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PROVING ∀µ-CALCULUS PROPERTIES WITH SAT-BASED

MODEL CHECKING

BOW-YAW WANG

Abstract. In this paper, we present a complete bounded model checking al-
gorithm for the universal fragment of µ-calculus. The new algorithm checks
the completeness of bounded proof of each property on the fly and does not
depend on prior knowledge of the completeness thresholds. The key is to com-
bine both local and bounded model checking techniques and use SAT solvers to
perform local model checking on finite Kripke structures. Our proof-theoretic
approach works for any property in the specification logic and is more general
than previous work on specific properties. We report experimental results to
compare our algorithm with the conventional BDD-based algorithm.

1. Introduction

Due to the limitation of BDD-based model checking on large designs, SAT-based
bounded model checking has become a supplementary verification technique in re-
cent years [4, 3]. Different from model checking [11, 8], bounded model checking
focuses on catching design flaws within a bounded number of steps, and there-
fore does not guarantee the design to be free from errors. Naturally, one wonders
whether bounded model checking can be extended to be complete.

There is a bound (called completeness threshold) such that the absence of flaws
within the completeness threshold implies the satisfiability of the property [4, 7].
One often uses over-approximations of the completeness threshold in practice since
computing the exact value is hard. But the redundant computation incurred by ap-
proximations may impede the performance. Promising alternatives are available for
checking linear properties, where the completeness of bounded model checking can
also be determined dynamically [19, 14, 15, 2]. However, the dynamic completeness
criteria for branching-time properties are still missing.

In this paper, we propose a new framework for proving temporal properties by
bounded model checking. Similar to [19, 14, 15, 2], our algorithm determines the
completeness of bounded model checking on the fly to avoid redundant computa-
tion. We use the universal fragment of propositional µ-calculus as the formalism
for property specification. With the standard embedding [10, 21, 5], linear- and
fragments of branching-time temporal logics are subsumed by our framework. Our
technique therefore opens up opportunities for developing new complete bounded
model checking algorithms.

The key concept is to combine bounded and local model checking techniques.
Local model checking (also known as tableau-based model checking) tries to find a
proof for the property by exploring neighboring states [9, 20, 1]. The proof search
in local model checking algorithms is not unlike those of bug hunting in bounded
model checking: a flaw is nothing but a “local” proof of the negation of the given
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property. The completeness of the proof rules in local model checking ensures that
a flaw can always be found in finite models, should one exist.

We therefore propose an algorithm that reduces the proof search in local model
checking to Boolean satisfiability. Since the negation of any formula in the universal
fragment of µ-calculus belongs to the existential fragment of µ-calculus, we look
for design flaws by finding proofs for arbitrary formula in the fragment. For any
formula in the fragment, we construct a Boolean formula for it. The satisfiability
of the Boolean formula is shown to be equivalent to the existence of a bounded
proof in local model checking. Additionally, we show that the unsatisfiability of a
similar Boolean formula implies the absence of proofs. The latter formula allows
our algorithm to check the completeness criterion dynamically. Since the criterion
is proof-theoretic, it is good for all properties in the specification logic. Our tech-
nique gives a proof-theoretic interpretation of the completeness criteria and is more
general than those in [19, 14, 2].

A major advantage of our technique is to verify many more properties by the
use of standard encodings. For instance, ∀CTL [10, 5] and the universal fragment
of Fair CTL [12] can be verified by embedding them into the universal fragment of
µ-calculus. Our framework gives a unified theory of completeness criteria, which
cannot be found in previous works. Additionally, the verification of linear-time
temporal logic can be reduced to checking fairness constraints by the automata-
theoretic technique [21]. Our technique is also applicable for linear properties.

The remainder of this paper is organized as follows. After discussing related
work in Section 1.1, preliminaries are given in Section 2. Section 3 recalls the local
model checking proof rules. The main technical results are shown in Section 4.
Experimental results are presented in Section 5. Finally, in Section 6, we present
our conclusions and discuss the future work.

1.1. Related Work. The inductive method was originally proposed as a heuristic
for proving properties in bounded model checking. Later, it was improved and made
complete for safety [19, 14] and liveness [18] properties. In the complete inductive
method, if the induction proves the property or the completeness criterion is met,
the algorithm reports that the property is satisfied. Otherwise, it looks for design
flaws within the current bound.

A more direct approach for LTL model checking is reported in [2]. The authors
give characterizations for LTL formulae of the form ¬Gp, ¬FG¬p, and ¬Fp. Using
the automata-theoretic technique developed in [21], the LTL model checking prob-
lem is reduced to verifying FG¬p and solved in [2]. For special cases such as Gp
and Fp, [2] shows how to verify these properties directly.

State traversal can be simulated by exploiting conflict analysis in SAT solvers
as well [15]. Given two conflicting Boolean formulae A and B, an interpolant P of
A and B is a formula that is implied by A but conflicts with B. If A represents
the initial states and B represents the set of states that violate the property, their
interpolants can be understood as under-approximations of “bad” states. The in-
terpolation is then combined with bounded model checking to verify linear temporal
properties in [15].

The reduction of proof search in local model checking to satisfiability can also be
found in [16, 17], in which the authors reduce the local model checking problem to
Presburger arithmetic for infinite-state systems. Due to the undecidability of the
µ-calculus model checking problem on infinite-state systems, the completeness of
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the algorithms in [16, 17] is not the main concern of the authors. For the invariant
and inevitable properties on finite-state systems, the present work extends and
subsumes the complete algorithms in [22].

To the best of our knowledge, estimating the completeness threshold is still
required in order to prove fragments of branching-time temporal logics in bounded
model checking [4]. Ideally, one would like to apply the techniques in [19, 14, 15,
2] to develop similar on-the-fly completeness criteria for branching-time temporal
logics. However, the techniques used in [19, 14, 15, 2] are based essentially on
closely examining paths of interest. It is unclear whether the approach would work
for branching-time temporal logics. Additionally, our proof-theoretic approach gives
general completeness criteria for fragments of branching-time temporal logics, not
only particular temporal properties.

2. Preliminaries

We use the universal fragment of µ-calculus as the specification logic for temporal
properties [13]. A µ-calculus formula ψ is defined recursively as follows.

• Propositional variables (PV): X,Y, Z, . . .;
• Atomic propositions (AP): p, q, . . .;
• Boolean operators: ¬ψ, ψ ∧ ψ′;
• The modal existential next-state operator: ♦ψ;
• The least fixed-point operator: µX.ψ, where the bound propositional vari-

able X occurs positively in ψ.

As usual, derived operators such as the disjunctive operator ψ∨ψ′ (≡ ¬(¬ψ∧¬ψ′)),
the modal universal next-state operator �ψ (≡ ¬♦¬ψ) and, the greatest fixed-point
operator νX.ψ (≡ ¬µX.¬ψ[¬X/X ], where ¬ψ[¬X/X ] is obtained by substituting
¬X for X in ¬ψ) are used. A µ-calculus formula ψ is normal if all negations occur
before atomic propositions. The universal fragment of µ-calculus (denoted ∀µ-
calculus) formulae are those without modal existential next-state operators in their
normal forms. Similarly, ∃µ-calculus formulae are those without modal universal
next-state operators. By α-conversion, it suffices to consider µ-calculus formula ψ
whose nested bound propositional variables are distinct.

Let B = {false, true} be the Boolean domain and N the natural numbers (non-
negative integers). A state (denoted by r̄, s̄, t̄, . . .) is a Boolean vector of size n > 0.
Let V be the set of Boolean variables, and ū, v̄, w̄ ∈ V n the vectors of Boolean
variables of size n. Equivalently, we may think of a state as a valuation [[ū]]ρ for ū,
where ρ ∈ V → B is an assignment of Boolean variables. A Kripke structure is a
tuple K = (Bn, I,→, L), where I ⊆ B

n is the set of initial states, →⊆ B
n × B

n is
the total transition relation, and L : B

n → 2AP is the labeling function that maps
each state to the atomic propositions satisfied in that state. We write s̄ → t̄ for
(s̄, t̄) ∈→.

Let ε ∈ PV → 2B
n

be an environment for propositional variables. Given a
propositional variable X and a set of states R, the environment ε[X 7→ R] assigns
X to R, but keeps other propositional variables Y assigned to ε(Y ). The semantic
function [ψ]ε ⊆ B

n for the µ-calculus formula ψ and the environment ε is defined
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as follows.

[X ]ε = ε(X)

[p]ε = {s̄ ∈ B
n : p ∈ L(s̄)}

[¬ψ]ε = B
n \ [ψ]ε

[ψ ∧ ψ′]ε = [ψ]ε ∩ [ψ′]ε

[♦ψ]ε = {s̄ ∈ B
n : ∃t̄ ∈ B

n.s̄→ t̄ and t̄ ∈ [ψ]ε}

[µX.ψ]ε =
⋂

{R ⊆ B
n : [ψ](ε[X 7→ R]) ⊆ R}.

The characteristic functions of p, I, and → are denoted by χp, χI , and χ→ re-
spectively. Let ū and ū′ be vectors of Boolean variables representing current and
next states respectively. Then χp(ū) is satisfied by ρ if and only if [[ū]]ρ is a state
satisfying the atomic proposition p. Similarly, χI(ū) is satisfied by an assignment
ρ if and only if the state [[ū]]ρ is an initial state, and χ→(ū, ū′) is satisfied by ρ if
and only if the state [[ū]]ρ is followed by [[ū′]]ρ in K.

Given a µ-calculus formula ψ, a Kripke structure K = (Bn, I,→, L) and a state
s̄. We write K, s̄ |= ψ if s̄ ∈ [ψ]∅. If K, s̄0 |= ψ for all initial states s̄0 ∈ I, we
denote it by K |= ψ. The model checking problem is to determine whether K |= ψ.

In [9, 20, 1], several tableau-based µ-calculus model checking algorithms were
developed. The proof rules in [9, 20] were simplified in [23, 1] by extending fixed
point operators to:

σX{r̄0 · · · r̄m}Φ,

where σ can be either of the fixed point operators and r̄0, . . . , r̄m are states. Intu-
itively, r̄0, . . . , r̄m record visited states in the fixed-point formulae. The semantics
of the new operators are defined accordingly:

[µX{r̄0 · · · r̄m}ψ]ε =
⋂

{R ⊆ B
n : [ψ](ε[X 7→ R]) \ {r̄0 · · · r̄m} ⊆ R}

[νX{r̄0 · · · r̄m}ψ]ε =
⋃

{R ⊆ B
n : R ⊆ [ψ](ε[X 7→ R]) ∪ {r̄0 · · · r̄m}} .

The extended µ-calculus uses extended fixed point operators instead. Note that
σX{}ψ ≡ σX.ψ. Hence, any µ-calculus formula can be transformed to an equiva-
lent extended µ-calculus formula syntactically.

3. Proof Rules

Different from global model checking algorithms in [10, 5, 8], the algorithms
developed in [9, 20, 1, 23] search for a proof for the given µ-calculus property at an
initial state by exploring the Kripke structure locally. It is noted that the worst-case
complexity of the tableau-based algorithms remains the same as the conventional
algorithms [9]. However, the proof-theoretic algorithms would be more efficient if
the property could be proved locally.

Figure 1 shows the proof rules for ∃µ-calculus model checking. Given a Kripke
structure K, a state s̄, and a µ-calculus formula ψ, a judgment is of the form
K, s̄ ` ψ. Given a judgment, a proof is a tree constructed according to the proof
rules in Figure 1. Note that the rules (¬¬), (∨L), (∨R), (¬∨), (∧), (¬∧L), (¬∧R),
(♦), (¬�), (σ-Unroll), and (¬σ-Unroll) reduce the current judgment to one or more
judgments to be justified later. We therefore say a proof is full if all of its leaves
are instances of the rules (AP), (¬AP), (ν-Term), or (¬µ-Term).
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p ∈ L(s̄)

K, s̄ ` p
(AP)

p 6∈ L(s̄)

K, s̄ ` ¬p
(¬AP)

K, s̄ ` ψ

K, s̄ ` ¬¬ψ
(¬¬)

K, s̄ ` ψ

K, s̄ ` ψ ∨ ψ′
(∨L)

K, s̄ ` ψ′

K, s̄ ` ψ ∨ ψ′
(∨R)

K, s̄ ` ¬ψ K, s̄ ` ¬ψ′

K, s̄ ` ¬(ψ ∨ ψ′)
(¬∨)

K, s̄ ` ψ K, s̄ ` ψ′

K, s̄ ` ψ ∧ ψ′
(∧)

K, s̄ ` ¬ψ

K, s̄ ` ¬(ψ ∧ ψ′)
(¬∧L)

K, s̄ ` ¬ψ′

K, s̄ ` ¬(ψ ∧ ψ′)
(¬∧R)

K, t̄ ` ψ s̄→ t̄

K, s̄ ` ♦ψ
(♦)

K, t̄ ` ¬ψ s̄→ t̄

K, s̄ ` ¬�ψ
(¬�)

s̄ ∈ {r̄0 · · · r̄m}

K, s̄ ` νX{r̄0 · · · r̄m}ψ
(ν-Term)

K, s̄ ` ψ[νX{r̄0 · · · r̄ms̄}ψ/X ] s̄ 6∈ {r̄0 · · · r̄m}

K, s̄ ` νX{r̄0 · · · r̄m}ψ
(ν-Unroll)

K, s̄ ` ¬ψ[νX{r̄0 · · · r̄ms̄}ψ/X ] s̄ 6∈ {r̄0 · · · r̄m}

K, s̄ ` ¬νX{r̄0 · · · r̄m}ψ
(¬ν-Unroll)

s̄ ∈ {r̄0 · · · r̄m}

K, s̄ ` ¬µX{r̄0 · · · r̄m}ψ
(¬µ-Term)

K, s̄ ` ¬ψ[µX{r̄0 · · · r̄ms̄}ψ/X ] s̄ 6∈ {r̄0 · · · r̄m}

K, s̄ ` ¬µX{r̄0 · · · r̄m}ψ
(¬µ-Unroll)

K, s̄ ` ψ[µX{r̄0 · · · r̄ms̄}ψ/X ] s̄ 6∈ {r̄0 · · · r̄m}

K, s̄ ` µX{r̄0 · · · r̄m}ψ
(µ-Unroll)

Figure 1. Proof Rules

Since we are interested in constructing Boolean formulae for ∃µ-calculus in this
work, Figure 1 omits rules for the universal modal operator in [9, 20, 1]. The full
proof rules are sound and complete for finite Kripke structures:

Theorem 1. ([9, 20, 1]) Let K = (Bn, I,→, L) be a Kripke structure, s̄ ∈ B
n, and

ψ a µ-calculus formula. Then

K, s̄ ` ψ has a full proof if and only if K, s̄ |= ψ.
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4. Proof Search by SAT

To motivate our reduction of proof search to Boolean satisfiability, consider the
safety property AGp. Suppose a flaw satisfying EF¬p(≡ ¬AGp ≡ µX{}¬p ∨ ♦X)
is found in one step. The corresponding Boolean formula generated by one of the
complete inductive methods in [19] is

χI(v̄0) ∧ χ→(v̄0, v̄1) ∧ ¬χp(v̄1) ∧
∧

0≤i<j≤1

v̄i 6= v̄j .(1)

Let the satisfying Boolean assignment be ρ. The following full proof for the judg-
ment K, [[v̄0]]ρ ` µX{}¬p ∨ ♦X can be constructed by the proof rules in Figure 1:

p 6∈ L([[v̄1]]ρ)

K, [[v̄1]]ρ ` ¬p
(¬AP)

K, [[v̄1]]ρ ` ¬p ∨ ♦µX{[[v̄0 ]]ρ[[v̄1]]ρ}¬p ∨ ♦X
(∨L)

[[v̄1]]ρ 6∈ {[[v̄0 ]]ρ}

K, [[v̄1]]ρ ` µX{[[v̄0 ]]ρ}¬p ∨ ♦X
(µ-Unroll)

[[v̄0]]ρ → [[v̄1]]ρ

K, [[v̄0]]ρ ` ♦µX{[[v̄0 ]]ρ}¬p ∨ ♦X
(♦)

K, [[v̄0]]ρ ` ¬p ∨ ♦µX{[[v̄0 ]]ρ}¬p ∨ ♦X
(∨R)

K, [[v̄0]]ρ ` µX{}¬p ∨ ♦X
(µ-Unroll)

It is easy to see that the Boolean formula χ→(v̄0, v̄1) in (1) corresponds to the
second antecedent of the rule (♦), and the formula

∧

0≤i<j≤1
v̄i 6= v̄j to the second

antecedent of the rule (µ-Unroll). Finally, the antecedent of rule (¬AP) is released
by the satisfiability of ¬χp(v̄1). Roughly, there is a Boolean subformula for each
application of the proof rule (¬AP), (♦), and (µ-Unroll) respectively. We generalize
the idea and construct a Boolean formula for each rule in Figure 1 so that the
satisfiability of the Boolean formula is equivalent to the existence of subproofs.

A syntactic extension of µ-calculus formulae is needed in the following presenta-
tion. Consider the formula σX{r̄0 · · · r̄m}ψ, where r̄0 · · · r̄m are states. Since states
r̄i’s are denoted by variable vectors v̄i’s to be determined by SAT solvers, we allow
the syntactic extension σX{v̄0 · · · v̄m}ψ in our construction. Formulae constructed
by Boolean operators, modal operators, and the syntactic extension of fixed point
operators are called schematic µ-calculus formulae. If ρ is an assignment to Boolean
variables, define

[[p]]ρ = p

[[X ]]ρ = X

[[¬ϕ]]ρ = ¬[[ϕ]]ρ

[[ϕ ∨ ϕ′]]ρ = [[ϕ]]ρ ∨ [[ϕ′]]ρ

[[ϕ ∧ ϕ′]]ρ = [[ϕ]]ρ ∧ [[ϕ′]]ρ

[[♦ϕ]]ρ = ♦[[ϕ]]ρ

[[�ϕ]]ρ = �[[ϕ]]ρ

[[σX{v̄0 · · · v̄m}ϕ]]ρ = σX{[[v̄0]]ρ · · · [[v̄m]]ρ}[[ϕ]]ρ.

It is easy to see that [[•]]ρ assigns states to variable vectors appearing in a schematic
µ-calculus formula and thereby yielding an extended µ-calculus formula. We say
an extended µ-calculus formula ψ is an instance of a schematic µ-calculus formula
ϕ if there is an assignment ρ such that [[ϕ]]ρ = ψ.



PROVING ∀µ-CALCULUS PROPERTIES WITH SAT-BASED MODEL CHECKING 7

ΘK(ū, νX{v̄0 . . . v̄m}ϕ, d) =
{

(
∧m

k=0
ū 6= v̄k)⇔ ci if d = 0

(
∨m

k=0
ū = v̄k) ∨ΘK(ū, ϕ[νX{v̄0 . . . v̄mū}ϕ/X ], d− 1) if d 6= 0

where ci ∈ V is a fresh Boolean variable

ΘK(ū,¬νX{v̄0 . . . v̄m}ϕ, d) =
{

(
∧m

k=0
ū 6= v̄k) ∧ ci if d = 0

(
∧m

k=0
ū 6= v̄k) ∧ΘK(ū,¬ϕ[νX{v̄0 . . . v̄mū}ϕ/X ], d− 1) if d 6= 0

where ci ∈ V is a fresh Boolean variable

ΘK(ū, µX{v̄0 . . . v̄m}ϕ, d) =
{

(
∧m

k=0
ū 6= v̄k) ∧ ci if d = 0

(
∧m

k=0
ū 6= v̄k) ∧ΘK(ū, ϕ[µX{v̄0 . . . v̄mū}ϕ/X ], d− 1) if d 6= 0

where ci ∈ V is a fresh Boolean variable

ΘK(ū,¬µX{v̄0 . . . v̄m}ϕ, d) =
{

(
∧m

k=0
ū 6= v̄k)⇔ ci if d = 0

(
∨m

k=0
ū = v̄k) ∨ΘK(ū,¬ϕ[µX{v̄0 . . . v̄mū}ϕ/X ], d− 1) if d 6= 0

where ci ∈ V is a fresh Boolean variable

ΘK(ū, p, d) = χp(ū)

ΘK(ū,¬p, d) = ¬χp(ū)

ΘK(ū,¬¬ϕ, d) = ΘK(ū, ϕ, d)

ΘK(ū, ϕ ∧ ϕ′, d) = ΘK(ū, ϕ, d) ∧ΘK(ū, ϕ′, d)

ΘK(ū,¬(ϕ ∧ ϕ′), d) = ΘK(ū,¬ϕ, d) ∨ΘK(ū,¬ϕ′, d)

ΘK(ū, ϕ ∨ ϕ′, d) = ΘK(ū, ϕ, d) ∨ΘK(ū, ϕ′, d)

ΘK(ū,¬(ϕ ∨ ϕ′), d) = ΘK(ū,¬ϕ, d) ∧ΘK(ū,¬ϕ′, d)

ΘK(ū,♦ϕ, d) = χ→(ū, ū′) ∧ΘK(ū′, ϕ, d)

where ū′ ∈ V n is a vector of fresh Boolean variables

ΘK(ū,¬�ϕ, d) = χ→(ū, ū′) ∧ΘK(ū′,¬ϕ, d)

where ū′ ∈ V n is a vector of fresh Boolean variables

Figure 2. Translation Rules

Let K = (Bn, I,→, L) be a Kripke structure, ū ∈ V n and d ∈ N. Figure 2 shows
the translation rules to construct the Boolean formula ΘK(ū, ϕ, d) for any schematic
∃µ-calculus formula ϕ. Intuitively, the vector of Boolean variables ū corresponds to
the current state, ϕ the sub-property to be fulfilled at the current state, and d the
bound of unrolling. The translation ensures that the satisfiability of the Boolean
formula ΘK(ū, ϕ, d) witnessed by the assignment ρ is equivalent to the existence of
proof for [[ϕ]]ρ at state [[ū]]ρ. For Boolean and next-state modal operators, consider
the rule (¬�) as an example. If there is a proof for [[¬�ϕ]]ρ at state [[ū]]ρ, then
there is a proof for [[¬ϕ]]ρ at state [[ū′]]ρ for some [[ū′]]ρ with [[ū]]ρ → [[ū′]]ρ. The
corresponding Boolean formula is therefore χ→(ū, ū′) ∧ ΘK(ū′,¬ϕ, d). Other rules
can be derived similarly.
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For proof of correctness, note that the unrolling of fixed-point subformulae in-
creases the length of a formula. Induction on the lengths of formulae would not
work. The following definition is needed in our doubly-inductive proof:

Definition 1. Let Γ be a full proof. The unrolling depth of a leaf is the number of
unrolling rules applied along the path from the root of Γ to the leaf. The unrolling
depth of Γ is the maximum over the unrolling depths of all leaves.

Since the proof of ¬(ψ ∨ ψ′) is established by the proofs of ¬ψ and ¬ψ′, naive
structural induction is not applicable in the inner induction. Instead, the following
ordering of extended µ-calculus formulae is used:

Definition 2. Let ψ be an extended µ-calculus formula, then define

ω(p) = ω(X) = ω(σX{r̄0 · · · r̄m}ψ) = 0

ω(¬ψ) = ω(♦ψ) = ω(�ψ) = ω(ψ) + 1

ω(ψ ∨ ψ′) = ω(ψ ∧ ψ′) = max(ω(ψ), ω(ψ′)) + 1

Since the function ω(•) can be extended to schematic µ-calculus formulae straight-
forwardly, we abuse the notation and write ω(ϕ) when ϕ is a schematic µ-calculus
formula as well.

Our results can be demonstrated in three steps. First, we consider proofs without
unrolling fixed-point subformulae (Lemma 1 and 2). Using atomic propositions and
fixed-point subformulae as the basis of inner induction, it can be shown that the ex-
istence of proofs is equivalent to the satisfiability of a Boolean formula (ΩK(ū, ψ, d)
in Theorem 2). Finally, the unsatisfiability of another Boolean formula (ΛK(ū, ψ, d)
in Theorem 3) can be shown to imply the absence of proofs.

Lemma 1. Consider any schematic ∃µ-calculus formula ϕ of the form ¬¬ϕ′, ϕ′ ∧
ϕ′′,¬(ϕ′∧ϕ′′), ϕ′∨ϕ′′,¬(ϕ′∨ϕ′′),♦ϕ′, or ¬�ϕ′. Let ū ∈ V n be a vector of Boolean
variables and d ∈ N. Suppose

• for all ϕ′ with ω(ϕ′) < ω(ϕ), if ΘK(ū, ϕ′, d) is satisfied by some Boolean
assignment ρ′, then there is a full proof of unrolling depth d for ψ′ = [[ϕ′]]ρ′

at s̄′ = [[ū]]ρ′; and
• ΘK(ū, ϕ, d) is satisfied by some Boolean assignment ρ.

Then, there is a full proof of unrolling depth d for ψ = [[ϕ]]ρ at s̄ = [[ū]]ρ.

Proof. First note that the rules (¬¬), (∧), (¬∧L), (¬∧R), (∨L), (∨R), (¬∨), (♦),
(¬♦) do not change the unrolling depth.

We consider the following cases. Others are similar.

• ϕ = ϕ′ ∧ ϕ′′. Since ΘK(ū, ϕ′ ∧ ϕ′′, d) = ΘK(ū, ϕ′, d) ∧ ΘK(ū, ϕ′′, d) is
satisfied by ρ, we have ΘK(ū, ϕ′, d) and ΘK(ū, ϕ′′, d) are both satisfied by
ρ. By assumption, there are complete proof trees for [[ϕ′]]ρ and [[ϕ′′]]ρ at
[[ū]]ρ of unrolling depth d. Hence we can construct a complete proof tree
for [[ϕ′ ∧ ϕ′′]]ρ at [[ū]]ρ as follows.

....
K, [[ū]]ρ ` [[ϕ′]]ρ

....
K, [[ū]]ρ ` [[ϕ′′]]ρ

K, [[ū]]ρ ` [[ϕ′ ∧ ϕ′′]]ρ
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• ϕ = ¬(ϕ′∧ϕ′′). Since ΘK(ū,¬(ϕ′∧ϕ′′), d) = ΘK(ū,¬ϕ′, d)∨ΘK(ū,¬ϕ′′, d),
we have, say, ΘK(ū,¬ϕ′, d) is satisified by ρ. Clearly, the following complete
proof tree can be constructed:

....
K, [[ū]]ρ ` [[¬ϕ′]]ρ

K, [[ū]]ρ ` [[¬(ϕ′ ∧ ϕ′′)]]ρ

• ψ = ♦ϕ′. We have ΘK(ū,♦ϕ′, d) = χ∆(ū, ū′) ∧ ΘK(ū′, ϕ′, d) satisfied by
ρ. Then [[ū]]ρ → [[ū′]]ρ and the following complete proof tree proves ♦ϕ′ at
[[ū]]ρ:

....
K, [[ū′]]ρ ` [[ϕ′]]ρ [[ū]]ρ→ [[ū′]]ρ

K, [[ū]]ρ ` [[♦ϕ′]]ρ

�

Lemma 2. Consider any extended ∃µ-calculus formula ψ of the form ¬¬ψ′, ψ′ ∧
ψ′′,¬(ψ′∧ψ′′), ψ′∨ψ′′,¬(ψ′∨ψ′′),♦ψ′, or ¬�ψ′. Let ϕ be a schematic ∃µ-calculus
formula, ū ∈ V n a vector of Boolean variables, and d ∈ N. Suppose

• ψ is an instance of ϕ;
• for all ψ′ with ω(ψ′) < ω(ψ), if there is a full proof of unrolling depth d for
ψ′ at s̄′ and ψ′ is an instance of ϕ′, then ΘK(ū, ϕ′, d) is satisfied by some
Boolean assignment ρ′ with [[ϕ′]]ρ′ = ψ′ and [[ū]]ρ′ = s̄′; and
• there is a full proof of unrolling depth d for ψ at s̄.

Then, Θ(ū, ϕ, d) is satisfied by some Boolean assignment ρ with [[ϕ]]ρ = ψ and
[[ū]]ρ = s̄.

Proof. We consider the following cases:

• ψ = ψ′ ∧ ψ′′. Since ψ is an instance of ϕ, ϕ is of the form ϕ′ ∧ ϕ′′. The
complete proof tree for ψ at s̄ contains complete proof trees for ψ′ and
ψ′′ at s̄ by construction. By assumption, ΘK(ū, ϕ′, d) is satisfied by some
ρ′ with [[ϕ′]]ρ′ = ψ′ and [[ū]]ρ′ = s̄. Similarly, ΘK(ū, ϕ′′, d) is satisfied by
some ρ′′ with [[ϕ′′]]ρ′′ = ψ′′ and [[ū]]ρ′′ = s̄. Define ρ = ρ′ ∪ ρ′′. We have
ΘK(ū, ϕ′ ∧ ϕ′′, d) = ΘK(ū, ϕ′, d) ∧ΘK(ū, ϕ′′, d) satisfied by ρ as required.
• ψ = ¬(ψ′ ∧ ψ′′). Since ψ is an instance of ϕ, ϕ is of the form ¬(ϕ′ ∧ ϕ′′).

Hence, ¬ψ′ is an instance of ¬ϕ′. By construction, there is a complete proof
tree for, say, ¬ψ′ at s̄. Let ρ′ be the satisfying assignment for ΘK(ū,¬ϕ′, d)
with [[¬ϕ′]]ρ′ = ¬ψ′ and [[ū]]ρ′ = s̄ by assumption. Furthermore, since
V (ϕ′) ⊆ V (ϕ), there is an extension ψ of ψ′ such that [[ϕ]]ρ = ψ. Then,
ΘK(ū,¬(ϕ′ ∧ϕ′′), d) = ΘK(ū,¬ϕ′, d)∨ΘK(ū,¬ϕ′′, d) is satisifed by ρ with
[[¬(ϕ′ ∧ ϕ′′)]]ρ = ¬(ψ′ ∧ ψ′′).
• ψ = ♦ψ′. ϕ is of the form ♦ϕ′. Then there is a proof tree for ψ′ at t̄

with s̄ → t̄ by construction. Hence ΘK(ū′, ϕ′, d) is satisfied by some ρ′

with [[ϕ′]]ρ′ = ψ′ and [[ū′]]ρ′ = t̄ by assumption. Let ū be fresh Boolean
variables and extend ρ′ to ρ by defining [[ū]]ρ = s̄. We have ΘK(ū,♦ϕ′, d) =
ΘK(ū′, ϕ′, d) ∧ χ∆(ū, ū′) satisifed by ρ with [[♦ϕ′]]ρ = ♦ψ. �

Lemmas 1 and 2 establish the correspondence between the satisfiability of Boolean
formulae and proofs without further unrolling. The following lemma shows that the
required schematic µ-calculus formula ϕ in Lemma 2 does indeed exist.
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Lemma 3. Given a proof of an ∃µ-calculus formula at state s̄0, if a judgment
K, s̄ ` ψ occurs in the proof, there is a schematic ∃µ-calculus formula ϕ such that
ψ is an instance of ϕ.

Proof. Let the unrolling depth of the proof be d and ū ∈ V n a vector of Boolean
variables. Note that a µ-calculus formula ψ is a schematic µ-calculus formula as
well, consider the translation ΘK(ū, ψ, d). If either of (AP), (¬AP), (¬¬), (∨L),
(∨R), (¬∨), (∧), (¬∧L), (¬∧R), (♦), or (¬�) is used in the root of the proof,
the corresponding translation rules give the shcematic µ-calculus ϕ. For the un-
rolling rules, the corresponding translation gives the schematic µ-calculus formula
ψ′[σX{ū}ψ′/X ] for ψ[σX{s̄}ψ′/X ].

Now consider any derivation of the proof. For any entailment K, s̄ ` ψ in the
conclusion of the derivation, if the extended µ-calculus formula ψ has a schematic
µ-calculus formula ϕ, the corresponding translation rules give the schematic µ-
calculus formulae for the extended µ-calculus formulae occur in the premise of the
derivation. �

For the translation of fixed-point formulae, consider νX{v̄0 · · · v̄m}ϕ as an ex-
ample. If there is a proof of unrolling depth d for [[νX{v̄0 · · · v̄m}ϕ]]ρ at [[ū]]ρ, then
either [[ū]]ρ = [[v̄k]]ρ for some 0 ≤ k ≤ m, or [[ū]]ρ 6= [[v̄k]]ρ for all 0 ≤ k ≤ m and
there is a proof of unrolling depth d−1 for [[ϕ[νX{v̄0 · · · v̄mū}ϕ/X ]]]ρ at [[ū]]ρ. Thus,
we have

ΘK(ū, νX{v̄0 · · · v̄m}ϕ, d) =

m
∨

k=0

ū = v̄k ∨ΘK(ū, ϕ[νX{v̄0 · · · v̄mū}ϕ/X ], d− 1).

Now suppose the number of unrolling has reached the limit (d = 0). The proof of
[[νX{v̄0 · · · v̄m}ϕ]]ρ may be full at [[ū]]ρ, or need be justified by further unrolling. In
the translation rule

ΘK(ū, νX{v̄0 · · · v̄m}ϕ, 0) = (
m
∧

k=0

ū 6= v̄k)⇔ ci,

the fresh variable ci indicates which of the two cases occurs. If ci is set to false, then
∨m

k=0
ū = v̄k must be true and the proof would be full at [[ū]]ρ. On the other hand,

if ci is true, it implies that
∧m

k=0
ū 6= v̄k. The proof need be justified by further

unrolling.
We call the fresh Boolean variable ci used in the translation of σX{v̄0 · · · v̄m}ϕ

(or ¬σX{v̄0 · · · v̄m}ϕ) an expansion variable. The following theorem shows that the
existence of proofs and the satisfiability of certain Boolean formulae are equivalent.

Theorem 2. Let ū be a vector of Boolean variables, d ∈ N, ψ an ∃µ-calculus
formula, and c0, . . . , c` the expansion variables in ΘK(ū, ψ, d). Define ΩK(ū, ψ, d)
to be

ΘK(ū, ψ, d) ∧
∧̀

i=0

¬ci.

• If ΩK(ū, ψ, d) is satisfied by ρ, then there is a full proof of unrolling depth
d for ψ at s̄ = [[ū]]ρ.
• If there is a full proof of unrolling depth d for ψ at s̄, then ΩK(ū, ψ, d) is

satisfied by ρ with [[ū]]ρ = s̄.
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Proof. Consider any schematic ∃µ-calculus formula ϕ. We proceed by double in-
duction on d and ϕ. For d = 0, the inductive basis consists of the cases for
ϕ = p,¬p, σXi{v̄0 · · · v̄m}ϕ′, and ¬σXi{v̄0 · · · v̄m}ϕ′ where σ is a fixed-point op-
erators. If ΘK(ū, p, 0) = p(ū) is satisfied by ρ, we have the following proof tree:

p([[ū]]ρ)

K, [[ū]]ρ ` [[p]]ρ

The proof tree for ¬p is constructed similarly.
For ϕ = νXi{v̄0 · · · v̄m}ϕ′, we have both ¬ci and ΘK(ū, νXi{v̄0 · · · v̄m}ϕ′, 0)

satisfied by ρ. Since

¬ci ⇔ ¬

(

m
∧

k=0

[[ū]]ρ 6= [[v̄k]]ρ

)

is satisfied by ρ, we have

¬

(

m
∧

k=0

[[ū]]ρ 6= [[v̄k]]ρ

)

≡
m
∨

k=0

[[ū]]ρ = [[v̄k]]ρ.

Hence
[[ū]]ρ ∈ {[[v̄0]]ρ, · · · , [[v̄m]]ρ}

K, [[ū]]ρ ` [[νXi{v̄0 · · · v̄m}ϕ′]]ρ

is the required proof.
For ϕ = ¬νXi{v̄0 · · · v̄m}ϕ′, the statement holds vacuously. The cases for

¬µXi{v̄0 · · · v̄m}ϕ′ and µXi{v̄0 · · · v̄m}ϕ′ are similar. The statement follows from
Lemma 1.

Now suppose d > 0. The cases for ϕ = p and ¬p are trivial. We now consider
ϕ = νXi{v̄0 · · · v̄m}ϕ′. Since ΘK(ū, νXi{v̄0 · · · v̄m}ϕ′, d) is satisifed by ρ, consdier
the following two cases:

(1)
m
∨

k=0

[[ū]]ρ = [[v̄k]]ρ.

Then
[[ū]]ρ ∈ {[[v̄0]]ρ · · · [[v̄m]]ρ}

K, [[ū]]ρ ` [[νXi{v̄0 · · · v̄m}ϕ′]]ρ

is the required proof tree.
(2)

¬

(

m
∨

k=0

[[ū]]ρ = [[v̄k]]ρ

)

.

Then ΘK(ū, ϕ′[νXi{v̄0 · · · v̄kū}/X ], d − 1) must be satisfied by ρ. By in-
ductive hypothesis, we can construct the proof tree as follows.

....
K, [[ū]]ρ ` [[ϕ′[νXi{v̄0 · · · v̄mū}ϕ′/X ]]] [[ū]]ρ 6∈ {[[v̄0]]ρ · · · [[v̄m]]ρ}

K, [[ū]]ρ ` [[νXi{v̄0 · · · v̄m}ϕ′]]ρ

The cases for µXi{v̄0 · · · v̄m}ϕ′ and ¬µXi{v̄0 · · · v̄m}ϕ′ are similar. For
other cases, we apply Lemma 1.
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For the second part of the theorem, consider any judgment K, s̄ ` ψ occurred
in the proof. We proceed by induction on unrolling depth. For d = 0, the cases
for ψ = p and ¬p are trivial. And for ψ = νX{r̄0 · · · r̄m}ψ′, there are ϕ and ρ
such that [[ϕ]]ρ = ψ by Lemma 3. Assign [[ū]]ρ = s̄ and [[ci]]ρ = false. Clearly,
ΘK(ū, ϕ, 0) is satisfied by ρ with [[ū]]ρ = s̄. Similarly for ψ = ¬µX{r̄0 · · · r̄m}ψ

′.
When ψ = ¬νX{r̄0 · · · r̄m}ψ′ or µX{r̄0 · · · r̄m}ψ′, the statement holds vacuously.
The basis d = 0 follows from Lemma 2.

Assume d > 0. Consider the case when ψ = νXi{r̄0 · · · r̄m}ψ′, the others are
similar. There are only two subcases:

(1)
s̄ ∈ {r̄0 · · · r̄m}

K, s̄ ` νXi{r̄0 · · · r̄m}ψ′

By Lemma 3, there are ϕ and ρ such that [[ϕ]]ρ = ψ. Assign [[ū]]ρ = s̄. Then
ΘK(ū, ϕ, d) is satisifed by ρ.

(2)
....

K, s̄ ` ψ′[νXi{r̄0 · · · r̄ms̄}ψ
′/Xi] s̄ 6∈ {r̄0 · · · r̄m}

K, s̄ ` νXi{r̄0 · · · r̄m}ψ′

By inductive hypothesis and Lemma 3, ΘK(ū, ϕ′, d−1) is satisfied by some
ρ with [[ϕ′]]ρ = ψ′[νXi{r̄0 · · · r̄ms̄}ψ′/Xi] and [[ū]]ρ = s̄. Apply Lemma 3
again, we have an ∃µ-calculus formula ϕ such that νXi{r̄0 · · · r̄m}ψ

′ is an
instance of ϕ. From the proof of Lemma 3, V (ϕ) ⊆ V (ϕ′) and [[ϕ]]ρ′ =
νXi{r̄0 · · · r̄m}ψ′. Since s̄ = [[ū]]ρ 6∈ {[[v̄0]]ρ · · · [[v̄m]]ρ}, we have ΘK(ū, ϕ, d)
satisfied by ρ. This concludes our proof. �

With a predetermined completeness threshold CT for the ∃µ-calculus formula
ψ and Kripke structure K, the satisfiability of ΩK(ū, ψ, CT ) is equivalent to the
existence of a full proof for ψ by Theorem 2. Hence, we have a complete algorithm
for ∀µ-calculus properties using completeness thresholds. Since ∀µ-calculus is more
expressive than ∀CTL, our construction subsumes those in [4].

Determining exact completeness thresholds, however, is hard. We prefer an algo-
rithm that does not use completeness thresholds, but determines the completeness
of proofs on the fly. Recall that the expansion variables ci’s are false in Theorem 2.
This indicates that proofs do not need further unrolling. If we assume the subproofs
of all unjustified fixed-point subformulae indeed exist by setting expansion variables
to true, the unsatisfiability of the modified Boolean formula implies the absence of
proof with additional unrolling. The following theorem gives us a completeness
criterion in the flavor of [19, 2]:

Theorem 3. Let ū be a vector of Boolean variables, d ∈ N, ψ an ∃µ-calculus
formula, and c0, . . . , c` the expansion variables in ΘK(ū, ψ, d). Define ΛK(ū, ψ, d)
to be

ΘK(ū, ψ, d) ∧
∧̀

i=0

ci.

If there is a full proof of unrolling depth greater than d for ψ at the state s̄, then
ΛK(ū, ψ, d) is satisfied by some Boolean assignment ρ with [[ū]]ρ = s̄

Proof. Following the proof of Theorem 2, we consider the cases when ψ = νXi{r̄0 · · · r̄m}ψ′

and ¬νXi{r̄0 · · · r̄m}ψ
′. The other cases are similar.
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Let ψ be an ∀µ-calculus formula
d← 0
loop

if I(ū) ∧ ΩK(ū,¬ψ, d) is satisfied by ρ then

report “K, [[ū]]ρ ` ¬ψ”
if I(ū) ∧ ΛK(ū,¬ψ, d) is unsatisfiable then

reports “ψ is satisfied”
d← d+ 1

end

Figure 3. An Algorithm for Checking ∀µ-Calculus Properties

S0 S1 S2

q p

Figure 4. A Simple Kripke Structure

For d = 0, consider a complete proof tree for νXi{r̄0 · · · r̄m}ψ′ at s̄ of unrolling
depth > 0. Then the unrolling rule (ν-Unroll) must be applied and therefore
s̄ 6∈ {r̄0, . . . , r̄m}. Take ϕ and ψ in Lemma 3. Assign [[ū]]ρ = s̄ and [[ci]]ρ = true.
Clearly ΘK(ū, ϕ, 0) is satisfied by ρ. Other cases are similar. The basis thus follows
from Lemma 2.

For d > 0, the theorem follows from the inductive hypothesis and Lemma 2
directly. �

Theorems 2 and 3 are summarized by the algorithm in Figure 3. The algorithm
searches proofs incrementally. In each iteration, it first checks whether there is
a full proof. If so, it reports “K, [[ū]]ρ ` ¬ψ” where ρ is a satisfying assignment.
Otherwise, it checks whether full proofs may exist with more unrolling. If not, it
reports “ψ is satisfied.” Else, the loop is repeated by incrementing the number of
unrolling. Observe that the expansion variable ci forces the condition

∧m
k=0

ū 6= v̄k

in ΘK(ū, ψ, d) to be satisfied for each unrolling of fixed-point subformula. Since the
number of states is finite,

∧m
k=0

ū 6= v̄k will be unsatisfiable after a finite number of
unrolling. By Theorem 3, we conclude that there is no full proof.
Analysis. It is easy to see that σX{}(♦X ∨ σY {}♦(Y ∨ X)) requires O(n2d)
Boolean variables. However, if we consider ∀CTL properties, it can be shown that
our algorithm requires O(ndκ) Boolean variables where κ is the maximal depth of
nested temporal operators in the ∀CTL property.

As an example, consider the sample Kripke structure in Figure 4. The labels p
and q denote L(s0) = {q}, L(s2) = {p}, but L(s1) = ∅. Let Ψ stand for νY {}p∧�Y .
Suppose we wish to check whether ¬q ∨ (µX{}Ψ ∨ �X) is satisfied by the Kripke
structure. The corresponding Boolean formula for ¬(¬q ∨ (µX{}Ψ∨�X)) is:
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ΘK(ū,¬(¬q ∨ (µX{}Ψ ∨ �X)), 2))

= ΘK(ū,¬¬q, 2) ∧ ΘK(ū,¬µX{}Ψ ∨ �X, 2)

= ΘK(ū, q, 2) ∧ ΘK(ū,¬(Ψ ∨ �(µX{ū}Ψ ∨ �X)), 1)

= χq(ū) ∧

ΘK(ū,¬Ψ, 1) ∧ ΘK(ū,¬�µX{ū}Ψ ∨ �X, 1)

= χq(ū) ∧

ΘK(ū,¬(p ∧ �(νY {ū}p ∧ �Y )), 0) ∧

(χ→(ū, v̄) ∧ ΘK(v̄,¬µX{ū}Ψ ∨ �X, 1))

= χq(ū) ∧

(ΘK(ū,¬p, 0) ∨ ΘK(ū,¬�(νY {ū}p ∧ �Y ), 0)) ∧

(χ→(ū, v̄) ∧ (v̄ = ū ∨ ΘK(v̄,¬(Ψ ∨ �(µX{ū, v̄}Ψ ∨ �X)), 0)))

= χq(ū) ∧

(¬χp(ū) ∨ (χ→(ū, w̄) ∧ ΘK(w̄,¬νY {ū}p ∧ �Y, 0))) ∧

(χ→(ū, v̄) ∧ (v̄ = ū ∨ (ΘK(v̄,¬Ψ, 0) ∧ ΘK(v̄,¬�(µX{ū, v̄}Ψ ∨ �X), 0))))

= χq(ū) ∧

(¬χp(ū) ∨ (χ→(ū, w̄) ∧ (w̄ 6= ū ∧ c))) ∧

(χ→(ū, v̄) ∧ (v̄ = ū ∨ (c′ ∧ (χ→(v̄, x̄) ∧ ΘK(x̄,¬µX{ū, v̄}Ψ ∨ �X, 0)))))

= χq(ū) ∧

(¬χp(ū) ∨ (χ→(ū, w̄) ∧ (w̄ 6= ū ∧ c))) ∧

(χ→(ū, v̄) ∧ (v̄ = ū ∨ (c′ ∧ (χ→(v̄, x̄) ∧ ((x̄ 6= u ∧ x̄ 6= v̄) ⇔ c
′′)))))

It is easy to see that there is no satisfying assignment for ΩK(ū,¬(¬q∨(µX{}Ψ∨
�X)), 2). By Theorem 2, there is no counterexample at unrolling depth 2. On the
other hand, take the assignment ρ, where [[ū]]ρ = s0, [[v̄]]ρ = s1, [[x̄]]ρ = s2, and
[[c]]ρ = [[c′]]ρ = [[c′′]]ρ = true. It is straightforward to verify that ρ is a satisfying
assignment for ΛK(ū,¬(¬q ∨ (µX{}Ψ∨�X)), 2). Hence there may be a full proof
of unrolling depth greater than 2 for ¬(¬q ∨ (µX{}Ψ ∨�X)) by Theorem 3.

5. Experimental Results

We are interested in the analysis of an n-process agreement protocol. Initially,
process i has a random local bit vi. All processes collect and distribute information
with one another concurrently. At the end of the protocol, they will have the same
value assigned to their local bits. In case of system failure, the faulty process stops
updating its local bit nor exchanging information with others.

In addition to the local bit vi, a program counter pci is used to indicate the
current status (normal, failed, or decided) of process i. Firstly, we are interested in
knowing whether all processes have agreed on their private bits when they all make
their decisions. We therefore check that the following predicate is indeed invariant
in the protocol:

goodn
4
= (

n
∧

i=1

pci = decided)⇒ ((

n
∧

i=1

vi) ∨ (

n
∧

i=1

¬vi))
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goodn upn ltl stablen fctl stablen

n BDD SAT BDD SAT BDD SAT BDD SAT
3 0.13 0.77 0.19 0.99 0.2 2.33 0.11 7.36
4 1.2 1.44 1.06 4.09 2.80 10.76 1.36 31.00
5 11.91 3.86 10.55 9.45 17.21 29.12 12.95 112.82
6 17.441 9.43 15.091 34.94 15.191 61.12 9.691 232.63
7 timeout 18.23 timeout 75.86 timeout 157.21 timeout 553.02

(verification time in seconds)

Figure 5. Experimental Results

Secondly, we verify the following CTL property in the protocol:

upn
4
= AG(v1 ⇒ AF((

n
∧

i=1

pci = decided)⇒ (

n
∧

i=1

vi)))

The property upn states that if the local bit of process 1 is true, then all computation
paths will eventually make all local bits to be true when all processes decide. It is
impossible to turn them back to be false in the protocol.

Thirdly, we verify that either all processes decide their local bits or some of
them have failure almost surely along all computation. It can be specified by the
following LTL formula:

ltl stablen
4
= ♦(�((

n
∧

i=1

pci = decided) ∨ (

n
∨

i=1

pci = failed)))

In other words, no process can stay in a normal but undecided state forever. A
weaker but similar property can be specified in Fair CTL. We now consider fair
paths where no process is in the failed state infinitely often (Ψ =

∧n
i=1

F∞(pci 6=
failed) in [10]). We would like to know whether all parties will decide their local bits
eventually for all computation. In FCTL, we can specify the property as follows.

fctl stablen
4
= AΨF

n
∧

i=1

pci = decided

It is straightforward to rewrite the properties goodn, upn, and fctl stablen in
∀µ-calculus by standard encoding. For the LTL property ltl stablen, we apply
the technique reported in [5, 6] and verify the existence of fair paths satisfying a
∀µ-calculus formula. Observe that the completeness criteria for these properties
are uniformly obtained by our framework. Once the property is rewritten as a
∀µ-calculus formula, our proof-theoretic technique is able to verify it by any SAT
solver.

Figure 5 compares the performance of our algorithm with the conventional BDD-
based µ-calculus model checking algorithm. In our experiments, we use the CUDD
package (release 2.4.0) with the sifting algorithm to implement the BDD-based
algorithm. The zchaff SAT solver (release November 15th, 2004) is used as our
SAT solver. All experiments are conducted on a Linux workstation (Pentium 4
2.8GHz with 2 GB memory).
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Our experiments show that BDD-based algorithms perform consistently for dif-
ferent properties. If the BDD model representation can be built, these four prop-
erties can be verified with similar cost. On the other hand, the performance of
SAT-based algorithm differs significantly in these properties. This is due to the
fact that our algorithm requires different number of variables for these properties.
It therefore does not perform so uniformly for various properties.

For the invariant property goodn, our SAT-based algorithm is better than BDD-
based algorithm for n ≥ 5. For branching-time properties (upn, ltl stablen, and
fctl stablen), the BDD-based algorithm cannot finish in 10 minutes for n = 7.
With our algorithm, we are able to verify all these properties within 10 minutes.
Surprisingly, our SAT-based algorithm performs better than BDD-based algorithm
for some branching-time properties in this experiment.

6. Conclusion and Future Work

A complete SAT-based ∀µ-calculus model checking algorithm is presented in
the paper. Unlike previous works on proving branching-time temporal logics, our
algorithm does not depend on completeness thresholds. Instead, it determines the
completeness of proofs on the fly. The novelty of the new algorithm is that it
combines both local and bounded model checking, and essentially reduces proof
search in local model checking to Boolean satisfiability.

Our technique uses a proof-theoretic approach to develop completeness criteria.
We feel our technique may give new insights into devising complete SAT-based
model checking algorithms. Currently, it is unclear whether induction or interpola-
tion can be applied in our framework. It would be interesting to have proof-theoretic
interpretations of these heuristics as well.

Our experimental results suggest that our algorithm may perform better than a
typical BDD-based model checker in some cases. In the future, we would like to
conduct more experiments to support our preliminary findings.
Acknowledgments. The author would like to thank anonymous reviewers for
their constructive comments and suggestions in improving the paper.
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