

The bound used in the above takes the form of

Jensen’s inequality:

log
∑

i

tiai ≥
∑

i

ti log ai,

where
∑

i ti = 1. The goal of the generalized

EM algorithm is to estimate T (C|I, Ît, R̂t) and

P (I, Î, C|R) jointly, so as to maximize this bound.

Note that the solution of the generalized EM algo-

rithm depends on T (C|I, Ît, Rt). We use the gen-

eralized EM because the EM solution of our ap-

plication, where T (C|I, Ît, Rt) = P (C|I, Ît, R), is

difficult to estimate.

Let f be the method that obtains the parameters

R from structure C; i.e. R = f(C). We define

T (C|I, Ît, Rt) ∝ exp− 1
σ2 d(Rt‖f(C)), (2)

where d(Rt‖f(C)) measures the discrepancy be-

tween Rt and f(C); and σ2 determines the sharp-

ness of the distribution over the optimal class map

Ct+1, where d(Rt‖f(Ct+1)) is a minimum. If σ2 is

a very small value, (2) can be approximated as

T (C|I, Ît, Rt) ≈

⎧⎪⎨
⎪⎩

1 if C = Ct+1,

0 otherwise.

(3)

Then, because the entropy of a random variable

with probability (3) is 0, we have the following ap-
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proximation of (1):

log P (I, Î|R)

≥
∑
C

T (C|I, Ît, Rt) log
P (I, Î, C|R)

T (C|I, Ît, Rt)

≈ max
C

T (C|I, Ît, Rt) log P (I, Î, C|R) (4)

≈ log P (I, Î, Ct+1|R). (5)

To improve the bound in (4), we find

Ct+1 = argmax
C

T (C|I, Ît, Rt), (6)

and derive the next Rt+1:

Rt+1 = f(Ct+1). (7)

We then set R = Rt+1 in (5), and find the next

Ît+1:

Ît+1 = arg max
Î

log P (I, Î, Ct+1|Rt+1). (8)

The generalized EM algorithm improves the lower

bound of log P (D|R) by iteratively applying the fol-

lowing two-phase algorithm.

1. Structure Generation: According to (6),

from I, It and Rt, we find Ct+1, which min-

imizes d(Rt||Rt+1), where Rt+1 = f(Ct+1)

and f is a method used to obtain parameters

from a hidden structure.

2. Synthesizing Images: Based on Ct+1, we

sample patches from image I and paste them

to obtain the image It+1 according to (8).

The solution found by the algorithm is an approx-

imation of the maximum-likelihood solution. The

performance of our approach depends on the meth-

ods used to obtain (6) and (8), which correspond

to how we generate the auxiliary hidden structure

and the synthesized texture, respectively.

3 Hidden Structure and Tex-

ture Generation

We use the generalized EM algorithm to quantify

the synthesized images of a sampling-based tex-

ture synthesizing approach. We quantify the syn-

thesized images according to the methods of hid-

den structure and texture generation. The sim-

plest structure is called lazy structure, where C

has only one configuration and Ct = Ct+1; there-

fore, Rt = Rt+1 for all t. In this case, the

first phase of our generalized EM algorithm pro-

duces the same structure in each iteration. Tex-

tures are synthesized based purely on the image

synthesizing procedure of the second phase. Al-

though many sampling-based texture synthesizing

algorithms can be classified as having lazy struc-

ture case, not all structures are lazy. As proposed

in [14], the hidden structure is an image of two sym-

bols, where two one-dimensional probability con-

text free grammar (PCFG) are used to represent

the hidden structure. The empirical probabilities

of the grammar of a given structure are the param-

eters, R. The Kullback-Leibler divergence is used

to measure the distance of two PCFGs, and a new

hidden structure is generated according to a ran-

dom greedy algorithm. This approach shows that

a grammar structure can be used in our general-

ized EM algorithm. Any other method represent-

ing a hidden structure can be incorporated into our

generalized EM algorithm.

The second phase of our algorithm synthesizes

images according to the supervision of the hidden

structure. There are many outstanding image syn-

thesizing procedures, based mainly on smart past-
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ing and random sampling procedures. We analyze a

few representative sampling-based synthesizing al-

gorithms with our framework in the following.

3.1 Patching Images and Sampling

To obtain a synthesized image, (8) can be rewritten

as

Ît+1 = arg max
Î

log
(
P (I, Î|Ct+1, Rt+1)P (Ct+1|Rt+1)

)
.

(9)

The probability P (Ct+1|Rt+1) does not depend on

Î; therefore, the maximization of (9) can be simpli-

fied as

Ît+1 = argmax
Î

log
(
P (I, Î|Ct+1, Rt+1)

)
. (10)

We define log P (I, Î|Ct+1, Rt+1) as negatively pro-

portional to a cost function K(Î):

log P (I, Î|Ct+1, Rt+1) ∝ −K(Î). (11)

Next, we discuss the corresponding cost functions

of two major approaches: the patch-work approach

in [4, 9] and the graph-cut approach in [8]. Note

that many other sampling-based algorithms can be

regarded as variations of [4, 9, 8] with different cost

functions.

In the patch-work approach, a random procedure

is adopted to avoid pasting repeated patterns. Ît+1

can be found by using the random sampling proce-

dure:

Ît+1 = Random{argmin
Î

K(Î)}. (12)

Let

Î∗ = arg min
Î

||∂Î||,

where ‖∂Î‖ denotes the total pasting error of Î.

The cost function K can be defined as

K(Î) =

⎧⎪⎨
⎪⎩
‖∂Î∗‖ if |‖∂Î‖ − ‖∂Î∗‖| < ε̃,

∞ otherwise.

(13)

For a sufficiently large ε̃, there are many images

that would minimize the K function. One of the

images is chosen as Ît+1. Because it is computa-

tionally infeasible to obtain Î∗, the patch-work ap-

proach and its variations use a local greedy algo-

rithm to approximate the optimum.

In the graph-cut approach, a probability func-

tion is defined for selecting an image Î at each step

t:

P (Î) ∝ e
−Δ(Î,Ît)

kσ2 , (14)

where k is a parameter controlling the randomness

of patch selection, and σ is the standard deviation

of the pixel values in the input image. Δ(Î , Ît) is a

measurement of the discrepancy between Î and Ît.

Depending on the placement and matching meth-

ods used, several different Δ measurements have

been proposed in [8]. Ît+1 is sampled from the

probability function, as in (14).

Comparing the above equation to (11), the cost

function K of the graph-cut algorithm is therefore

K(Î) =
Δ(Î , Ît)

kσ2
. (15)

When k is set to a low value, then P (Î) peaks at

the minimum of Δ(Î , Ît), and Ît+1 would be close

to

Ît+1 = argmin
Î

K(Î). (16)

When k is set to a larger value, the probability P (Î)

is spread out; thus, the above approximation is not

valid. In this case, the graph-cut algorithm does
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not fit into our proposed framework. The graph-cut

algorithm iterates the two phases until a stopping

criterion is reached. In Table 1, several texture

synthesizing methods are listed and how they fit

into our proposed framework are presented.

4 Conclusion

We model the sampling-based texture synthesizing

approach as maximum-likelihood estimation from

incomplete data. By some convenient assumptions

that allows us to efficiently solve the generalized

EM algorithm, we quantify the synthesized images

as an approximation of the maximum-likelihood so-

lution. We relate some sampling-based algorithms

to our approach, and show that they can be re-

garded as generalized EM algorithms. They have

different cost functions and use different methods

to evaluate the cost for pasting image. In many

sampling-based algorithms, the hidden structures

are the same for each iteration. Consequently, the

quality of the generated texture is based purely on

the pasting algorithm. Whether modifying the hid-

den structure at each iteration would produce a

better synthesized texture remains an open ques-

tion.
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