

 TR-IIS-05-009

Automatic Verification of a Model
Checker in Rewriting Logic

Bow-Yaw Wang

July 2005 || Technical Report No. TR-IIS-05-009
http://www.iis.sinica.edu.tw/LIB/TechReport/tr2005/tr05.html

Automatic Verification of a Model Checker in

Rewriting Logic

Bow-Yaw Wang

Institute of Information Science
Academia Sinica
Taipei, Taiwan

Abstract. In this paper, we use the reflection of rewriting logic to an-
alyze a bounded local model checker for infinite-state systems formally.
We introduce three-valued logic in a local model checking algorithm to
formalize aborted verification. To improve its efficiency, several optimiza-
tions are introduced in the algorithm. We show how to exploit the reflec-
tion of rewriting logic and model check our bounded local model checker
in rewriting logic formally.

1 Introduction

Developing model checkers is a very complicated process. It requires sophisti-
cated programming and algorithm-developing skills. But the complexity of a
typical model checker does not allow developers to analyze the tool easily. One
may wonder if there should be flaws in the design or implementation of these
tools. If so, what strategies can be taken to detect the flaws in the development
process. A näıve proposal is to perform computer-aided analysis on the model
checkers themselves. If a model checker could be formally analyzed by comput-
ers, it would increase our confidence in the tool. Even though the current state
of technology does not allow us to analyze a real-world model checker as is, it
should be straightforward to verify high-level design in principle. Or is it?

Suppose we would like to verify a model checker by certain formal verification
tool. We have to formalize the model checker in the verification tool first. Since
the model checker takes a system and a property as inputs, we need specifications
of the system description language and the property description language in the
formalization. Additionally, system behavior and property semantics are formal-
ized. The formalization of system behavior is then used in the formalization of
the model checker. To analyze the model checker, we can show that the model
checker yields results consistent with the property semantics in our formaliza-
tion. If one considers variants of computation models and property specification
logics, it is easy to see that a high-level formalization of model checker is by no
mean a simple task. Unlike network protocols or hardware circuits, the obstacle
in the analysis of model checkers arises even in their formal specifications.

The problem, in our view, is resulted from the lack of theoretical frame-
work for developing model checkers. In the formalization of a typical model

checker, the syntax and semantics of property and system description languages
are needed. The formalization of the model checker adopts the semantics of sys-
tem description language and computes the result. Observe that system behavior
and the computation of the model checker are different yet closely related. An
ideal framework should be capable of unifying these components and distin-
guishing them at the same time. Although there have been formalisms for model
and property specifications, there is little discussion about the formalism of the
computation of model checker. As a result, formal analysis of model checkers is
very complicated and hard to reproduce.

In this work, we use rewriting logic [1] as the formalism to verify a working
model checker for infinite-state systems. Following the framework proposed in [2–
4], we use rewrite theories as formal specifications of systems under verification.
Properties are specified in a specification language defined by an equational the-
ory. We develop a model checking algorithm for infinite-state systems and specify
it in rewriting logic. Thanks to the reflection of rewriting logic, the simulation
of model specification can be formalized by the universal rewrite theory. We are
able to write down a formal specification of the new algorithm and execute it
on Maude [5]. We verify the Bakery algorithm by our formally specified model
checker as an example. Our model checker always terminates and reports con-
clusive verification results when properties can be proved or disproved locally. In
comparison, the LTL model checker may not terminate in general [3]. The new
model checker performs significantly better than those reported in [4] as well.

Although our extension and optimization in the model checking algorithm
are intuitive, we have not provided any proof of correctness yet. In particular,
we do not know if our modification may yield different results with different
computation paths. Users would be surprised to have a proved property turning
into abort by changing the order of rewriting. With the formal specification of
our new model checking algorithm, we are able to perform its formal analysis in
the same framework. Our key idea is to exploit the reflection of rewriting logic
again. The specification of our model checking algorithm is nothing but another
system under verification. Since there are finite number of “states” in our model
checking algorithm, we can use any model checker for finite-state systems to
formally verify our new algorithm. Specifically, the Maude LTL model checker
proves that our new algorithm indeed yields unique result for the exemplary
properties on the Bakery algorithm.

Model checking algorithms have been formally verified by proof assistants [6,
7]. In these works, the semantics and algorithms are formalized in the meta logic
of proof assistants. Verifying model checking algorithms amounts to proving
that the outcomes of algorithms agree with the semantics in the meta logic. In
principle, it is possible to verify systems that can be formalized in the meta
logic. But intensive human intervention is necessary due to the undecidability
of the meta logic theory. Here, a working model checker is verified by another
model checker. It only proves that our new model checker is correct under a very
specific scenario. We are interested in our extensions and optimizations of the
algorithm. The full scale analysis in [6, 7] would be an overkill.

2

An LTL model checker is also available in more recent releases of Maude [3].
The performance of the built-in LTL model checker is reported to be comparable
to the model checker Spin [8]. It may be difficult for verification tool developers
to modify and improve the internal model checker, however. Additionally, only
finite-state systems can be verified due to the limitation of the underlying model
checking algorithm.

The inconvenience is resolved in [4] where a proof-theoretic µ-calculus model
checking algorithm [9–11] is presented. The µ-calculus model checking algorithm
is implemented in an older version of Maude, and requires extension to core
Maude system for technical reasons. As a result, the efficiency of the model
checker is disappointing. We extend the work in [4] and improve the perfor-
mance significantly. Furthermore, checking infinite-state systems is only men-
tioned briefly in [4]. We address the problem explicitly in this paper.

The paper is organized as follows. Section 2 provides necessary technical back-
grounds. We review the framework in Section 3. Our µ-calculus model checker is
presented in Section 4. It is followed by the verification of the Bakery algorithm
in Section 5. We verify our µ-calculus model checker in Section 6. In Section 7,
we discuss future work and conclude the paper.

2 Preliminaries

We use µ-calculus for property specification [12]. A µ-calculus formula ϕ is gen-
erated by the following rules:

– propositional variables: X, Y, Z, . . .;
– atomic propositions (AP): p, q, r, . . .;
– Boolean connectives: ¬ϕ, ϕ ∧ ϕ′;
– modal existential next-state operator: 〈¯̀〉ϕ, where ¯̀ is a set of transition

labels;
– greatest fixed-point operator: νX.ϕ, where the bound variable X occurs

positively in ϕ.

As usual, we use derived operators such as ϕ ∨ ϕ′(≡ ¬(¬ϕ ∧ ¬ϕ′)), [¯̀]ϕ(≡
¬〈¯̀〉¬ϕ) and µX.ϕ(≡ ¬νX.¬ϕ[¬X/X]). Furthermore, we will write ♦ϕ and �ϕ
when all transition labels are allowed.

The semantics of ϕ is defined over a Kripke structure K = (S, L,→, s0, P)
where S is the set of states, L the set of transition labels, →⊆ S × L × S the
transition relation, s0 ∈ S the initial state, and P ∈ S → 2AP the labeling
function which maps each state to a set of atomic propositions satisfied in the
state. For clarity, we write s

a
→ t for (s, a, t) ∈→. A valuation ρ is a function

mapping propositional variables to subsets of S. Let R ⊆ S. We write ρ[X 7→ R]
for the valuation mapping X to R and Y to ρ(Y) for X 6= Y . Given the valuation
ρ, the semantic function [[•]]ρ for a µ-calculus formula ϕ computes the set of states
satisfying ϕ under the valuation ρ:

– [[X]]ρ = ρ(X);

3

– [[p]]ρ = {s ∈ S : p ∈ P (s)};
– [[¬ϕ]]ρ = S \ [[ϕ]]ρ;
– [[ϕ ∧ ϕ′]]ρ = [[ϕ]]ρ ∩ [[ϕ′]]ρ;

– [[〈¯̀〉ϕ]]ρ = {s ∈ S : ∃a ∈ { ¯̀}, t ∈ S.s
a
→ t and t ∈ [[ϕ]]ρ};

– [[νX.ϕ]]ρ =
⋃
{R ⊆ S : R ⊆ [[ϕ]](ρ[X 7→ R])}.

Given a µ-calculus formula ϕ and a Kripke structure K = (S, L,→, s0, P),
we write K, s |= ϕ when s ∈ [[ϕ]]∅. The µ-calculus model checking problem is to
determine whether K, s0 |= ϕ.

In order to solve the µ-calculus model checking problem, various algorithms
have been developed (see, for example, [13]). In tableau-based local model check-
ing algorithms [9, 10], the model checking problem is solved by constructing
proofs of the judgment K, s ` ϕ. The tableau-based algorithm was then simpli-
fied to a set of reduction rules in [11]. We need the following extension to the
greatest fixed point operator, νX{r̄}ϕ where r̄ is a set of states [11]:

[[νX{r̄}ϕ]]ρ =
⋃

{R ⊆ S : R ⊆ {r̄} ∪ [[ϕ]](ρ[X 7→ R])} .

Note that νX{}ϕ ≡ νX.ϕ. Any fixed-point operator can be translated to
its extended form syntactically. The extension reduces the side condition of
tableau-based algorithm to membership checking and allows the proof search
to be performed by rewriting. Given a Kripke structure K = (S, L,→, s0, P)
and a µ-calculus formula ϕ, the following rules reduce K, s ` ϕ to truth values
true or false [11]:

– (K, s ` p) = true if p ∈ P (s);
– (K, s ` p) = false if p 6∈ P (s);
– (K, s ` true) = true;
– (K, s ` false) = false;
– (K, s ` ¬ϕ) = ¬b where (K, s ` ϕ) = b;
– (K, s ` ϕ ∧ ϕ′) = b0 ∧ b1 where (K, s ` ϕ) = b0 and (K, s ` ϕ′) = b1;
– (K, s ` ϕ ∨ ϕ′) = b0 ∨ b1 where (K, s ` ϕ) = b0 and (K, s ` ϕ′) = b1;
– (K, s ` 〈¯̀〉ϕ) = true if (K, t ` ϕ) = true for some t and a such that a ∈ { ¯̀}

and s
a
→ t;

– (K, s ` νX{r̄}ϕ) = true if s ∈ {r̄};
– (K, s ` νX{r̄}ϕ) = (K, s ` ϕ[νX{s, r̄}ϕ/X]) if s 6∈ {r̄}.

Let K be a finite Kripke structure and ϕ a µ-calculus formula. It is shown
that (K, s0 ` ϕ) = true if and only if K, s |= ϕ [11].

3 Rewriting Logic as Verification Framework

We use rewriting logic [1] as the unified framework to formalize our model
checker. Since its introduction in [1], rewriting logic has been used as a unified
formalism for modeling concurrency [1, 14, 15] and as a logical framework [16]. It

4

is not hard to see that rewriting logic is capable of property and model specifica-
tion [2–4]. As for the model checking algorithm, we rely on the reflection property
of rewriting logic. In the following, we will briefly review rewriting logic and its
verification framework as proposed in [3]. For detailed exposition, the reader is
referred to [17, 18, 3].

A term is constructed by function and constant symbols. Each term belongs
to one or several sorts. Equations specify equivalent terms. Rewriting rules spec-
ify how to transform a term into another. A rewrite theory consists of equations
and rewriting rules for terms. If a rewrite theory does not contain any rewriting
rules, we also call it an equational theory.

In rewriting logic, function and constant symbols are declared by the keyword
op. Sorts are declared by the keyword sort. Equations are specified by eq lhs

= rhs ; conditional equations are specified by ceq lhs = rhs if cond. Similarly,
rewriting rules and conditional rewriting rules are defined by rl [l] : lhs ⇒ rhs

and crl [l] : lhs ⇒ rhs if cond respectively, where l is the label of the rule. The
left-hand side of equations and rewriting rules allows pattern matching. Since
there may be several ways to match a term, applying a rewriting rule to a given
term may yield multiple results. All results obtained by any of these applications
are admissible in rewriting logic.

Two terms are equivalent if they can be reduced to the same normal form by
the equations of a rewrite theory. Equations therefore define equivalence classes
of terms. For any term t, we write [t] for its equivalence class. Let R be a rewrite
theory and t, t′ two terms in R. We write

R `l [t] → [t′]

if there is a rule labeled l in R that rewrites [t] to [t′].
In rewriting logic, there is a universal theory U such that any rewrite theory

R and a term t can be presented as meta-level terms R and t in U respectively.
Furthermore, we have

R `l [t] → [t′] ⇔ U `l,n [R, t] → [R, t′]

if t′ is the n-th result obtained by applying the rewriting rule labeled l to t. By
the universal theory U , we can manipulate meta-level terms at object level. We
call the feature that can represent meta-level objects at object level as reflection.

We now describe the framework for model checking algorithm specifications
used in [3, 4]. In the framework, the Kripke structure is specified as a rewrite
theory K. The states are equivalence classes of terms defined in K. The tran-
sitions of the Kripke structure correspond to rewriting rules in K. Since the
Kripke structure is specified as a rewrite theory and system configurations as
equivalence classes of terms, the universal theory U can be used to explore suc-
cessors of the current system configuration. Meanwhile, µ-calculus formulae can
be represented by terms in rewriting logic with proper function symbols. Along
with the universal rewrite theory, the essential components of model checkers
from specification language, model representation to model checking algorithm
can be formalized under the rewriting logic framework.

5

4 A Bounded µ-Calculus Model Checker

Based on the framework described in Section 3, Winskel’s reduction rules can be
formalized as an equational theory [4]. Since the reduction rules are known to be
sound and complete for finite-state models, one simply need search all (finite)
proof trees exhaustively. The µ-calculus model checker in [4] is implemented with
the näıve search strategy. However, this simple idea may not work for infinite-
state models.

3

...
s s s s

0 1 2

Fig. 1. An Infinite-State Model

Consider the infinite-state model in Figure 1, where the atomic proposition
p holds universally. Suppose we would like to check whether the model satisfies
νX.p∧♦X . There are two possible derivations. One derivation chases the infinite
sequence of states and is unable to conclude the proof; the other chooses the
self-loop and concludes the proof in one step. As can be seen from the example,
different strategies for choosing successors have impact on the effectiveness of
the model checker. One may wonder if a universal strategy which works for all
models may exist. However, since it is easy to reduce Post’s Correspondence
Problem to an instance of µ-calculus model checking problem in rewriting logic,
such a universal strategy does not exist. One can only hope for heuristics in
practice.

For systems with infinite sequence of successive states, the depth-first search
strategy may not be effective (as in the example). Similarly, the breadth-first
search strategy may not be effective for infinite-branching systems. Our main
idea is thus to perform the search within certain bounds of depth and width. If
a complete proof can be found within these bounds, the model checker reports
the result; otherwise, it reports abort.

Figure 2 defines the function symbols for the three-valued logic that we are
using. The sort LMCResult specifies the result of model checker. The subsort
declaration Bool ≺ LMCResult specifies that Bool is a subsort of LMCResult.
Therefore both false and true are of sort LMCResult as well. The constant sym-
bol abort of sort LMCResult is also defined. It represents the situation when the
model checker cannot conclude the verification. The function symbols !, &&, and
‖ extend Boolean operators ¬, ∧, and ∨ respectively. The underlines () in the
declarations denotes the positions of the parameters. The keywords comm and
assoc declare that the function symbols && and ‖ are commutative and asso-
ciative. The intuition is to exploit dominating values in Boolean disjunction. For
instance, the result of the disjunction can be determined if one of the operands
is known to be true, regardless of the value of the other operand.

6

sort LMCResult
subsort Bool ≺ LMCResult
op abort : ⇀ LMCResult

op ! : LMCResult ⇀ LMCResult
op && : LMCResult LMCResult ⇀ LMCResult [comm assoc]
op ‖ : LMCResult LMCResult ⇀ LMCResult [comm assoc]

eq ! abort = abort eq ! b = ¬ b

eq false && a = false eq false ‖ a = a

eq true && a = a eq true ‖ a = true

eq abort && abort = abort eq abort ‖ abort = abort

Fig. 2. Equational Rules for Three-Valued Logic

We specify Winskel’s reduction rules as a set of rewriting rules for entailment
terms.1 To define entailment terms, we first define the entailment ` as a function
symbol. Let K be a rewrite theory, L a set of labels, s a meta-level term repre-
senting a state, d and w two natural numbers, and ϕ a µ-calculus formula. The
entailment term K L s d w ` ϕ is of sort LMCResult. The idea is to provide a
set of rules to rewrite the entailment term to false, true, or abort for any Kripke
structure specified by the rewrite theory K. It is crucial to use a meta-level term
s for the state representation. The transitions of the Kripke structure K would
rewrite the state s had we used the object-level term s in the entailment term.

With the definition of entailment term in place, we can now define the re-
duction rules for our µ-calculus model checker. The following rules are used for
Boolean constant and negation.

rl [tt] : K L s d w ` true ⇒ true

rl [neg] : K L s d w ` ¬ p ⇒ ! (K L s d w ` p)
The rule tt rewrites the entailment term K L s d w ` true to true. For atomic

propositions p, the user needs to provide his or her own rewriting rules to deter-
mine whether p holds in the state s. For atomic propositions of the form ¬p, the
model checker first rewrites K L s d w ` p, then uses the three-valued negation
(!) to get the final result. Since the entailment term may rewrite to abort, the
Boolean operators do not consider the inconclusive value and would incur irre-
ducible terms. Hence it is incorrect to use the Boolean negation. Similarly, the
conjunction and disjunction are achieved by invoking the corresponding opera-
tors in three-valued logic.

rl [conj] : K L s d w ` ϕ ∧ ϕ′ ⇒ (K L s d w ` ϕ) && (K L s d w ` ϕ′)
rl [negconj] : K L s d w ` ¬(ϕ ∧ ϕ′) ⇒ (K L s d w ` ¬ ϕ) ‖ (K L s d w ` ¬ ϕ′)

The rules conj and negconj are very inefficient, though. To verify ϕ ∧ ϕ′, for
instance, the model checker first verifies both ϕ and ϕ′. It then uses the results
in rule conj. If ϕ is not satisfied, it is easy to see that the proof search of ϕ′ is
redundant. We therefore use the following optimized rule instead:

1 Equational theory would suffice for the specification, but we need rule labels for its
formal verification.

7

rl [conj] : K L s d w ` ϕ ∧ ϕ′ ⇒ and-wrapper (K L s d w ` ϕ, K, L, s, d, w, ϕ′)
eq and-wrapper (false, K, L, s, d, w, ϕ′) = false

eq and-wrapper (true, K, L, s, d, w, ϕ′) = K L s d w ` ϕ′

eq and-wrapper (abort, K, L, s, d, w, ϕ′) = abort && (K L s d w ` ϕ′)

rl [negconj] : K L s d w ` ¬ (ϕ ∧ ϕ′) ⇒
or-wrapper (K L s d w ` ¬ ϕ, K, L, s, d, w, ¬ ϕ′)

eq or-wrapper (false, K, L, s, d, w, ϕ′) = K L s d w ` ϕ′

eq or-wrapper (true, K, L, s, d, w, ϕ′) = true

eq or-wrapper (abort, K, L, s, d, w, ϕ′) = abort && (K L s d w ` ϕ′)

Fig. 3. Optimized negconj

The trick is to postpone the proof search of ϕ′ by not forming the entailment
term K L s d w ` ϕ′. Along with the proof search result of the term K L s d w `
ϕ, parameters in the term K L s d w ` ϕ′ are passed to the function and-wrapper

instead. The wrapper function then performs the proof search of ϕ′ if necessary.
The same trick is used for the rule negconj as well (Figure 3). Another option
to delay the evaluation of entailment terms is by user-defined strategies [5]. But
we find auxiliary functions are more efficient in this case and use them here.

We now give the definitions of depth and width bounds of a proof. The depth

of a proof is the maximal number of unrolling applied to a fixed point operator.
The width of a proof is defined by the maximal number of successors explored
by each 〈¯̀〉- and [¯̀]-rules. For the modal temporal operator 〈¯̀〉, we have the
following rules:

rl [ex] : K L s d w ` ♦ ϕ ⇒ exists (K, L, s, ϕ, L, 0, d, w, w)
rl [negex] : K L s d w ` ¬ ♦ ϕ ⇒ ! exists (K, L, s, ϕ, L, 0, d, w, w)

rl [exx] : K L s d w ` 〈L′〉 ϕ ⇒ exists (K, L, s, ϕ, L′, 0, d, w, w)
rl [negexx] : K L s d w ` ¬ 〈L′〉 ϕ ⇒ ! exists (K, L, s, ϕ, L′, 0, d, w, w)
The function exists (K, L, s, ϕ, L′, n, d, w, W) checks if there exists a proof

of ϕ within depth d and width w at an L′-successor where n and W serve as
counters. It applies the rewriting rules on ϕ recursively and keeps the width of
proof search within the bound. If the search exceeds the bound, it reports abort:

eq exists (K, L, s, ϕ, L′, n, d, w, 0) = abort

If the proof search bound is not exceeded but there is no transition label, it
degenerates to false:

eq exists (K, L, s, ϕ, ∅, n, d, w, s W) = false

where the symbol s is the successor symbol defined in the natural number theory.
Hence the pattern (s W) matches any natural number greater than zero. Notice
the semantics differ from those in [3]. Our semantics do not have implicit self-
loops, which is quite common in branching-time temporal logics.

If the bound is exceeded and there are transition labels, the function exists

(K, L, s, ϕ, L′, n, d, w, s W) uses the universal theory to find successors of s
in the rewrite theory K. The reduction rule checks whether there is a proof of

8

the subformula ϕ from the successor within depth d and width w, or a proof for
the next successor within depth d and width W recursively. On the other hand,
if there is no successor of the current label, it looks for a successor of the next
label.

eq exists (K, L, s, ϕ, l′ L′, n, d, w, s W) =

if U `l′,n [K, s] → [K, t] then

(K L t d w ` ϕ) ‖ (exists (K, L, s, ϕ, l′ L′, n + 1, d, w, W))
else

exists (K, L, s, ϕ, L′, 0, d, w, s W)
fi

Observe how the universal theory U is used to find the successor t of the
current state s. The distinction between the object and meta levels allows us to
specify the algorithm clearly. Similar to the rules conj and negconj, the three-
valued disjunction in the function exists can be optimized as well (Figure 4).

eq exists-wrapper (false, K, L, s, ϕ, L′, n, d, w, W) =

exists (K, L, s, ϕ, L′, n, d, w, W)
eq exists-wrapper (true, K, L, s, ϕ, L′, n, d, w, W) = true

eq exists-wrapper (abort, K, L, s, ϕ, L′, n, d, w, W) =

abort ‖ exists (K, L, s, ϕ, L′, n, d, w, W)
eq exists (K, L, s, ϕ, l′L′, n, d, w, s W) =

if U `l′,n [K, s] → [K, t] then

exists-wrapper (K L t d w ` ϕ, K, L, s, ϕ, l′L′, n+ 1, d, w, W)
else

exists (K, L, s, ϕ, L′, n, d, w, s W)
fi

Fig. 4. Optimized exists

For the fixed-point operators, we need a term to represent the formula σX{r̄}ϕ
where σ is either of the fixed-point operators [11]. There are several choices for
the representation of the state set {r̄}. We could define an equational theory
for state sets and use it in the representation of the fixed-point formula. This
approach would, however, induce unintended rewrites in the µ-calculus formulae
by rewriting rules of the Kripke structure. To avoid unintended rewriting, we use
a meta-level term set S instead. A term of the form σXSϕ represents the for-
mula σX{r̄}ϕ when S = {r̄}. Our µ-calculus theory depends on the user-defined
meta-level term set theory consequently.

To formally define the rules for fixed-point formulae, we need the substitu-
tion function. For µ-calculus formulae ϕ, ε and the proposition variable X , the
substitution function subst (ϕ, X , ε) returns the formula ϕ[ε/X] (Figure 5). It
is straightforward to add bound checking to Winskel’s rules:

rl [nu] : K L s 0 w ` νXSϕ ⇒ abort

rl [nu] : K L s (s d) w ` νXSϕ ⇒
if s ∈ S then true else K L s d w ` subst (ϕ, X , νX(s ∪ S)ϕ) fi

9

eq subst (true, Z, ε) = true

eq subst (false, Z, ε) = false

ceq subst (X, Z, ε) = X if X 6= Z

ceq subst (X, Z, ε) = ε if X = Z

eq subst (p, Z, ε) = p

eq subst (¬ϕ, Z, ε) = ¬ subst (ϕ, Z, ε)
eq subst (ϕ ∧ ψ, Z, ε) = subst (ϕ, Z, ε) ∧ subst (ψ, Z, ε)
eq subst (ϕ ∨ ψ), Z, ε) = subst (ϕ, Z, ε) ∨ subst (ψ, Z, ε)
eq subst (♦ϕ, Z, ε) = ♦ subst (ϕ, Z, ε)
eq subst (〈¯̀〉ϕ, Z, ε) = 〈¯̀〉 subst (ϕ, Z, ε)
eq subst (�ϕ, Z, ε) = � subst (ϕ, Z, ε)
eq subst ([`]ϕ, Z, ε) = [`] subst (ϕ, Z, ε)
ceq subst (µ X S ϕ, Z, ε) = µ X S (subst (ϕ, Z, ε)) if X 6= Z

ceq subst (µ X S ϕ, Z, ε) = µ X S ϕ if X = Z

ceq subst (ν X S ϕ, Z, ε) = ν X S (subst (ϕ, Z, ε)) if X 6= Z

ceq subst (ν X S ϕ, Z, ε) = ν X S ϕ if X = Z

Fig. 5. Definition of subst

rl [choosing] : C i, choose, n B C i′, M ′, n′ B ⇒
C i, wait-choose ((i+ 1) % 2), max(n, n′) + 1 B C i′, M ′, n′

B

crl [waiting] : C i, wait-choose (i′), n B C i′, M ′, n′
B ⇒

C i, wait-turn (i′), n B C i′, M ′, n′ B

if M ′ 6= choose

crl [waiting] : C i, wait-turn (i′), n B C i′, M ′, n′
B ⇒

C i, wait-choose ((i′ + 1) % 2), n B C i′, M ′, n′ B

if ((i′ + 1) % 2) 6= i ∧ ¬(n′ 6= 0 ∧ (n′ < n ∨ (n′ = n ∧ i′ < i)))
crl [entering] : C i, wait-turn (i′), n B C i′, M ′, n′

B ⇒
C i, critical, n B C i′, M ′, n′ B

if ((i′ + 1) % 2) = i ∧ ¬(n′ 6= 0 ∧ (n′ < n ∨ (n′ = n ∧ i′ < i)))
rl [leaving] : C i, critical, n B ⇒ C i, choose, 0 B

Fig. 6. Bakery Algorithm

The first nu rule rewrites νXSϕ to abort if the depth bound is exceeded.
Otherwise, the second nu rule checks whether the current state s has been visited
or not. If so, it rewrites the entailment term to true. Otherwise, the current state
is added to the set S and the new set is used in the unfolding of the fixed-point
formula. Note that the set membership and union in the rules are defined over
meta-level terms.

5 Verification of the Bakery Algorithm

We use our bounded local model checker to verify the Bakery algorithm with two
processes as an example. The mutual exclusion algorithm is finitely branching
but admits infinite number of distinct states along computation paths. Figure 6
shows the rewrite theory for the Bakery algorithm.

10

Each process in our model is represented by the triple Cid ,mode, ticketB.
The natural number id specifies the process identifier. There are several different
modes in the model: choose, wait-choose (i), wait-turn (i), and critical. The ticket

field is the ticket number owned by the process.
In the choose mode, the process computes its ticket number by incrementing

the maximal ticket number of all processes. After choosing its ticket number, the
process i enters the mode wait-choose ((i+1) % 2). This is specified by the rules
choosing. The process compares its ticket number with other processes by the
waiting rules. The comparison begins at the next process and iterates through
all processes in a round-ribbon manner. For process i′, the current process i
enters the mode wait-turn (i′) after process i′ leaves the mode choose. In the
mode wait-turn (i′), process i compares its ticket number with process i′’s. If
process i has higher priority, it moves to the mode wait-choose ((i′ +1) % 2) and
compares with the next process’s ticket number. However, if there is no more
ticket number to be compared, process i enters the mode critical by rule entering.
When leaving the mode critical, the process resets its ticket number back to zero
and goes back to mode choose (rule leaving). Since the ticket number may be
incremented indefinitely, the number of states is infinite.

The atomic proposition CS (i) is defined as follows.
rl [AP] : K L s d w ` CS (i) ⇒ in-critical (s, i)
eq in-critical (C 0, M0, n0 B C, 0) = (M0 = critical)
eq in-critical (C 1, M1, n1 B C, 1) = (M1 = critical)

The proposition CS (i) holds at the state s if the process i of state s is in the
mode critical. For convenience, we define labels and init as follows.

eq labels = choosing waiting entering leaving

eq init = C 0, choose, 0 B C 1, choose, 0 B

Let B be the rewrite theory for the Bakery algorithm. We can check whether
process 0 will enter the critical mode inevitably. This can be formulated as the
following entailment term:

eq prop0 = B labels init 10 3 ` µ X ∅ (CS (0) ∨ � X)
Secondly, we would like to know if process 1 does not enter the critical section

until process 0 does. That is, process 0 always enters the critical section first.
The property is specified by

eq prop1 = B labels init 5 3 ` µ X ∅ (CS (0) ∨ (¬ CS (1) ∧ � X))
Finally, we would like to check if process 0 can enter the critical section

infinitely often:
eq prop2 = B labels init 3 3 ` ν X ∅ µ Y ∅ ♦ ((CS (0) ∧ X) ∨ Y)

We conduct our experiments in Maude [5]. Maude is a rewriting system based
on rewriting logic. The property, model and algorithm specifications presented in
this paper are translated to Maude modules. The entailment terms prop0, prop1,
and prop2 rewrite to true, false, and abort in Maude respectively. Moreover, the
results are obtained by performing 3698, 1495, and 275 rewrites respectively.
Maude is able to produce the results almost immediately on a 2.8GHz Pentium
4 Linux computer.

In comparison, the built-in LTL model checker in Maude can only prove that
process 0 will enter the critical section inevitably (prop0). It fails to terminate on

11

the remaining properties. For prop0, the Bakery algorithm lets process 0 enter
the critical section inevitably. The global model checking algorithm implemented
in Maude cannot find any counterexample by its default exploration strategy. It
therefore concludes the verification successfully. For prop1, the default strategy
in Maude LTL model checker ends up exploring the infinite state space. But
our bounded local model checker gives up the infinite computation paths and
successfully disproves the property by a finite path. For prop2, there is no finite
path to verify the property. The Maude LTL model checker will explore the
infinite state space surely. But our model checker stops after the bounds are
exceeded.

6 Verification of Model Checking Algorithm

The verification of Bakery algorithm only shows that our infinite-state model
checking algorithm may rewrite entailment terms to one of false, true, or abort.
But we have yet to provide a formal analysis of our extension and optimization
to Winskel’s rewriting rules. In particular, if our algorithm would yield contra-
dictory results by different rewriting sequences, users would be very confused.

The advocated theoretical framework solves the problem nicely. Formally, it
only takes another application of reflection. Entailment terms and the model
checking rewrite theory are lifted to the meta level. The behavior of our model
checker can be explored by the universal theory U . Hence, another model checker
can verify our model checker at meta level formally. Notice that our model
checker can generate only but finitely many LMCResult terms for each entail-
ment term.

We begin with the meta-level entailment. Let M be our model checking
theory, L the rule labels, e the entailment term, and ϕ a µ-calculus formula.
Define the meta-level entailment term M L e `̀ ϕ of sort Bool. It is easy to
define the equational rules for the meta-level atomic propositions is-false, is-true,
and is-abort:

eq : M L e `̀ is-false = (e = false)
eq : M L e `̀ is-true = (e = true)
eq : M L e `̀ is-abort = (e = abort)

They check whether the current entailment term corresponds to the LMCRe-
sult false, true, and abort respectively. Define lmc-labels to be:

eq lmc-labels = AP tt neg conj negconj ex negex exx negexx mu negmu nu negnu

It is straightforward to specify the original local model checking algorithm
(Figure 7). However, specifying properties of M in branching-time temporal
logics exposes a subtle semantic issue. If our model checker always rewrites en-
tailment terms to one of false, true, or abort after a number of rewrites, entailment
terms will have no successors. Subsequently, the property � ϕ will be true for all
ϕ eventually. In particular, the entailment prop2 will be irreducible inevitably.
It therefore satisfies µ X ∅ is-true ∨ � X , even though prop2 does not rewrite to
true after a number of unrolling.

Our solution is to add implicit self-loops to irreducible terms. This can be
done by modifying the meta-exists function:

12

eq M L e `̀ true = true

eq M L e `̀ ¬ p = ¬ (M L e `̀ p)
eq M L e `̀ ϕ ∧ ϕ′ = (M L e `̀ ϕ) and-also (M L e `̀ ϕ′)
eq M L e `̀ ¬ (ϕ ∧ ϕ′) = (M L e `̀ ¬ ϕ) or-else (M L e `̀ ¬ ϕ′)
eq M L e `̀ ♦ ϕ = meta-exists (M, L, e, ϕ, L, 0, true)
eq M L e `̀ ¬ (♦ ϕ) = ¬ meta-exists (M, L, e, ϕ, L, 0, true)
eq M L e `̀ 〈 L′ 〉 ϕ = meta-exists (M, L, e, ϕ, L′, 0, true)
eq M L e `̀ ¬ (〈 L′ 〉 ϕ) = ¬ meta-exists (M, L, e, ϕ, L′, 0, true)
ceq M L e `̀ µ X E ϕ =

if e ∈ E then false else M L e `̀ subst (ϕ, X, µ X (e ∪ E) ϕ) fi

eq M L e `̀ ¬ µ X E ϕ =

if e ∈ E then true else M L e `̀ subst (¬ ϕ, X, µ X (e ∪ E) ϕ) fi

eq M L e `̀ ν X E ϕ =

if e ∈ E then true else M L e `̀ subst (ϕ, X, ν X (e ∪ E) ϕ) fi

eq M L e `̀ ¬ ν X E ϕ =

if e ∈ E then false else M L e `̀ subst (¬ ϕ, X, ν X (e ∪ E) ϕ) fi

Fig. 7. Meta-Level Model Checker

eq meta-exists (M, L, e, ϕ, ∅, n, deadend) =

if deadend then M L e `̀ ϕ else false fi

eq meta-exists (M, L, e, ϕ, l′ L′, deadend) =

if U `l′,n [M, e] → [M, f] then

(M L f `̀ ϕ) ∨ meta-exists (M, L, e, l′ L′, n + 1, false)
else

meta-exists (M, L, e, ϕ, L′, deadend)
fi

If e is an irreducible term (deadend = true), e is the only successor of itself.
Otherwise, meta-exists works like exists but at the meta meta-level.

We can check whether our infinite-state model checking algorithmM rewrites
the entailment term prop0, prop1, prop2 to true, false, abort inevitably by reducing
the following three entailment terms respectively:

eq inevitably-true = M lmc-labels prop0 `̀ µ X ∅ is-true ∨ � X
eq inevitably-false = M lmc-labels prop1 `̀ µ X ∅ is-false ∨ � X
eq inevitably-abort = M lmc-labels prop2 `̀ µ X ∅ is-abort ∨ � X

We can therefore reduce the meta-level entailment term inevitably-abort.
Maude reports true in 158,190 rewrites (about 32 seconds). However, we are
unable to verify the other meta-level properties within a reasonably amount of
time. We need a more efficient model checker for the task.

Recall that the bounds imposed on the proof search essentially forbid infinite
rewrites on any entailment term, even for infinite-state models like the Bakery
algorithm. Since entailment terms are the meta-level states, the Maude LTL
model checker should not have difficulty in verifying properties on our model
checker. Indeed, define the LTL atomic propositions on entailment terms:

eq e |= is-false = (e = true)
eq e |= is-true = (e = false)
eq e |= is-abort = (e = abort)

13

We can verify inevitably-true, inevitably-false, and inevitably-abort by reducing
the following three terms:

eq eventually-true = modelCheck (prop0, ♦ is-true)
eq eventually-false = modelCheck (prop1, ♦ is-false)
eq eventually-abort = modelCheck (prop2, ♦ is-abort)

The Maude LTL model checker successfully proves eventually-true, eventually-

false and eventually-abort in 300, 51 and 1 seconds respectively.

7 Conclusion and Future Work

In this paper, we introduce three-valued logic to model aborted computation in
local model checking algorithms. The uncertain value allows the proof search
to be redirected to other branches of the computation. We demonstrate how
straightforward it is to formalize and adopt the idea in developing an infinite-
state model checking algorithm. To illustrate the effectiveness of our new algo-
rithm, we verify properties on the Bakery algorithm and compare it with the
Maude LTL model checker. In our example, the new algorithm is able to verify
local properties and terminate on all properties of interest. The global model
checking algorithm implemented in Maude, on the other hand, proves only one
property and fails to terminate on the others.

Using the same verification framework, we show how to verify properties on
our new model checker by reflection. Although it is possible to perform formal
verification by the original local model checker in theory, the meta-level model
checker is unable to verify all the properties efficiently. The Maude LTL model
checker can be deployed and successfully verifies that our new model checker
indeed yields unique result.

Currently, we are interested in applying our technique in other model check-
ing algorithms. Particularly, the analysis of binary decision diagram-based algo-
rithms would be more useful to model checking community. We are investigating
the theory developed in [19] and specifying a BDD-based algorithms in rewriting
logic as the first step. Secondly, we would like to investigate on how to present
counterexamples. At present, our model checker can only report confirmation,
refutation and abort of the property. Reporting counterexamples of disproved
properties to users would be very useful. Finally, we would like to improve the
efficiency of our model checker further.

References

1. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science 96 (1992) 73–155

2. Wang, B.Y., Meseguer, J., Gunter, C.A.: Specification and formal analysis of a
PLAN algorithm in Maude. In Hsiung, P.A., ed.: Proceedings International Work-
shop on Distributed System Validation and Verification, Taipei, Taiwan. (2000)
49–56

14

3. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker. In:
Proceedings of the Fourth International Workshop on Rewriting Logic. Volume 71
of Electronic Notes in Theoretical Computer Science., Elsevier (2002)

4. Wang, B.Y.: µ-calculus model checking in maude. In: 5th International Workshop
on Rewriting Logic and its Applications, Barcelona, Spain. March 27-28. (2004)

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: Maude 2.0 Manuel. version 1.0 edn. (2003)

6. Sprenger, C.: A verified model checker for the modal µ-calculus in coq. In Stef-
fen, B., ed.: Tools and Algorithms for the Construction and Analysis of Systems.
Volume 1384 of LNCS., Springer-Verlag (1998) 167–183

7. Manolios, P. In: Mu-Calculus Model-Checking. Kluwer Academic Publishers (2000)
93–111

8. Holzmann, G.: The model checker SPIN. IEEE Trans. on Software Engineering
23 (1997) 279–295

9. Cleaveland, R.: Tableau-based model checking in the propositional mu-calculus.
Acta Informatica 27 (1989) 725–747

10. Stirling, C., Walker, D.: Local model checking in the modal mu-calculus. In Dı́az,
J., Orejas, F., eds.: Proceedings Int. Joint Conf. on Theory and Practice of Software
Development, TAPSOFT’89, Barcelona, Spain, 13–17 March 1989. Volume 351 of
LNCS. Springer-Verlag, Berlin (1989) 369–383

11. Winskel, G.: A note on model checking the modal nu-calculus. Theoretical Com-
puter Science 83 (1991) 157–167

12. Kozen, D.: Results on the propositional µ-calculus. Theoretical Computer Science
27 (1983) 333–354

13. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press,
Cambridge, Massachusetts (1999)

14. Meseguer, J.: Rewriting logic as a semantic framework for concurrency: A progress
report. In Montanari, U., Sassone, V., eds.: CONCUR ’96: Concurrency Theory,
7th International Conference. Volume 1119 of Lecture Notes in Computer Science.,
Pisa, Italy, Springer-Verlag (1996) 331–372

15. Mart́ı-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography. Theo-
retical Computer Science 285 (2002) 121–154

16. Basin, D., Clavel, M., Meseguer, J.: Rewriting logic as a metalogical framework.
Lecture Notes in Computer Science 1974 (2000) 55–80

17. Clavel, M., Meseguer, J.: Reflection and strategies in rewriting logic. In Meseguer,
J., ed.: Proceedings First International Workshop on Rewriting Logic and its Appli-
cations, WRLA’96, Asilomar, California, September 3–6, 1996. Volume 4 of Elec-
tronic Notes in Theoretical Computer Science., Elsevier (1996) 125–147

18. Clavel, M.: Reflection in general logics, rewriting logic, and Maude. In Kirchner,
C., Kirchner, H., eds.: Proceedings Second International Workshop on Rewriting
Logic and its Applications, WRLA’98, Pont-à-Mousson, France, September 1–4,
1998. Volume 15 of Electronic Notes in Theoretical Computer Science., Elsevier
(1998) 317–328

19. van de Pol, J.C., Zantema, H.: Binary decision diagrams by shared rewriting. In:
108. Centrum voor Wiskunde en Informatica (CWI), ISSN 1386-369X (2000) 14

15

