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Smallest Bipartite Bridge-connectivity Augmentation

Pei-Chi Huang∗, Hsin-Wen Wei∗, Wan-Chen Lu∗, Wei-Kuan Shih∗ and Tsan-sheng Hsu†

Abstract

This paper addresses two augmentation problems related to bipartite graphs. The first, a

fundamental graph-theoretical problem, is how to add a set of edges with the smallest possible

cardinality so that the resulting graph is 2-edge-connected, i.e., bridge-connected, and still

bipartite. The second problem, which arises naturally from research on the security of statistical

data, is how to add edges so that the resulting graph is simple and dose not contain any bridges.

In both cases, after adding edges, the graph can be either a simple graph or, if necessary, a

multi-graph. Our approach then determines whether or not such an augmentation is possible.

We propose a number of simple linear-time algorithms to solve both problems. Given the

well-known bridge-block data structure for an input graph, the algorithms run in O(log n)

parallel time on an EREW PRAM using a linear number of processors, where n is the number

of vertices in the input graph. We note that there is already a polynomial time algorithm that

solves the first augmentation problem related to graphs with a given general partition constraint

in O(n(m+n log n) log n) time, where m is the number of distinct edges in the input graph. We

are unaware of any results for the second problem.

1 Introduction

A graph is said to be k-edge-connected if it remains connected after the removal of any set of edges

whose cardinality is less than k. Finding the smallest set of edges, the addition of which makes an

undirected graph k-edge-connected, is a fundamental problem with many important applications

that has been studied extensively; readers may refer to [8, 11, 28] for a comprehensive survey. In
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Figure 1: (a) A bipartite graph. The two sets of vertices in the graph are colored black and white,
respectively. (b) A smallest 2-edge-connectivity augmentation of (a) with the set of added edges
marked by dashed lines. (c) A smallest componentwise 2-edge-connectivity augmentation of (a).

this paper, we focus on augmenting bipartite graphs. A graph is componentwise 2-edge-connected

if each connected component is either 2-edge-connected, or it is an isolated vertex. We propose

a linear-time algorithm that addresses the problem of adding the smallest number of edges to

a given bipartite graph to make it 2-edge-connected, or bridge-connected, while maintaining its

bipartiteness. We also present another linear-time algorithm that solves the componentwise 2-

edge-connectivity augmentation problem in bipartite graphs. Figure 1(a) shows an example of a

bipartite graph. A smallest 2-edge-connectivity augmentation of (a) is shown in Figure 1(b), and a

smallest componentwise 2-edge-connectivity augmentation of (a) is shown in Figure 1(c). Let G be

the input graph and G′ be the connected subgraph in G that contains bridges. In the non-bipartite

case, it is trivial to know that a smallest 2-edge-connectivity augmentation of G′ is equal to a

smallest componentwise 2-edge-connectivity augmentation of G. However, this is not true in the

bipartite case, as shown in Figure 1.

Note that there is a linear-time algorithm for the smallest bridge-connectivity augmentation

problem on the general graph that does not have a bipartite constraint [7]. In [19], Jensen et al.

proposed a polynomial time algorithm that solves the smallest bridge-connectivity augmentation

problem on a graph that has partition constraints, such as bipartite graph, in O(n(m+n log n) log n)

time, where m is the number of distinct edges in the input graph. We are unaware of any previous

results for the smallest componentwise bridge-connectivity augmentation problem.
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1.1 Motivation

Many algorithms have been developed to resolve the problem of adding edges to a graph so that

connectivity specifications can be satisfied (e.g., [8, 11, 20]). In addition, the fundamental problem

of making general graphs k-edge connected or k-vertex connected for various values of k [7, 12, 13,

14, 15, 18, 30, 33] has been studied extensively (see [28] for examples). Studies of augmentation

problems in bipartite graphs can be found in [17, 19, 21].

The related componentwise 2-edge-connectivity augmentation problem arises naturally from

research on the security of statistical data [1, 2, 5, 6, 24]. To protect sensitive information in a cross-

tabulated table, it is a common practice to suppress some of the cells in the table. A basic issue

concerning the effectiveness of this practice is how to suppress a small number of cells, in addition

to the sensitive cells, so that the resulting table does not leak important or confidential information.

This protection problem can be reduced to an augmentation problem in bipartite graphs [9, 16, 21,

22, 23, 25, 26, 27]. In particular, a linear-time algorithm for the smallest componentwise bipartite 2-

edge-connectivity augmentation problem immediately yields a linear-time algorithm that suppresses

the smallest number of additional cells so that no nontrivial information about any suppressed cell

will be revealed to an adversary [9].

Table 1 and Figure 1(a) illustrate the relationship between our augmentation problem and the

table protection problem. Table 1 is a 2-dimensional cross-tabulated table with some suppressed

cells. In the bipartite suppressed graph constructed from the table, the vertices correspond to the

columns and rows, and the edges correspond to the suppressed cells, as shown in Figure 1(a). It

has been proven [9] that the value of a suppressed cell can be revealed to an adversary if and only

if it is a bridge in the constructed suppressed graph. Therefore, since there are three bridges in our

suppressed graph, an adversary could infer the values of the three corresponding cells. For instance,

let Ci,j be the cell at the intersection of row i and column j, let S∗,j be the sum of the cells in

column j, and let Si,∗ be the sum of the cells in row i. Then, the value of C1,a must be 1 because

it is equal to S1,∗ − C1,b − C1,c. The value of C5,b is arbitrary. After suppressing three more cells,

namely, C1,c, C2,c, and C3,c, the values of the suppressed cells cannot be inferred. This corresponds

to the smallest componentwise 2-edge-connectivity augmentation shown in Figure 1(c).
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Index a b c Sum

1 5 2 8

2 3 3 10

3 3 2 12

4 10 20

5 11 24

6 3 4 7 14

Sum 28 25 35 88

Table 1: A 2-dimensional cross-tabulated table with some suppressed cells.

1.2 Our approach and results

We first solve the problem of a smallest 2-edge-connectivity augmentation of bipartite graphs, and

then extend the proposed algorithms to deal with the componentwise 2-edge-connectivity case.

To solve the first problem, we transform the input graph G into a well-known data structure

called a bridge-block forest [10]. A block of a graph G is a maximal 2-edge-connected subgraph (or

component) of G. We assume B and W are the two bipartite sets of vertices in G. A block that

only contains vertices in B (respectively, W ) is called a black (respectively, white) block, while a

block that contains both vertices in B and W is called a hybrid block. A vertex in the bridge-block

forest is white if its corresponding block is white. Black and hybrid vertices in the bridge-block

forest are defined similarly. Hereafter, we focus on a bridge-block forest, rather than a graph.

Let an easy tree be a tree with an equal number of black and white leaves and no hybrid

leaves. Our main algorithm first solves the problem on an easy tree, and then solves it on a general

tree. Finally, we solve the case where the input graph is a forest. In addition, the edge set added

to the bridge-block forest by our algorithms can be transformed into the corresponding edge set

added to the input graph G. The algorithms run in sequential liner time and O(log n) parallel time

on an EREW PRAM using a linear number of processors. A high-level description of the algorithm

for the 2-edge-connectivity case is given in Algorithm 1.

The remainder of the paper is organized as follows: Section 2 contains graph-theoretical

definitions and previously known properties. In Section 3, we propose algorithms that find a

smallest 2-edge-connectivity augmentation for a tree. In Section 4, we present the algorithms used

when the given input is a forest. In Section 5, we describe our algorithm for finding a smallest
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componentwise 2-edge-connectivity augmentation of bipartite graphs. Finally, in Section 6, we

present our conclusions.

Algorithm 1 Finding a smallest 2-edge-connectivity augmentation of a bipartite graph G

1: procedure FS2Aug(G)
2: Let T = BB(G);
3: E = ∅;
4: repeat
5: switch (T )
6: Case 1: T is a tree
7: Case 1.1: T is an easy tree
8: Case 1.1.1: T is an ETC tree

E′= ETCT(T ); {∗ Algorithm 2 ∗}
9: Case 1.1.2: T is an anti-ETC tree with more than 4 leaves

E′= AETC(T ); {∗ Algorithm 3 ∗}
10: Case 1.1.3: T is an anti-ETC tree with at most 4 leaves

Use the solution shown in Figure 8 to find E′;
11: Case 1.2: T is a general tree
12: Case 1.2.1: T has no hybrid leaves

E′= BGTWAug(T ); {∗ Algorithm 4 ∗}
13: Case 1.2.2: T has hybrid leaves

E′= HTAug(T ); {∗ Algorithm 6 ∗}
14: Case 2: T is a forest
15: Case 2.1: T contains no isolated vertices
16: Case 2.1.1: T is a light forest with |TB| = |TW |

E′= FTConversion(T ); {∗ Algorithm 7 ∗}
17: Case 2.1.2: T is a light forest with |TB| > |TW |

E′= BGTW FTConversion(T ); {∗ Algorithm 8 ∗}
18: Case 2.1.3: T is a forest with hybrid leaves

E′= H FTConversion(T ); {∗ Algorithm 9 ∗}
19: Case 2.2: T contains a set of isolated vertices S
20: Case 2.2.1: T − S contains at least 2 white and 2 black vertices

Use the method in §4.2.1 to find E′;
21: Case 2.2.2: T − S contains either 1 white or 1 black vertex

Use the method in §4.2.2 to find E′;
22: Case 2.2.3: T − S is null

E′= ISOF(T ); {∗ Algorithm 10 ∗}
23: Let E = E ∪ E′;
24: Let T = BB(T ∪ E′);
25: until Case 1 is executed
26: return E;
27: end procedure
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2 Preliminaries

2.1 Graph-theoretical definitions

In this paper, all graphs are undirected, and have neither self-loops nor multiple edges. Let a graph

G = (V,E), where |V | = n and |E| = m. Then, for a vertex set V ′, let G − V ′ be G without the

vertices and their adjacent edges in V ′. Note that, for an edge set E′, G − E′ denotes G without

the edges in E′, and G ∪ E′ denotes G with the edges in E′ added to it.

An edge whose endpoints are a vertex u and a vertex v is denoted as (u, v). A bipartite graph

is defined as a graph in which the set of vertices can be partitioned into two disjoint sets such that

no edge connects vertices in the same set.

G is a tree if it is an undirected, connected, acyclic graph, and a maximal connected subgraph

is a component of G. A forest is a graph, whose components are all trees, and a degree-1 vertex of

a forest is called a leaf. Given a rooted tree T and a vertex v of T , let Tv be a proper subtree of T

rooted at v. The tree edge that connects the vertex v and its parent is called an antenna edge of

Tv.

2.2 Bridge-block forest

A vertex u is connected to a vertex v in a graph G if u and v are in the same connected component

of G. Two vertices of a graph are 2-edge-connected if they are in the same connected component

and remain so after the removal of any single edge. A set of vertices is 2-edge-connected if each pair

of its vertices is 2-edge-connected; similarly, a graph is 2-edge-connected if its set of vertices is 2-

edge-connected. A bridge is an edge of a graph G, the removal of which would increase the number

of connected components of G by one. Given a graph G with at least three vertices, a smallest

2-edge-connectivity augmentation of G, denoted by aug2e(G), is a set of edges with the minimum

cardinality whose addition makes G 2-edge-connected. A graph is componentwise 2-edge-connected

if it does not have a bridge. A smallest componentwise 2-edge-connectivity augmentation of G is

denoted by augc2e(G).

A block in a graph is an induced subgraph of a maximal 2-edge-connected subset of vertices.

If a block consists of all the nodes in a connected component of G, it is called an isolated block.
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A singular connected component is one formed by an isolated vertex, and a singular block is one

with exactly one vertex. The bridge-block graph of an undirected graph G, denoted by BB(G), is

defined as follows. Each block is represented by a vertex of BB(G). When all the blocks in G

are represented by vertices, BB(G) becomes a forest. Each bridge in G corresponds to an edge in

BB(G) and vice versa. For example, the blocks a, b, . . . , i are represented by vertices. The resulting

tree is illustrated in Figure 2.

In addition, let Fn be the function that can transform an edge set added to BB(G) into a

corresponding edge set added to G. If E′ is the edge set added to BB(G), then Fn(E′) is the

corresponding edge set added to G, i.e., Fn(E′)= aug2e(G). For example,for an input graph and a

corresponding bridge-block forest, as shown in Figure 2, assume an edge, eadded, is added between

vertex a and vertex f , as shown in Figure 3(b). Then, Fn can transform the edge eadded into a

corresponding edge e′added, i.e., Fn(eadded). The latter is added between an arbitrarily selected black

vertex of block a and a white vertex of block f , as shown in Figure 3(a).
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Figure 2: The maximum 2-edge-connected subset of vertices of the bipartite graph on the left are
grouped into a set of blocks by dashed lines. The 2-edge forest of the graph is shown on the right.

Given a PRAM model M, let TM(n,m) be the parallel time needed to compute the connected

components of G using PM(n,m) ≤ n + m processors.

Fact 1 ([3, 4])

1. If M = CRCW , then TCRCW (n,m) = O(log n) and PCRCW (n,m) =

O((n + m)·α(m,n)/ log n).

2. If M = EREW , then TEREW (n,m) = O(log n) and PEREW (n,m) = O(n + m).
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Figure 3: Illustration of the transformation function Fn.

A rooted bridge-block forest for a graph can be computed in sequential linear time and in

O(log n+TM(n,m)) parallel time using O((n+m)/ log n+PM(n,m)) processors on an M PRAM

[29, 31, 32].

3 Case 1: When BB(G) is a tree

Let G be the input graph. Here, we assume that BB(G) is a tree. Note that, in this paper, we

use T and BB(G), interchangeably to denote the bridge-block forest for an input graph G. Since

BB(G) is a tree, the implication is that G is connected. Assume BB(G) contains ℓ leaves that can

be divided into the following three categories: B is a set of black leaves, W is a set of white leaves,

and H is a set of hybrid leaves. Let |B|, |W |, and |H| be the numbers of black, white, and hybrid

leaves in BB(G), respectively. Without loss of generality, we assume that |B| ≥ |W |. Furthermore,

we say that BB(G) is B-dominated if |B| > |W | + |H|.

3.1 Lower bound on aug2e(BB(G))

Let LOWt2e(BB(G)) = max{⌈(|B| + |W | + |H|)/2⌉, |B|} when BB(G) is a tree.

Lemma 2 |aug2e(BB(G))| ≥ LOWt2e(BB(G)).

Proof. Let E1 be any set of edges such that BB(G) ∪ E1 is 2-edge-connected. Each leaf must

be an endpoint of an added edge in E1 in order for BB(G) ∪ E1 to be 2-edge-connected. As an

edge has two endpoints, we need at least ⌈(|B| + |W | + |H|)/2⌉ edges. Note also that BB(G) is
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bipartite; thus, the endpoints of an added edge cannot both be in black leaves. Since we assume

that |B| ≥ |W |, we need at least |B| edges. Therefore, the lemma holds. 2

Corollary 3 If BB(G) is B-dominated, then LOWt2e(BB(G)) = |B|.

Proof. By definition. 2

3.2 Case 1.1: When BB(G) is an easy tree

Recall that an easy bridge-block tree T for a bipartite graph is one with an equal number of white

and black leaves and no hybrid leaves. We number the leaves of T via a depth-first ordering from

1 to ℓ, i.e., the number of leaves in T , and denote them by v1, v2, . . . , vℓ. Note that, since ℓ is even,

LOWt2e(BB(G)) = ℓ/2. By Lemma 2, |aug2e(T )| ≥ ℓ/2. Our algorithm, described below, always

adds ℓ/2 edges. Thus, after adding edges, if we can prove the resulting graph is 2-edge-connected,

the solution found is a smallest 2-edge-connectivity augmentation of T .

If T is an easy tree and there exists i such that vi and vi+ℓ/2 are two different-colored leaves,

we say that the tree is an easy-to-connect or ETC tree. An easy tree that is non-ETC is called an

anti-ETC tree. Note that both ETC and anti-ETC trees are easy trees. Our algorithm considers

three cases: (1) an ETC tree, (2) an anti-ETC tree with more than four leaves, and (3) an anti-ETC

tree with at most four leaves.

Lemma 4 Let T be the input tree and Tnew = T ∪ Eadded, where Eadded is a set of added edges.

Then, each added edge e ∈ Eadded is not a bridge in Tnew.

Proof. We prove this lemma by contradiction. Assume the lemma is not true; that is, the added

edge e is a bridge. In this case, removing the added edge would increase the number of connected

components by one. However, since there was only one connected component before we added this

edge, if we remove it, the number of connected components would still be one. Therefore, no new

connected component is introduced, which is a contradiction. Thus, Lemma 4 is correct. 2

The proof of Lemma 4 is illustrated in Figure 4, in which an added edge connects leaves 3

and 6. Now, since there is a path between the two leaves, it forms a cycle with the added edge.

Therefore, the added edge cannot be a bridge.
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Figure 4: Illustration of the proof of Lemma 4.

3.2.1 Case 1.1.1: When BB(G) is an ETC tree

Our algorithm for finding aug2e(BB(G)) when BB(G) is an ETC tree is shown in Algorithm 2 and

illustrated in Figure 5.

Algorithm 2 ETC tree connection

1: procedure ETCT(T ) {∗ where T is an ETC tree with ℓ leaves ∗}
2: Find i∗ such that vi∗ and vi∗+ℓ/2 are in different colors;
3: Let Vin = {vi∗+1, vi∗+2, . . . , v(i∗+ℓ/2)−1}, and Vout = {v1, v2, . . . , vi∗−1} ∪

{v(i∗+ℓ/2)+1, v(i∗+ℓ/2)+2, . . . , vℓ};
4: Number the black (respectively, white) leaves in Vin starting from 1 as b1, b2, . . . (respectively,

w1, w2, . . .);
5: Number the black (respectively, white) leaves in Vout starting from 1 as b′1, b

′
2, . . . (respectively,

w′
1, w

′
2, . . .);

6: Let E′ = {(bi, w
′
i) | ∀i} ∪ {(b′i, wi) | ∀i};

7: return E′ ∪ {(vi∗ , vi∗+ℓ/2)};
8: end procedure

Lemma 5 For a subtree T ′ of T , let ea be the antenna edge of T ′ and Tnew = T ∪ Eadded, where

Eadded is a set of edges added to T . If there exists an edge e = (va, vb) ∈ Eadded, such that va ∈ T ′

and vb 6∈ T ′ or vice versa, then ea is not a bridge in Tnew.

Proof. Before the edge e = (va, vb) is added, there is a path from va to vb in the tree T . Since

va ∈ T ′ and vb /∈ T ′, the path passes through the antenna edge ea. After the edge e = (va, vb) has

been added, a cycle is formed. However, as the cycle passes through the antenna edge ea, the latter

is not a bridge. 2

The proof of Lemma 5 is illustrated in Figure 6, which shows that leaves 7 and 10 are

connected. In this case, leaf 7 is in the subtree T ′, but leaf 10 is not. After the edge connecting the
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Figure 5: (a) vi and vi+ℓ/2 are in different colors with an added edge between them. (b) Illustration
of Algorithm 2.

two leaves is added, a cycle is formed such that the antenna edge of T ′ is in the cycle; therefore,

this antenna edge is not a bridge.

Lemma 6 Let Eadded be the set of edges derived by Algorithm 2 and let Tnew = T ∪ Eadded. Then

Tnew does not contain any bridge; that is, Eadded = aug2e(T ).

Proof. Assume that the lemma is not correct, i.e., there exists a bridge in the resulting graph

Tnew, denoted by ex. By Lemma 4, no added edge is a bridge; therefore, ex must be a tree edge.

We assume that the subtree corresponding to ex is T ′, i.e., ex is an antenna edge of T ′, leaves are

vp, . . . , vq. Since there is an added edge between vi and vi+ℓ/2, the possible ranges for p and q are

as follows:

Case 1: 1 ≤ p < q ≤ i − 1 or i + ℓ/2 + 1 ≤ p < q ≤ ℓ. In this case, all the leaves of T ′ are in

Vout and connected to leaves in Vin by Algorithm 2. Therefore, by Lemma 5, ex is not a bridge.

Case 2: 1 ≤ p ≤ i and i + 1 ≤ q ≤ i + ℓ/2− 1, or i + 1 ≤ p ≤ i + ℓ/2− 1 and i + ℓ/2 ≤ q ≤ ℓ.

In this case, each subtree of T contains a vertex of vi or vi+ℓ/2, but a subtree cannot contain both

vertices. Since there is an added edge between vi and vi+ℓ/2, then, by Lemma 5, ex is not a bridge.
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Figure 6: Illustration of the proof of Lemma 5.

Case 3: i + 1 ≤ p < q ≤ i + ℓ/2− 1. In this case, all the leaves of T ′ are in Vin and connected

to leaves in Vout by Algorithm 2. Therefore, by Lemma 5, ex is not a bridge.

Case 4: 1 ≤ p ≤ i − 1 and i + ℓ/2 + 1 ≤ q ≤ ℓ. In this case, all leaves in Vin are included in

the subtree T ′ and connected to all the leaves in Vout. Therefore, since the subtree can not contain

all the leaves, by Lemma 5, ex is not a bridge. 2

3.2.2 Case 1.1.2: When BB(G) is an anti-ETC tree with more than four leaves

If a tree is an anti-ETC tree with more than four leaves, we can find two consecutive leaves, denoted,

respectively, by va and va+1 (a < ℓ/2), such that va and va+1 are different colors. Without loss of

generality, we assume that va is a black leaf; therefore, va+1 is white. Furthermore, as shown in

Figure 7(a) we can find va+ℓ/2, which must be black, and v(a+1)+ℓ/2, which must be white. The

steps of the proposed algorithm for this case are given in Algorithm 3 and illustrated in Figure 7.

Algorithm 3 Anti-ETC tree connection

1: procedure AETC(T ) {∗ where T is an anti-ETC tree with ℓ leaves and ℓ > 4 ∗}
2: Find leaves va, va+1, va+ℓ/2 and v(a+1)+ℓ/2 such that va and va+ℓ/2 are black, and va+1 and v(a+1)+ℓ/2

are white;
3: Let E1 = {(va, v(a+1)+ℓ/2), (va+1, va+ℓ/2)};
4: Let Vin = {va+2, va+3, . . . , v(a+ℓ/2)−1};
5: Let Vout = {v1, v2, . . . , va−1} ∪ {v(a+1)+ℓ/2+1, v(a+1)+ℓ/2+2, . . . , vℓ};
6: Number the black (respectively, white) leaves in Vin starting from 1 as b1, b2, . . . (respectively,

w1, w2, . . .);
7: Number the black (respectively, white) leaves in Vout starting from 1 as b′1, b

′
2, . . . (respectively,

w′
1, w

′
2, . . .);

8: Let E′ = {(bi, w
′
i) | ∀i} ∪ {(b′i, wi) | ∀i};

9: return E′ ∪ E1;
10: end procedure
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Figure 7: (a) A case where two edges are added. (b) Illustration of Algorithm 3.

Lemma 7 Let Eadded be the set of edges derived by Algorithm 3. Then, Tnew = T ∪Eadded without

bridges.

Proof. Assume that Lemma 7 is not correct; that is, there exists a bridge , denoted by ex, in the

resulting graph Tnew. By Lemma 4, ex is not an added edge. We also assume that the leaves in the

subtree T ′ corresponding to ex are vp, . . . , vq.

Since there are two added edges, one between va and v(a+ℓ/2)+1, and the other between va+1

and va+ℓ/2, the ranges of p and q that need to be considered are as follows:

Case 1: 1 ≤ p < q ≤ a− 1 or a + ℓ/2 + 2 ≤ p < q ≤ ℓ. In this case, all the leaves of T ′ are in

Vout and connected to leaves in Vin. Therefore, by Lemma 5, ex is not a bridge.

Case 2: 1 ≤ p ≤ a and a+1 ≤ q ≤ a+ ℓ/2, or a+1 ≤ p ≤ a+ ℓ/2 and a+ ℓ/2+1 ≤ q ≤ ℓ. In

this case, each subtree of T contains some leaves of va, va+1, va+ℓ/2, and va+ℓ/2+2, but no subtree

of T can contain all the leaves. Since there are two added edges between va and v(a+ℓ/2)+1, and

between va+1 and va+ℓ/2, by Lemma 5, ex is not a bridge.

Case 3: a ≤ p < q ≤ a + ℓ/2 + 1. In this case, all leaves of T ′, except va, va+1, va+ℓ/2,

va+ℓ/2+1, are in Vin and connected to leaves in Vout. Therefore, by Lemma 5, ex is not a bridge.
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Figure 8: All the possible cases of an anti-ETC tree with exactly four leaves.

Case 4: 1 ≤ p ≤ a−1 and a+ ℓ/2+2 ≤ q ≤ ℓ. In this case, all leaves in Vin are included in T ′

and connected to all leaves in Vout. Therefore, since T ′ cannot contain all the leaves, by Lemma 5,

ex is not a bridge. 2

3.2.3 Case 1.1.3: When BB(G) is an anti-ETC tree with at most four leaves

Note that an easy tree has an even number of leaves; therefore, a tree can have either two leaves

or four leaves in this case. Clearly an easy tree with two leaves must be an ETC tree. Hence, we

only need to consider an anti-ETC tree with exactly four leaves. The leaf sequence for such a tree

must be colored black, white, black, white, or vice versa. Without loss of generality, we assume

the former sequence. Depending on the tree structure, we have the solution for each case of an

anti-ETC tree with exactly four leaves, as shown in Figure 8.

3.3 Case 1.2: When BB(G) is a general tree

3.3.1 Case 1.2.1: When BB(G) has no hybrid leaves

Note that, if BB(G) has no hybrid leaves and |B| = |W |, then it is an easy tree. Hence, without

loss of generality, we assume that |B| > |W |. In this case, we apply Algorithm 4.

Lemma 8 Algorithm 4 is correct.

Proof. It is straightforward to know that T ′ computed in step 6 of Algorithm 4 is an easy tree.

Hence the correctness of Algorithm 4 follows from Lemmas 6 and 7. 2

3.3.2 Case 1.2.2: When BB(G) has hybrid leaves

Note that if an endpoint of an added edge is a hybrid leaf, the other endpoint of the edge can be

either black or white. To handle the case when the input is a general tree, we first transform a tree
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Algorithm 4 When the input has no hybrid leaves and |B| > |W |.

1: procedure BGTWAug(T )
2: Let bi be the ith black leaf;
3: Let wi be the ith white leaf;
4: Let V = b1, b2, . . . , b|B|, w1, w2, . . . , w|W |;
5: Let V ′ = b|W |+1, b|W |+2, . . . , b|B|;
6: Let T ′ = T − V ′;
7: if T ′ is an ETC tree then
8: E1=ETCT(T ′); {∗ Algorithm 2 ∗}
9: else if T ′ is an anti-ETC tree with more than 4 leaves then

10: Let E1=AETC(T ′); {∗ Algorithm 3 ∗}
11: else if T ′ is an anti-ETC tree with at most 4 leaves then
12: Use the solution illustrated in Figure 8 to find E1;
13: end if
14: if there is only one white vertex in T i.e., there is no white leaf in T then
15: Let u be the white vertex in T ;
16: E2 = {(bi, u) | 1 ≤ i ≤ |B|};
17: else
18: Let u1, u2 be two white vertices in T ;
19: Let E2 ={(bi, uj) | |W + 1| ≤ i ≤ |B|, j ∈ {1, 2} , where uj is not the neighbor of bi}; {∗ add

edges between a white vertex and the remaining black leaves ∗}
20: end if
21: return E1 ∪ E2;
22: end procedure

with hybrid leaves into a tree without hybrid leaves using an algorithm called HAssign, described

in Algorithm 5. Then, we apply Algorithm 4 to the recolored tree derived by Algorithm 5. The

steps followed in this case are described in Algorithm 6.

Algorithm 5 H assignment

1: procedure HAssign(T ) {∗ where T is a tree with hybrid leaves ∗}
2: if |B| > ⌈(|B| + |W | + |H |)/2⌉ then
3: All hybrid leaves are recolored white;
4: else
5: Arbitrarily select |B| − |W | hybrid leaves to be recolored white;
6: The remaining ⌊(|H | − |B| + |W |)/2⌋ hybrid leaves are recolored white;
7: The rest are recolored black;
8: end if
9: Let T ′ be the resulting tree;

10: return T ′;
11: end procedure

Lemma 9 Algorithm 6 is correct and optimal. That is, aug2e(T ) = aug2e(T ′), where T = BB(G)

and T ′ is the recolored tree returned by Algorithm 5.

Proof. First, we prove the correctness of the algorithm. Let T ′ be the recolored tree returned by

Algorithm 5. We apply Algorithm 4 to T ′, which, by Lemma 8, guarantees that the black leaf will
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Algorithm 6 When T has hybrid leaves

1: procedure HTAug(T )
2: T ′= HAssign(T ); {∗ Algorithm 5 ∗}
3: E′= BGTWAug(T ′); {∗ Algorithm 4 ∗}
4: return E′;
5: end procedure

be connected to the white leaf in T ′. Algorithm 5 only assigns the hybrid leaves in T to be black

or white leaves, so the tree structure of T remains unchanged. Therefore, an edge added to T ′ can

also be added to T , i.e., aug2e(T ) = aug2e(T ′).

Next, we prove the optimality of Algorithm 6.

Without loss of generality, we assume that |B| ≥ |W |.

Case 1: |B| > |W |+ |H|. In this case, the tree is B-dominated. After applying Algorithm 5,

all hybrid leaves are recolored white. However, the tree is still B-dominated and the number of

added edges is equal to LOWt2e(T ), i.e., |B|.

Case 2: |B| ≤ |W |+ |H|. After applying Algorithm 5, the number of black leaves is equal to

⌈ℓ/2⌉. In this case, if the tree is not B-dominated, ⌈ℓ/2⌉ edges are added such that the number of

added edges is equal to LOWt2e(T ).

Therefore, Algorithm 6 is correct and optimal. 2

Lemma 10 G ∪ Fn(aug2e(BB(G))), where aug2e(BB(G)), found by Algorithm 6, is simple if and

only if G has at least two white and two black vertices.

Proof. Algorithm 6 returns a simple graph, unless steps 14-16 in Algorithm 4 are executed. In

the latter case, G would be a star with exactly one black or white vertex. It is straightforward to

see that such a graph G dose not have a simple 2-edge-connectivity augmentation. 2

4 Case 2: When BB(G) is a forest

In this section, we describe the remainder of our main algorithm when the input graph G is not

connected; in other words, when BB(G) is a forest instead of a tree.

Recall that a leaf in a forest is a degree-1 vertex; and B, W , and H are, respectively, the sets

of black, white, and hybrid leaves in BB(G). Without loss of generality, we assume that |B| ≥ |W |.
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Let B′, W ′, and H ′ be, respectively, the sets of isolated black, white, and hybrid vertices in BB(G).

We now present a simple lower bound for |aug2e(BB(G))|.

Let LOWf2e(BB(G)) = max{2|B′| + |B|, 2|W ′| + |W |, ⌈(2|B′| + 2|W ′| + 2|H ′| + |B| + |H| +

|W |)/2⌉} = p+max{|B|+ |B′|− |W ′|− |H ′|, |W |+ |W ′|− |B′|− |H ′|, ⌈(|B|+ |H|+ |W |)/2⌉}, where

p is the number of isolated vertices in BB(G). Note that if BB(G) is a tree, LOWt2e(BB(G)) =

LOWf2e(BB(G)).

Lemma 11 |aug2e(BB(G))| ≥ LOWf2e(BB(G)).

Proof. Note that each leaf needs one incident edge and each isolated vertex needs two incident

edges to make the resulting graph 2-edge-connected. Hence, |aug2e(BB(G))| ≥ ⌈(2|B′| + 2|W ′| +

2|H ′| + |B| + |H| + |W |)/2⌉. Since the graph is bipartite, the endpoints of an added edge cannot

both be black or white. Thus, |aug2e(BB(G))| ≥ 2|B′| + |B| and |aug2e(BB(G))| ≥ 2|W ′| + |W |.

Note also that p = |B′| + |W ′| + |H ′|, so the lemma holds. 2

4.1 Case 2.1: When BB(G) contains no isolated vertices

In this subsection, we assume that BB(G) dose not have any isolated vertices. Here, BB(G) is a

forest consisting of non-trivial trees. Note that if a tree is not trivial, i.e., it has only one vertex,

then it contains at least two leaves. We propose algorithms that add a set of edges, Eadded, so that

BB(G) ∪ Eadded is a tree and aug2e(BB(G)) − Eadded = aug2e(BB(BB(G) ∪ Eadded)).

First, we consider the case where BB(G) dose not contain any hybrid leaves. This is called a

light forest ; otherwise, it is called a general forest . In a light forest, the trees can be classified into

three different types: (1) TB={ T | T , a tree with only black leaves in T}; (2) TW ={ T | T , a tree

with only white leaves in T}; and (3) TBW ={ T | T , a tree with at least one black and one white

leaf in T}.

Without loss of generality, we assume that |TB | ≥ |TW |. Next, we propose algorithms for two

cases: (1) |TB | = |TW |, and (2) |TB | > |TW |. For the remainder of this section, let F = BB(G).

4.1.1 Case 2.1.1: When BB(G) is a light forest and |TB | = |TW |

Let k = |TB | = |TW | and z = |TBW |. Algorithm 7 adds a set of edges to F so that the resulting

graph is a tree, as shown in Figure 9.
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Algorithm 7 Forest-Tree Conversion

1: procedure FTConversion(F ) {∗ F is a light forest with |TB| = |TW | = k and |TBW | = z ∗}
2: Number each tree in TB as 1, 3, . . . , 2k − 1;
3: Number each tree in TW as 2, 4, . . . 2k;
4: Number each tree in TBW as 2k + 1,2k + 2, . . . 2k + z;
5: Give two labels to each tree as follows:
6: for the tree i from 1 to 2k + z do
7: if the tree ∈ TB then
8: Assign the labels 2i − 1 and 2i + 1 to two leaves chosen arbitrarily;
9: else if the tree ∈ TW then

10: Assign the labels 2i − 2 and 2i to two leaves chosen arbitrarily;
11: else if the tree ∈ TBW then
12: Assign the labels 2i− 1 and 2i to two different colored leaves. Here, 2i− 1 is assigned to the

black leaf and 2i is assigned to the white leaf;
13: end if
14: end for
15: E1 = {(v2j , v2j+1) |for all labeled leaves v2j and v2j+1, 1 ≤ j ≤ 2k + z − 1};
16: return E1;
17: end procedure

Figure 9: Illustration of Algorithm 7.

In steps 2 – 4 of Algorithm 7, labels in the form of integers are assigned to all the trees in F .

Meanwhile, in steps 6 – 13, labels in the form of integers are assigned to some leaves of F . In the

following lemmas, we describe the properties of these labels. Then, we demonstrate the correctness

of our algorithm based on the following lemmas.

Lemma 12 The leaves with odd labels are black and the leaves with even labels are white.

Proof. By definition. 2

Lemma 13 The labels assigned to each tree of the input forest are distinct.

Proof. Consider any two trees in TB with numbers x and y respectively, where |x − y| ≥ 2. Since

the labels assigned to the tree numbered x are 2x−1 and 2x+1, and the labels assigned to the tree

numbered y are 2y − 1 and 2y + 1, the labels assigned to the trees are different. This is also true

for trees in TW . Note that, by definition, trees in TB and TW are not assigned the same numbers.
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The number of black trees is equal to the number of white trees; hence, the labels assigned

to trees in TB and TW are in the range (1, 4k), while the labels assigned to trees in TBW are in the

range (4k + 1, 4k + 2z). As these two ranges do not overlap, the lemma is correct. 2

Lemma 14 For each q in the range 1 ≤ q ≤ 2(2k + z) − 1, there is a path between the leaf with

label q and the leaf with label q + 1.

Proof. We prove this lemma according to the position of the leaf with label q, as shown by the

following three cases.

1. If there is a black leaf in TB:

(a) If q = 2i − 1, then there is a tree path from leaf q to leaf 2i + 1. Since there is also an

added edge connecting leaf 2i+1 and leaf 2i, there is also a path between leaf q = 2i−1

and q + 1. Note that q + 1 = 2i.

(b) If q = 2i + 1, then there is an added edge connecting leaf 2i + 1 and leaf 2i. As there is

also a tree path from leaf 2(i + 1)− 2 to leaf 2(i + 1), and 2i + 2 = q + 1, there is a path

between leaf q and q + 1.

2. If there is a white leaf in TW :

(a) If q = 2i − 2, then there is an added edge between leaf q = 2(i − 1) and leaf q + 1 =

2(i − 1) + 1.

(b) The same is true for q = 2i.

3. If there is a leaf in TBW :

(a) If q = 2i − 1, there is a tree path between q = 2i − 1 and 2i.

(b) If q = 2i, there is an added edge connecting q = 2i and leaf 2i + 1.

Therefore, there is a path from leaf q to q + 1. 2

Theorem 15 F ∪ Eadded is a tree, where Eadded is the set of edges returned by Algorithm 7.

Furthermore, |LOWf2e(BB(G))| = |LOWf2e(BB(BB(G) ∪ Eadded))| + |Eadded|.

Proof. By Lemmas 12, 13, and 14. 2
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Algorithm 8 |TB | > |TW | Forest-Tree Conversion

1: procedure BGTW FTConversion(F ) {∗ where F is a light forest with |TB| = k + x, (x ≥ 1),
|TW | = k, and |TBW | = z ∗}

2: if TBW = TW = φ then
3: Pick a leaf from each tree in TB and number them as b1, b2, . . . ,bk+x;
4: Let E1 = {(bi, u) | 1 ≤ i ≤ k + x and let u be a white vertex of TB with the number br, where

i 6= r and 1 ≤ r ≤ k + x};
5: else
6: Find a subset T ′

B of TB, such that |T ′
B| = k;

7: Let T ′
B = TB − T ′

B and |T ′
B| = x;

8: Let F ′ = T ′
B ∪ TW ∪ TBW ;

9: E1= FTConversion(F ′); {∗ Algorithm 7 ∗}
10: Pick a leaf from each tree in T ′

B and number them as b1, b2, . . ., bx;
11: Number the remaining white leaves of BB(F ′ ∪E1) as w1, w2, ,. . . wy; {∗ assuming there are y

remaining white leaves ∗};
12: if x ≤ y then
13: Let E2 = {(bi, wi) | 1 ≤ i ≤ x};
14: else
15: Let E2 = {(bi, wi) | 1 ≤ i ≤ y} ∪ {(bi, u) | y < i ≤ x, u is an arbitrary white leaf.};
16: end if
17: end if
18: return E1 ∪ E2;
19: end procedure

4.1.2 Case 2.1.2: When BB(G) is a light forest and |TB | > |TW |

The steps for this case are shown in Algorithm 8, and illustrated in Figure 10.

Theorem 16 F ∪ Eadded is a tree in which Eadded is the set of edges derived by Algorithm 8.

Proof. Let F = {TB , TW , TBW } be the input forest, and let TB = T ′
B + T ′

B and |T ′
B | = |TW |. Let

F ′ = T ′
B ∪ TW ∪ TBW . Note that E1 is the set of edges derived by Algorithm 7 using the input F ′

in step 9. By Theorem 15, T ′ = F ′ ∪ E1 is a tree. Note that, each tree T ∗ in T ′
B has one label

assigned to its leaf. Furthermore, it is obvious that there is an edge e in the set of edges E2 found

in steps 12 – 16 such that one endpoint of e is in T ∗ and the other is in T ′. Therefore, F ∪ Eadded

is a tree. 2

Theorem 17 |LOWf2e(BB(G))| = |LOWf2e(BB(BB(G) ∪ Eadded))| + |Eadded|, where Eadded is

the set of added edges derived by Algorithm 8.

Proof. Let q = |Eadded|. The two endpoints of each added edge are leaves in BB(G). Let

T ′ = BB(G) ∪ Eadded. By Theorem 16, T ′ is a tree, therefore, i.e., BB(T ′) = T ′. Each leaf in

BB(G) that is an endpoint of Eadded becomes an interior node in T ′. In T ′, let Bnew and Wnew
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Figure 10: Illustration of Algorithm 8.

denote the black and white leaves, respectively. Then, |B| = |Bnew| + q, |W | = |Wnew| + q. Hence,

the theorem holds. 2

In Sections 4.1.1 and 4.1.2, we presented two algorithms that convert a light forest into a

tree. If all the leaves of a forest are either black or white, the forest can be transformed into a tree

by applying the algorithms presented in this subsection. After this transformation, we can apply

the algorithms presented in Section 3 to add edges such that no bridges exist in the final graph.

4.1.3 Case 2.1.3: When BB(G) has hybrid leaves

If one endpoint of an added edge is a hybrid leaf, the other endpoint of that edge can be either black

or white. For a general forest, we first transform some trees with hybrid leaves into trees without

hybrid leaves using Algorithm 5, the leaf-recoloring algorithm. Then, we apply Algorithm 8 to

convert a forest into a tree. The steps followed in this case are shown in Algorithm 9.

Algorithm 9 When the input is a forest that has hybrid leaves

1: procedure H FTConversion(F ) {∗ where F is a forest with hybrid leaves ∗}
2: T ′= HAssign(F ); {∗ Algorithm 5 ∗}
3: E′=BGTW FTConversion(T ′) {∗ Algorithm 8 ∗}
4: return E′;
5: end procedure

Lemma 18 Algorithm 9 finds aug2e(BB(G)) when BB(G) is a forest containing no isolated ver-

tices.
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Proof. First, we prove the correctness of the algorithm. Let T ′ be the recolored forest returned

by Algorithm 5. Note that Algorithm 8 guarantees a black leaf will connect to a white leaf in

T ′. Since the HAssign algorithm only assigns the hybrid leaves in F to be black or white and

the tree structure of F remains unchanged, an edge added to T ′ can also be added to F , i.e.,

aug2e(F ) = aug2e(T ′).

Next, we prove the optimality of the algorithm. Assume F contains ℓ leaves that can be

divided into the following three categories: |B| - the number of black leaves, |W | - the number of

white leaves, and |H| - the number of hybrid-colored leaves. Without loss of generality, we assume

that |B| ≥ |W |.

Case 1. |B| > |W | + |H|

In our algorithm, after applying the HAssign algorithm, all hybrid leaves are assigned as

white leaves. Let |Wnew| be the resulting number of white leaves. Since |Wnew| = |W |+ |H| < |B|,

and ⌈(|B| + |Wnew|)/2⌉ < |B|, then LOWf2e(T ) ≥ LOWf2e(T
′), even if we recolor all the hybrid

leaves white. Therefore, our algorithm is optimal.

Case 2. |B| ≤ |W | + |H|

After applying Algorithm 9, the number of black leaves is equal to ⌈ℓ/2⌉. When the number

of black leaves in the forest is ⌈ℓ/2⌉, our algorithms add ⌈ℓ/2⌉ edges. Since the total number of

added edges is equal to LOWf2e(T ), our algorithm is optimal. 2

4.2 Case 2.2: When BB(G) contains isolated vertices

Recall that each isolated black (respectively, white) block is an isolated black (respectively, white)

vertex in G. Let b′i (respectively, w′
i) be the ith isolated black (respectively, white) vertex in G,

and let h′
1,i, h′

2,i be arbitrary black and white vertices, respectively, in the ith isolated hybrid block

of G.

Let G′ be the graph obtained by removing the vertices and edges from the isolated blocks of

G. There are three cases, which we describe below.

• Case 2.2.1: G′ contains at least two white and two black vertices. Without loss of generality,

we assume that |B′| ≥ |W ′|, which yields five sub-cases:

– Case 2.2.1.1: |W ′| > 0.
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– Case 2.2.1.2: |W ′| = 0, |B′| > 0 and |H ′| > 0.

– Case 2.2.1.3: |W ′| = 0, |B′| = 0 and |H ′| > 0.

– Case 2.2.1.4: |W ′| = 0, |B′| > 0, |H| + |W | > 0, and |H ′| = 0.

– Case 2.2.1.5: |W ′| = 0, |B′| > 0, |H| + |W | = 0, and |H ′| = 0.

• Case 2.2.2: G′ contains either a white or a black vertex. Without loss of generality, we assume

that G′ contains exactly one white vertex, which yields two sub-cases:

– Case 2.2.2.1: there is no white vertex in G − G′.

– Case 2.2.2.2: there is a white vertex in G − G′.

• Case 2.2.3: G′ is null.

4.2.1 Case 2.2.1: G′ has at least two white and two black vertices

Without loss of generality, we assume that |B′| ≥ |W ′|. Let E′ be the set of added edges to be

decided in each sub-case; T̂ = BB(BB(G) ∪ E′); B̂′, Ŵ ′, and Ĥ ′ be the respective sets of isolated

black, white, and hybrid blocks in T̂ ; and B̂, Ŵ , and Ĥ be the respective sets of black, white, and

hybrid leaf-blocks in T̂ .

Case 2.2.1.1: |W ′| > 0. Since we assume that |B′| ≥ |W ′|, |B′| > 0, let E′ = {(b′i, w
′
i) | 1 ≤

i ≤ |W ′|}. Then, |B̂| = |B| + |W ′|, |Ŵ | = |W | + |W ′|, Ĥ = H, |Ŵ ′| = 0, |B̂′| = |B′| − |W ′|, and

Ĥ ′ = H ′. Thus, LOWf2e(T̂ ) ≥ LOWf2e(BB(G)) − |W ′|. We have reduced Case 2.2.1.1 to Case

2.2.1.2, Case 2.2.1.3, Case 2.2.1.4, Case 2.2.1.5 or Case 2.1.

Case 2.2.1.2: |W ′| = 0, |B′| > 0 and |H ′| > 0. Let k = min{|B′|, |H ′|} and E′ = {(b′i, h
′
2,i) |

1 ≤ i ≤ k}. Then, |B̂| = |B| + k, Ŵ = W , |Ĥ| = |H| + k, |Ŵ ′| = 0, |B̂′| = |B′| − k, and

|Ĥ ′| = |H ′|−k. Thus, LOWf2e(T̂ ) ≥ LOWf2e(BB(G))−k. We have reduced Case 2.2.1.2 to Case

2.2.1.3, Case 2.2.1.4, Case 2.2.1.5 or Case 2.1.

Case 2.2.1.3: |W ′| = 0, |B′| = 0, and |H ′| > 0. Let w, h, and bi be, respectively, arbitrary

white, hybrid, and ith black leaves in BB(G′) if they exist. Let k = min{|B|, |H ′|} and E1 =

{(bi, h
′
2,i) | 1 ≤ i ≤ k}. If |H ′| > k, then let |H ′′| = |H ′| − k and E2 = {(h′

1,i, h
′
2,i+1)) | 1 ≤

i < ⌊|H ′′|/2⌋}. Furthermore, when |H ′′| is odd, let E3 = {(h′
1,|H′|, w)} if w exists; otherwise,
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E3 = {(h′
1,|H′|, h)}. Then, |B̂| = |B| − k, |Ĥ| = |H| + k + |H ′′|, |Ĥ ′| = 0, and E′ = E1 ∪ E2 ∪ E3.

Thus, LOWf2e(T̂ ) ≥ LOWf2e(BB(G)) − |E′|. We have reduced Case 2.2.1.3 to Case 2.1.

Case 2.2.1.4: |W ′| = 0, |B′| > 0, |H| + |W | > 0, and |H ′| = 0. Let k = min{|B′|, |H| + |W |};

wi be a white vertex in the ith leaf of H∪W , and E′ = {(bi, wi) | 1 ≤ i ≤ k}. Then, |B̂| = |B|+ |k|,

|Ŵ | + |Ĥ| = |H| + |W | − k, |Ŵ ′| = 0, |B̂′| = |B′| − k, and |Ĥ ′| = 0. Thus, LOWf2e(T̂ ) ≥

LOWf2e(BB(G)) − k, so we have reduced Case 2.2.1.4 to either Case 2.2.1.5 or Case 2.1.

Case 2.2.1.5: |W ′| = 0, |B′| > 0, |H|+ |W | = 0, and |H ′| = 0. Now, we only have black leaves

and isolated black vertices. Let w be a white vertex in G′, and E′ = {(b′i, w) | 1 ≤ i ≤ |B′|}. Note

that, in this case, 2|B′|+ |B| > ⌈(2|B′|+2|W ′|+2|H ′|+ |B|+ |H|+ |W |)/2⌉. Therefore, B̂ = B∪B′,

Ŵ = ∅, Ĥ = ∅, Ŵ ′ = ∅, B̂′ = ∅, and Ĥ ′ = ∅, such that LOWf2e(T̂ ) ≥ LOWf2e(BB(G)) − |E′|.

We have reduced Case 2.2.1.5 to Case 2.1.

4.2.2 Case 2.2.2: G′ contains either one white or one black vertex

Without loss of generality, we assume that G′ consists of exactly one white vertex w. Hence, |H| = 0

and G′ is a star with center w; BB(G) is also a star. There are two sub-cases: (1) G− G′ contains

a white vertex, and (2) G − G′ does not contain a white vertex.

Case 2.2.2.1: there is no white vertex in G−G′. All isolated vertices in G are black, |W ′| = 0

and |H ′| = 0, such that |LOWf2e(BB(G′))| = |B|. Let E′ = {(b′i, w) | ∀i}.

Lemma 19 For Case 2.2.2.1, aug2e(BB(G)) = aug2e(BB(G′)) ∪E′, and BB(G) ∪ aug2e(BB(G))

is a multi-graph.

Proof. By Lemmas 10 and 11. 2

Case 2.2.2.2: there is one white vertex in G − G′. Let b be a black leaf in BB(G′). Since

BB(G′) is a star with a white center, b must exist. Let w′ be a white vertex in an isolated block

(i.e., in G − G′), and let G′′ = BB(G′) ∪ {(w′, b)}. Note that the number of isolated blocks in

BB(G) ∪ {(w′, b)} is one less than in BB(G), and the number of black leaves in BB(G′′) is one less

than in BB(G′). However, there is one more white leaf in BB(G′′) than in BB(G′). Thus, we have

transformed Case 2.2.2.2 into Case 2.2.1.

Lemma 20 For Case 2.2.2.2, |LOWf2e(BB(BB(G) ∪ {(w′, b)}))| = |LOWf2e(BB(G))| − 1.
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Algorithm 10 When G′ is null, i.e., BB(G) consists of isolated vertices

1: procedure ISOF(F ) {∗ where F is a forest that consists of isolated vertices S ∗}
2: if qB = 0 then {∗ qH must be at least 2; ∗}
3: Let E1 = {(h′

1,2i−1, h
′
2,2i) | 1 ≤ i ≤ ⌊qH/2⌋};

4: if qH is odd number then
5: E′ = E1 ∪ (h′

1,qH−1, h
′
2,qH

);
6: end if
7: else
8: if qB > qW + qH then
9: Let E1 = {(b′i, w

′
i) | 1 ≤ i ≤ qW } ∪ {(b′i+qW

, h′
2,i) | 1 ≤ i ≤ qH};

10: E′ = E1 ∪ {(b′i+qW +qH
, w) | 1 ≤ i ≤ qB − qW − qH and w is a white vertex in S};

11: else if qB = qW + qH then
12: Let E1 = {(b′i, w

′
i) | 1 ≤ i ≤ qW } ∪ {(b′i+qW

, h′
2,i) | 1 ≤ i ≤ qH};

13: E′ = E1;
14: else
15: Let E1 = {(b′i, w

′
i) | 1 ≤ i ≤ qW } ∪ {(b′i+qW

, h′
2,i) | 1 ≤ i ≤ qB − qW };

16: Let E2 = {(h′
1,2i−1+qW −qB

, h′
2,2i+qW −qB

) | 1 ≤ i ≤ ⌊(qH + qW − qB)/2⌋};
17: if (qH + qW − qB) is odd then
18: Let E2 = E2 ∪ (h′

1,qH−1, h
′
2,qH

);
19: end if
20: E′ = E1 ∪ E2;
21: end if
22: end if
23: return E′;
24: end procedure

Proof. By Lemma 11. 2

4.2.3 Case 2.2.3: G′ is null

Let qB , qW , and qH be the numbers of isolated black, white, and hybrid blocks, respectively.

Without loss of generality, we assume that qB ≥ qW . Our algorithm is shown in Algorithm 10.

Theorem 21 |LOWf2e(BB(G))| = |LOWf2e(BB(BB(G) ∪ Eadded))| + |Eadded|, where Eadded is

the set of added edges returned by Algorithm 10.

Proof. Let |B′| = qB, |W ′| = qW , and |H ′| = qH . It is straightforward to see that the number of

edges added by Algorithm 10 is max{qB, ⌈(qB + qW + qH)/2⌉}. After adding edges, the number of

isolated vertices is reduced to zero such that |B| = qB. If qB > qW +qH , then |W |+|H| = qW +qH−1;

otherwise, |W |+ |H| = qW + qH − [(qW + qH − qB) mod 2]. By Lemma 18, |LOWf2e(BB(BB(G)∪

Eadded))| = max{|B|, ⌈(|B| + |W | + |H|)/2⌉}. Therefore, the theorem holds. 2
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4.3 Complexity analysis

Theorem 22 Algorithm 1 runs in sequential linear time and O(log n) parallel time on an EREW

PRAM using a linear number of processors.

Proof. Given a graph G as input, by Fact 1, the first step in Algorithm 1 takes sequential linear

time and O(log n+TM(n,m)) parallel time using O((n+m)/ log n+PM(n,m)) processors on an M

PRAM to compute BB(G). After computing BB(G), the algorithm takes O(1) time to determine

which case should be executed. We now show that all cases in our algorithm take O(1) time to add

edges.

Case 1.1.1: It is trivial to show that Algorithm 2, i.e., ETCT, runs in O(1) time.

Case 1.1.2: Similarly, Algorithm 3, i.e., AETC, runs in O(1) time to add edges.

Case 1.1.3: The method runs in O(1) time, since there are only five ways to add edges in this

case.

Case 1.2.1: In this case, it takes O(1) time to add a set of edges E1 to the subgraph T ′ of

BB(G), where the subgraph T ′ has an equal number of black and white leaves. Let T ′′ = BB(G)−T ′

and T ′ ∪ E1 be a 2-edge-connected graph. Then, it takes O(1) time to add edges between T” and

BB(T ′ ∪ E1) Therefore, Algorithm 4, i.e., BGTWAug, obviously runs in O(1) time.

Case 1.2.2: Algorithm 5, i.e., HAssign, runs in O(1) time to recolor the selected leaves and

Algorithm 4, i.e., BGTWAug, also runs in O(1) time. Therefore, this case can be solved in O(1)

time.

Case 2: As all sub-cases of Case 2 can be reduced to Case 1, it is trivial to show that these

reduction methods run in O(1) time. 2

5 Componentwise 2-edge-connectivity augmentation

In this section, we present Algorithm 11, i.e., C2Aug, which solves the componentwise 2-edge-

connectivity augmentation problem.

If the leaves in a graph are not all black, i.e., there is a white or a hybrid leaf in the graph,

we can use the minimum number of added edges to make all tree edges non-bridge edges.

Lemma 23 Algorithm 11 is correct and optimal.
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Algorithm 11 Componentwise 2-edge-connectivity augmentation

1: procedure C2Aug(G)
2: Let T = BB(G);
3: Let S be the set of isolated vertices in T ;
4: if there are leaves in T then
5: if the leaves are not all black then
6: T ′ = T − S;
7: else {∗ Without loss of generality, assume that all leaves are black. ∗}
8: if there is an isolated vertex v in S whose corresponding block contains a white vertex then
9: Let T ′ = T − S ∪ {v};

10: else
11: T ′ = T − S;
12: end if
13: end if
14: E=FS2Aug(T ′); {∗ Algorithm 1 ∗}
15: else
16: E = ∅;
17: end if
18: return E;
19: end procedure

Proof. We divide the proof into two cases:

Case 1: If BB(G) contains at least one white leaf or one hybrid leaf.

In this case, all the black leaves can be connected to a white leaf, or a hybrid leaf if necessary.

Since no bridges are adjacent to any isolated vertices, they can be removed from BB(G) without

affecting the correctness of our algorithm. Let T ′ be the forest obtained from BB(G) after removing

all of the isolated vertices. It is straightforward to see that the set of edges found by Algorithm 11

is equal to the set of edges found by Algorithm 1 with input T ′. Therefore, our algorithm is correct

and optimal.

Case 2: If all the leaves in BB(G) are black.

In this case, we remove all isolated vertices from BB(G), except the one whose corresponding

block contains a white vertex. Let the resulting graph be T ′. It is straightforward to see that

the number of added edges is equal to the number of black leaves, which is equal to LOWf2e(T
′).

Therefore, the lemma holds.

2

Theorem 24 Algorithm 11 runs in sequential linear time and O(log n) parallel time on an EREW

PRAM using a linear number of processors.

Proof. By Fact 1, it takes sequential linear time and O(log n + TM(n,m)) parallel time using
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O((n + m)/ log n +PM(n,m)) processors on an M PRAM to compute BB(G). Obviously, BB(G)

can be reduced to a subgraph as input for Algorithm 1 in O(1) time. Since, by Theorem 22,

Algorithm 1 runs in sequential linear time and O(log n + TM(n,m)) parallel time, Algorithm 11

also runs in sequential linear time and O(log n + TM(n,m)) parallel time. 2

6 Concluding remarks

We have considered two augmentation problems related to bipartite graphs. The first is a funda-

mental graph-theoretical problem. The second focuses on how to suppress the smallest amount of

sensitive information in a cross-tabulated table, so that the resulting table does not leak important

or confidential information. The latter is a fundamental issue concerning the security of statistical

data. In both cases, after adding edges, the resulting graph is simpler than the input graph and

does not contain any bridges. It can be either a simple graph or, if necessary, a multi-graph. The

proposed approach determines whether or not such an augmentation is feasible.

We have described algorithms for finding a smallest 2-edge-connectivity augmentation and a

smallest componentwise 2-edge-connectivity augmentation of input graphs. If there are two black

and two white vertices in the input graph, the resulting graph will be simple. The algorithms can

be trivially parallelized to run in optimal O(log n) time using a linear number of EREW processors.
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