

 TR-IIS-05-017

Aggressive Traffic Smoothing for

Online Delivery

Jeng-Wel Lin, Ray-I Chang, Jan-Ming Ho, Feipei Lai

September 2005 || Technical Report No. TR-IIS-05-017
http://www.iis.sinica.edu.tw/LIB/TechReport/tr2005/tr05.html

1

Aggressive Traffic Smoothing for Online Delivery

JENG-WEI LIN
1
, RAY-I CHANG

2
, JAN-MING HO

1
, FEIPEI LAI

3

1
Institute of Information Science,

Academia Sinica, No. 128, Sec. 2, Academia Rd., Taipei, Taiwan

{jwlin,hoho}@iis.sinica.edu.tw

2
Dept. of Engineering Science,

National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei, Taiwan

rayichang@ntu.edu.tw

3
Dept. of Computer Science and Information Engineering,

National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei, Taiwan

flai@cc.ee.ntu.edu.tw

Abstract

Traffic smoothing is an efficient means to reduce the bandwidth requirement for

transmitting a VBR video. Several traffic smoothing algorithms have been presented to offline

compute the transmission schedule for a prerecorded video [1]-[9]. For live video applications,

Sen et al. [11] present an online algorithm referred to as SLWIN(k) to compute the transmission

schedule on the fly. SLWIN(k) looks ahead W frames to compute the transmission schedule for

the next k frametimes, where k W. Note that W is upper bounded by the initial delay of the

transmission schedule. The time complexity of SLWIN(k) is O(W*N/k) for an N frame live video.

In this paper, we present an O(N) online traffic smoothing algorithm denoted as ATS (Aggressive

Traffic Smoothing). ATS aggressively works ahead to transmit more data as early as possible for

reducing the peak rate of the bandwidth requirement. We compare the performance of our

algorithm with SLWIN(k) based on several benchmark video clips. Experiments show that ATS

further reduces the bandwidth requirement, especially for interactive applications in which the

initial delays are small.

Keywords: Multimedia Streaming, Online Delivery, Traffic Smoothing, Live Video.

I. Introduction

A growing number of applications such as digital libraries, newscasts and distance learning

require real-time multimedia to be accessed on networks. For supporting continuous playback,

the client player must render a new frame after one frametime (the period of time between two

2

successive frames) has passed. In order to prevent the client player from starvation, the video

server has to transmit the video data into the client buffer before it is going to be rendered.

However, video streams are compressed and often exhibit significant burstiness of frame sizes

(number of bits for each frame) on many time scales due to the encoding frame structure and

their natural variations within and between scenes [13][14]. This burstiness complicates the

design of a multimedia system for high resource utilization, such as network bandwidth and the

client buffer.

For a prerecorded video, the video server has complete knowledge of all the frame sizes.

The video server can use a traffic smoothing algorithm that takes advantage of the knowledge of

upcoming large frames and starts more data transmission in advance of the burst. By working

ahead, traffic smoothing is proved efficient at reducing the bandwidth requirement for VBR

video transmission. In past years, several traffic smoothing algorithms have been presented to

offline compute the transmission schedule [1]-[9].

In live video applications, however, the video server only has limited knowledge of frame

sizes at any one time. Old media data is transmitted, while new media data is generated

simultaneously. In applications like newscasts and distance learning, the clients may be willing

to tolerate a longer playback delay in exchange for a smaller bandwidth requirement. For such

delay tolerable applications, Sen et al. [11] introduce a sliding-window traffic smoothing

algorithm referred to as SLWIN(k) that computes the transmission schedule on the fly. The

constant k is referred to as the slide length. Given an initial delay, SLWIN(k) looks ahead a

window of W frames and uses an offline traffic smoothing algorithm to compute the transmission

schedule for the next k frametimes, where k W. Note that W is upper bounded by the initial delay.

After k frametimes have passed, k new frames have to be generated, so SLWIN(k) computes the

3

next transmission schedule. For an N frame live video, the time complexity of SLWIN(k) is

O(W*N/k). Since the time-consuming SLWIN(1) usually computes the transmission schedule of a

small peak bandwidth requirement, there is a tradeoff between computing costs and performance.

In this paper, we present an O(N) traffic smoothing algorithm called ATS (Aggressive

Traffic Smoothing) that online computes the transmission schedule for live video applications.

ATS uses a funnel with one upper chain and one lower chain to maintain the candidates for the

next transmission schedule. It considers each new frame iteratively and modifies the funnel. If

the two chains of the funnel will cross each other, ATS deterministically generates the

transmission schedule. When no more frame size information is available, ATS heuristically

generates the transmission schedule that works ahead as aggressively as possible without raising

the current peak transmission rate. While the video server executes the transmission schedule,

new frames are generated and after the schedule has finished, ATS computes the next schedule.

Experiment results show that ATS further reduces the peak bandwidth requirement and utilizes

the client buffer more efficiently when the initial delay is small.

The remainder of this paper is organized as follows. A formal definition of the online traffic

smoothing problem for live video is illustrated in Section II. Section III presents our ATS

algorithm and its time complexity proof. Section IV shows the experiment results. Finally, in

section V, we give conclusions.

II. Online Traffic Smoothing for Live Video

For an N frame video V={f0, f1, f2, , fN-1; Tf}, which uses fi bits to encode the i-th frame and

Tf is the frametime, a continuous playback schedule can be represented as a step function F(t)=Fi

4

for i*Tf t<(i+1)*Tf, where Fi=0 for i<0 and Fi=Fi-1+fi for 0 i N-1. At time i*Tf, the client player

will have played Fi-1 bits and will continue playing fi bits in the next frametime. Given a D

frametime playback delay, a video server can transmit media data at rate ri from time i*Tf to

(i+1)*Tf according to a transmission schedule S={r-D, r-D+1, r-D+2, , rN-2}. The cumulative

transmission function is defined as G(t)=0 for t -D*Tf and G(t)=G(i*Tf)+ri*(t-i*Tf) for

i*Tf<t (i+1)*Tf. To guarantee continuous playback at the client player, S should satisfy F(t) G(t)

for t (N-1)*Tf. However, the client player usually does not have unlimited buffer space. We

assume the client player provides a B-bit buffer. Therefore, to avoid buffer overrun, S should also

satisfy G(t) H(t) for t (N-1)*Tf, where H(t)=Fi -1+B for i*Tf<t (i+1)*Tf, as shown in Figure 1.

Without loss of generality, we consider a discrete time model at the granularity of a

frametime. Assuming Tf=1, we simplify the definition of F(t), G(t) and H(t) as follows.

Cumulative playback function:

 F(i)=0, i<0

 F(i)=F(i-1)+fi, 0 i N-1

Cumulative buffer function:

 H(i)=F(i-1)+B, i N-1

Cumulative transmission function:

 G(i)=0, i -D

 G(i)=G(i-1)+ri-1, -D<i N-1

5

As F(N-1) is the total size of the video frames, a traffic smoothing algorithm should not plan

to transmit more than F(N-1) data. For a prerecorded video stream, a traffic smoothing algorithm

knows each frame size and can offline compute the transmission schedule such that

F(i) G(i) Min(H(i), F(N-1)) for -D i N-1.

However, for live video, a traffic smoothing algorithm has limited knowledge of frame sizes

at any one time t+D because frames after the time point t+D have not been generated. The

algorithm knows ft+1, ft+2, , ft+D and has no idea about ft+D+1, ft+D+2, , fN-1. Any L (1 L D)

frametimes transmission schedule St
={rt, rt+1, , rt+L-1} is feasible if St

 satisfies

F(i) G(i) Min(H(i), F(t+D)) for t<i t+L, as shown in Figure 2. While the video server executes

S
t
, new frames are generated. After L frametimes have passed and S

t
 has therefore finished, L

new frames have been generated. The traffic smoothing algorithm can incorporate new frame

size information to compute the next transmission schedule S
t+L

.

Figure 1: A feasible transmission schedule

S should satisfy F(t) G(t) H(t), where

G(t) is a function of S.

Figure 2: Looking ahead in live video

applications.

A. Hopping-Window Approach

The hopping-window approach is quite simple. In the beginning, the video server waits for

6

W (W D) frames and uses an offline smoothing algorithm to compute the transmission schedule.

After the transmission schedule has finished and W new frames have to be generated, the video

server computes the next schedule.

The hopping-window approach splits the entire live video transmission into several W frame

windows. However, it has drawbacks of smoothing traffic across window boundaries. As shown

in Figure 3(a), since the smoothing algorithm does not know the upcoming of the large frame in

the third window, it computes a low transmission rate in the second window. It is forced to

sharply raise the transmission rate in the third window.

B. Sliding-Window Approach

To incorporate the new frame size information as early as possible, a sliding-window

approach referred to as SLWIN(k) [11] is introduced. After k (k W) frametimes have passed,

although the pervious transmission schedule has not yet finished, SLWIN(k) computes a new

schedule. The video server immediately abandons the previous transmission schedule and

executes the new schedule. The constant k is referred to as the slide length.

As shown in Figure 3(b), SLWIN(k) computes a better transmission schedule for the fourth

window than the hopping-window approach. Sen et al. showed that using a smaller slide length,

SLWIN(k) computes a better transmission schedule [11]. However, the total time complexity of

SLWIN(k) is O(W*N/k). There is a tradeoff between computing costs and performance.

C. Aggressive Workahead Scheme

SLWIN(k) uses an offline smoothing algorithm to compute the smallest bandwidth

requirement for each window independently. However, H(i) is suppressed by F(t+D), as shown

in Figure 2. This local optimum may lower the transmission rate unnecessarily. As shown in

7

Figure 3(b), the transmission rate decreases in the third window and then increases in the fourth

window.

Instead of using the smallest transmission rate, the video server may aggressively works

ahead. As there is less data buffered in the video server, the server can use a lower transmission

rate to transmit the upcoming large frame. As shown in Figure 3(c), if the video server

aggressively uses the transmission rate for the second window to transmit data in the third

window, the bandwidth requirement for the fourth window can be reduced.

To reduce the suppression effect caused by F(i+D), we propose the video server to work

ahead as aggressively as possible without raising the peak transmission rate. Since the

suppression will be looser after a new frame is generated, aggressive workahead lasts for only

one frametime. Experiment results show that aggressive workahead further reduces the peak

bandwidth requirement, especially when the initial delay is small.

Figure 3: (a) The hopping-window algorithm has drawbacks when smoothing traffic across

window boundaries. (b) SLWIN(k) incorporates new frame size information and therefore

computes a better transmission schedule. (c) If the video server transmits video data in the

third window move aggressively, the bandwidth requirement for the fourth window can be

further reduced.

8

III. Our Algorithm and Time Complexity Analysis

A. ATS Algorithm

Like MVBA [1] (the offline smoothing algorithm used by SLWIN(k)), our ATS algorithm

finds the shortest path that comprises of line segments (i.e., periods of a steady transmission rate)

between F(i) and MIN(H(i), F(i+D)). However, if the path is suppressed by F(i+D), ATS

heuristically uses the aggressive workahead scheme to generate the transmission schedule.

As shown in Figure 4(a), from the starting point s=(t, G(t)) of a window, ATS maintains the

candidates for transmission schedules within a convex upper chain U={u0=s, u1, u2, , um} and a

concave lower chain V={v0=s, v1, v2, , vn}. u1, u2, , um are points on the function H and v1,

v2, , vn are points on the function F. U is convex if and only if 0 m<2 or Rate(ui, ui+1)<Rate(ui+1,

ui+2) for 0 i<m-2, where Rate(x, y) is the slope of the line from x to y. V is concave if and only if

0 n<2 or Rate(vi, vi+1)>Rate(vi+1, vi+2) for 0 i<n-2. The two chains form a funnel. By triangle

inequality, it is easy to prove that the shortest path is in the funnel.

For t+1 a t+D, ATS iteratively considers unprocessed F(a) and H(a) and modifies the

funnel. ATS first considers to append the point x=(a, F(a)) onto V. ATS may remove some points

from V so that V is still concave. If the resultant V will not cross U, as shown in Figure 4(b), ATS

continues processing H(a). If the resultant V will cross U, as shown in Figure 5(a), ATS

deterministically generates the transmission schedule according to the line segments on U that

are under the dashed line (s, x) and maintains the funnel, as shown in Figure 5(b). By triangle

inequality, we can prove that the path that comprises these line segments is a part of the shortest

path.

If H(a) F(t+D), ATS then considers to append x'=(a, H(a)) onto U. Similarly, ATS may

9

remove some points from U so that U is still convex. If the resultant U will not cross V, as shown

in Figure 4(c), ATS continues processing the next frame. If the resultant U will cross V, as shown

in Figure 5(c), ATS deterministically generates the transmission schedule according to the line

segments on V that are above the dashed line (s, x') and maintains the funnel, as shown in Figure

5(d). Again, we can prove that the path that comprises these line segments is a part of the shortest

path.

In each window, whenever ATS generates the transmission schedule, it goes to sleep. After

the transmission schedule has finished, new frames have to be generated and ATS will wake up to

compute the schedule for the next window. Note that the length of the transmission schedule is

dynamic. However, saturation may occur if ATS does not decide the transmission schedule after

the (t+D)-th frame is considered, as shown in Figure 5(e). Unlike MVBA, which always generates

the transmission schedule according to V, ATS uses the aggressive workahead scheme to reduce

the suppression effect. It generates the transmission schedule according to the dashed line (s, x''),

where x''=(t+1, G(t)+MAX(MIN(rpeak, rmax), rmin)), rmin and rmax are the minimal and maximal

feasible transmission rates from the point s and rpeak is the current peak transmission rate. Note

that x'' is definitely in the funnel and the length of the transmission schedule is one frametime.

ATS then reconstructs the funnel again by removing some points and adding x'' at the head of V

and U, as shown in Figure 5(f). ATS then goes to sleep. After one frametime has passed, ATS will

wake up to compute the next transmission schedule.

10

Figure 4: ATS iteratively considers F(i) and H(i) to maintain the candidates for transmission

schedules in the funnel, i.e. the shadowed area.

Figure 5: ATS generates the transmission schedule and reconstructs the funnel.

Unlike SLWIN(k), which independently computes the transmission schedule for each

window, ATS remembers useful computational results for the next window by the help of a

funnel data structure. Detail description of the funnel maintenance follows.

Appending the point x=(a, F(a)) onto V

As shown in Figure 6(a), along the lower chain V, ATS tries to find a point vi (1 i n) from

vn to v1 so that Rate(vi-1, vi)>Rate(vi, x). If such a point is found, ATS removes vi+1, , vn from V

and adds x to the tail of V. As shown in Figure 6(b), the resultant chain V’={v0, , vi, x} is

concave. V’ and U maintain the funnel. In this case, ATS does not generate the transmission

schedule. If a point vi is not found, along the upper chain U, as shown in Figure 6(c), ATS tries to

find a point uj (0 j m-1) from u0 to um-1 so that edge ujx will not cross U, i.e. Rate(uj, x)<Rate(uj,

uj+1); otherwise, ATS sets uj=um. As shown in Figure 6(d), ATS replaces V with V’={uj, x}. If j=0,

11

V’ and U maintain the funnel and ATS does not generate the transmission schedule. If j 0, ATS

generates the transmission schedule according to the chain {u0, , uj} and then removes u0, ,

uj-1 from U. The resultant chain U’={uj, , um} remains convex. V’ and U’ maintain the funnel

again.

Appending the point x'=(a, H(a)) onto U

The processing of x' is similar to the processing of x. Thus, we skip this part.

Adding the point x'' at the head of V and U

As shown in Figure 7, along the lower chain V, ATS finds a point vi (0 i n-1) from v0 to vn-1

so that Rate(x'', vi+1)>Rate(vi, vi+1) and thus V’={x'', vi, vi+1, , vn} is concave. ATS removes v0, ,

vi-1 from V and adds x'' at the head of V. Along the upper chain U, ATS finds a point uj (0 j m-1)

from u0 to um-1 so that Rate(x'', uj+1)<Rate(uj, uj+1) and thus U’={x'', uj, uj+1, , um} is convex.

ATS removes u0, , uj-1 from U and adds x'' at the head of U. U’ and V’ maintain the funnel.

12

Figure 6: Processing x. The figure is skewed for better

visualization.

Figure 7: Processing x''. The

figure is skewed for better

visualization.

B. Complexity Analysis

We assume each edge that is added onto the funnel associates with a counter. The counter is

initialized as zero and increases by one whenever the edge is scanned. The time complexity

analysis of ATS is based on the following claims.

Claim A: The counter of an edge that is added onto the funnel and removed later is

read as two.

Claim B: The counter of an edge that remains on the funnel is read as one.

The primary factor in the ATS time complexity is the maintenance of the funnel. Consider

the process of appending x onto V. ATS first starts scanning the edges of the lower chain V from

the tail. If there is a points vi (1 i n) such that Rate(vi-1, vi)>Rate(vi, x), the scan stops. The edges

of the chain {vi, , vn} have been scanned and removed and their associated counters increased

by one to two. The point x is then added to the tail of V. At this point, the readings of the two

associated counters on the chain {vi-1, vi, x} are two and zero. We can amortize the two counters

13

so that each counter is reset to one, as shown in Figure 6(a) and (b). Thus, claims A and B hold.

If there is no such point, ATS starts scanning the edges of the upper chain U from the head.

Applying similar amortized analyses, we can prove that claims A and B also hold after the scan

stops, as shown in Figure 6(c) and (d). Therefore, after ATS completes the process of appending x

onto V, claims A and B hold. Similarly, we can prove that after ATS completes the process of

appending x' onto U, claims A and B also hold. When there is no more frame size information

available, ATS computes x'' in constant time and reconstructs the funnel, as shown in Figure 7.

We can prove that after ATS completes the reconstruction, claims A and B hold.

ATS iteratively considers F(i) and H(i) once for 0 i N-1. Each time, ATS adds one edge

onto the funnel and may remove some edges. Since the number of transmission schedules

generated will be N, at the most, ATS reconstructs the funnel at most N times. Each time, ATS

adds two edges onto the funnel and may remove some edges. In total, ATS adds a maximum of

4*N edges onto the funnel. Thus, there is a maximum of 4*N associated counters and the

summation of all readings is smaller than 8*N. Therefore, the time complexity of ATS is O(N).

IV. Experiment Results

In this section, we examine the performance of the proposed online traffic smoothing

algorithm. The study focuses on network and client resources by measuring the peak rate and the

buffer occupancy. The peak rate of a smoothed video stream determines its worst-case bandwidth

requirement across the path from the video server to the client player. Hence, most traffic

smoothing algorithms attempt to minimize the peak rate to increase the likelihood that the video

server, network and client player have sufficient resources to handle the stream. Practically,

media data may get lost in the network. However, if the client player can detect the data lost

14

early enough, it can request a retransmission. A transmission schedule with a high percentage of

client buffer occupancy usually implies that there is a high probability the client player will

detect the data lost early.

We simulated the transmission of several MPEG video clips [18]. Table 1 shows some

statistics of these clips. We compare the performance of ATS and SLWIN(1) (which consistently

outperforms SLWIN(W)). Figure 8 and 9 show the peak transmission rate and buffer occupancy

of the transmission schedules for transmitting Star Wars and News, respectively, when different

initial delays and client buffer sizes are used. To demonstrate the lower bound of the peak rate,

these figures also show the optimal offline schedules obtained by MVBA [1].

Table 1: Statistics of MPEG video clips. AVG is the average of frame sizes. STD is the standard deviation of frame

sizes.

Stream number of frames FPS GOP maximum frame size AVG STD

Star Wars 40000 24 12 124816 bytes 9313.2 12902.73

News 40000 24 12 189888 bytes 15357.67 19505.57

MTV 40000 24 12 251408 bytes 19780.5 21453.2

TALK 40000 24 12 132752 bytes 17915 18222.2

A. Initial Delay

Given a client buffer size (B), when the initial delay (D) is small, ATS is more likely to use

the aggressive workahead scheme to heuristically generate the transmission schedule in a

window. When the initial delay increases, the possibility also increases that ATS deterministically

generates the transmission schedule. As shown in Figure 8 and 9, the peak rates of the ATS

15

transmission schedules are significantly smaller than SLWIN(1) when D is smaller than 30

frametimes. The aggressive workahead scheme reduces the suppression effect successfully. Since

there is not much data, the buffer occupancies are around 30% to 50%. However, SLWIN(1) uses

less than 20% of the client buffer. When D increases, the ATS transmission schedules may have

the same peak rates as SLWIN(1). The buffer occupancies of the ATS transmission schedules

keep increasing until to 80% or more and then slowly decreasing. They are consistently higher

than SLWIN(1) even D is relatively large. When D increases beyond a certain point, ATS always

deterministically generates the transmission schedule in every window. In such situation, ATS

generates the same transmission schedule as SLWIN(1) and MVBA.

When ATS works ahead on Star Wars, an interesting phenomenon occurs, as shown in

Figure 8(a) and (b). ATS dramatically reduces the peak rate to around 32 Kbytes per frametime

when D is 12 frametimes. However, when D increases to 32 frametimes, ATS does not further

reduce the peak rate. Analyzing Star Wars, we find there are two bursts. The second is slightly

burstier than the first. If D is smaller than 32 frametimes, ATS cannot smooth the first burst. It

therefore raises the peak rate. Since ATS aggressively works ahead and keeps less data in the

video server, it can smooth the second burst. If D is larger than 32 frametimes, ATS is able to

smooth the first burst. This time, however, ATS cannot smooth the second burst and therefore the

peak rate increases.

B. Buffer Size

When the initial delay is small, enlarging the client buffer does not help SLWIN(1) reduce

the peak rate. The suppression effect eliminates the benefits from a larger buffer. As shown in

Figure 8 and 9, the peak rates of the SLWIN(1) transmission schedules further decrease only

when D is larger than 120 frametimes and 80 frametimes, respectively. On the other hand, the

16

aggressive workahead scheme uses the buffer more efficiently. The peak rates of the ATS

transmission schedules are further reduced even D is small.

 30

 32

 34

 36

 38

 40

 0 20 40 60 80 100 120 140

pe
ak

 r
at

e
(k

B
/fr

am
et

im
e)

initial delay (frametime)

(a) 256K

SLWIN(1)
ATS

Offline

 30

 32

 34

 36

 38

 40

 0 20 40 60 80 100 120 140

pe
ak

 r
at

e
(k

B
/fr

am
et

im
e)

initial delay (frametime)

(b) 512K

SLWIN(1)
ATS

Offline

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

bu
ffe

r
oc

cu
pa

nc
y

(%
)

initial delay (frametime)

(c) 256K

SLWIN(1)
ATS

Offline

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

bu
ffe

r
oc

cu
pa

nc
y

(%
)

initial delay (frametime)

(d) 512K

SLWIN(1)
ATS

Offline

Figure 8: Comparisons of algorithms under different initial delays. (Star Wars, B=256K and

512K).

 60

 65

 70

 75

 80

 85

 90

 95

 0 10 20 30 40 50 60

pe
ak

 r
at

e
(k

B
/fr

am
et

im
e)

initial delay (frametime)

(a) 512K

SLWIN(1)
ATS

Offline

 60

 65

 70

 75

 80

 85

 90

 95

 0 10 20 30 40 50 60

pe
ak

 r
at

e
(k

B
/fr

am
et

im
e)

initial delay (frametime)

(b) 1024K

SLWIN(1)
ATS

Offline

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

bu
ffe

r
oc

cu
pa

nc
y

(%
)

initial delay (frametime)

(c) 512K

SLWIN(1)
ATS

Offline

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

bu
ffe

r
oc

cu
pa

nc
y

(%
)

initial delay (frametime)

(d) 1024K

SLWIN(1)
ATS

Offline

Figure 9: Comparisons of algorithms under different initial delays. (News, B=512K and

1024K).

V. Conclusion

In this paper, we present an efficient traffic smoothing algorithm ATS for live video

transmission. Unlike SLWIN(k), which computes the smallest bandwidth requirement for each

window independently, after ATS generates the transmission schedule for the current window, it

remembers useful computational results for the next window by the help of a funnel data

structure. The total time complexity of ATS is O(N). Note that O(N) is a trivial lower bound to

online smooth an N frame live video. To reduce the suppression effect caused by the lake of

future frame sizes, ATS heuristically uses the aggressive workahead scheme to generate the

transmission schedule. We have evaluated ATS by transmitting several benchmark video clips.

Experiment results show that ATS further reduces the peak bandwidth requirement and better

17

utilizes the client buffer, especially for interactive applications in which the initial delay is small.

References

[1] James D. Salehi, Zhi-Li Zhang, Jim Kurose, Don Towsley, "Supporting Store Video: Reducing Rate Variability

and End-to-End Resource Requirement Through Optimal Smoothing," IEEE/ACM Trans. Networking, Vol. 6,

No.4, Aug. 1998.

[2] W. Feng and S. Sechrest, "Critical Bandwidth Allocation for Delivery of Compressed Video," Computer

Communications, pp. 709-717, Oct. 1995.

[3] W. Feng, F. Jahaian and S. Sechrest, "Optimal Buffering for the Delivery of Compressed Video," IS&T/SPIE

MMCN, pp. 234-242, 1995.

[4] R. I. Chang, M. Chen, M. T. Ko and J. M. Ho, "Optimization of stored VBR video transmission on CBR

channel," SPIE, VVDC, pp. 382-392, 1997.

[5] R. I. Chang, M. Chen, M. T. Ko and J.M. Ho, "Designing the On-Off CBR Transmission Schedule For

Jitter-Free VBR Media Playback in Real-Time Networks," IEEE RTCSA, pp. 1-9, 1997.

[6] J. M. McManus and K. W. Ross, "Video On Demand over ATM: Constant-Rate Transmission and Transport,"

IEEE INFOCOM, March 1996.

[7] J. M. McManus and K. W. Ross, "Dynamic Programming Methodology for Managing Prerecorded VBR

Sources in Packet-Switched Networks," SPIE VVDC, 1997.

[8] M. Grossglauser, S. Keshav and D. Tse, "RCBA: A Simple and Efficient Service for Multiple Time-Scale

Traffic," in Proc. ACM SIGCOMM, pp 219-230, Aug. 1995.

[9] Wuchi Feng, Jennifer Rexford, "A Comparison of Bandwidth Smoothing Techniques for the Transmission of

Prerecorded Compressed Video," in Proc. IEEE INFOCOM, pp. 58-66, April 1999.

[10] J. Rexford, S. Sen, J. Dey, W. Feng, J. Kurose, J. Stankovic, and D. Towsley, "Online Smoothing of Live,

Variable-Bit-Rate Video," in Proc. International Workshop on Network and Operating Systems Support for

Digital Audio and Video, pp. 249-257, May 1997.

[11] Subhabrata Sen, Jennifer L. Rexford, Jayanta K. Dey, James F. Kurose, Donald F. Towsley, "Online Smoothing

of Variable-Bit-Rate Streaming Video," IEEE Trans. Multimedia, Vol. 2, No.1, March 2000.

[12] D. T. Lee and F. P. Preparata, "Euclidean Shortest Path in the Presence of Rectilinear Barriers," Networks, vol.

14, pp. 393-410, 1984.

[13] M. Garrett and W. Willinger, "Analysis, Modeling and Generation of Self-similar VBR Video Traffic," in Proc,

ACM SIGCOMM, Sep. 1994.

[14] M. Krunz and S. K. Tripathi, "On the Characteristics of VBR MPEG Streams," in Proc. ACM SIGMETRICS, pp.

192-202, June 1997.

[15] A. Ads, "Supporting Real-Time VBR Video Using Dynamic Reservation Based on Linear Prediction," in Proc.

IEEE INFOCOM, pp. 1476-1483, March 1996.

18

[16] S. Crosby, M. Huggard, I. Leslie, J. Lewis, B. McGurk and R. Russell, "Predicting Bandwidth Requirement of

ATM and Ethernet Traffic," in Proc. IEE UK Teletraffic Symposium, March 1996.

[17] E. Amir, S. McCanne, and H. Zhang, "An Application Level Video Gateway," in Proc. ACM Multimedia, Nov.

1995.

[18] http://www3.informatik.uni-wuerzburg.de/MPEG/traces/

Algorithm ATS

1 tu=-D, tv=-D, t=-D;

2 Proc smooth() {

3 step 1:

4 while (tu+1<tv) {

5 if (H(tu+1)<=F(t+D) {

6 tu=tu+1

7 L=append_on_u(tu, H(tu));

8 if (L>0) {return L}

9 } else {

10 goto step 3

11 }

12 }

13 step 2:

14 while (tv+1<=t+D) {

15 tv=tv+1

16 L=append_on_v (tv, F(tv))

17 if (L>0) {return L}

18 if (H(tu+1)<=F(t+D)) {

19 tu=tu+1

20 L=append_on_u(tu, H(tu))

21 if (L>0) {return L}

22 } else {

23 goto step 3

24 }

25 }

26 step 3:

27 while (tv+1<=t+D) {

28 tv=tv+1

19

29 L=append_on_v(tv, F(tv))

30 if (L>0) {return L}

31 }

32 step 4:

33 y2=G(t)+MAX(MIN(Rmax, Rheap), Rmin)

34 L=Generates (t, G(t))->(t+1, G(t)+y2))

35 reconstruct the funnel

36 return L

37 }

38 Proc Main(V, N) {

39 while (t<N) {

40 L=smooth()

41 t=t+L

42 }

43 }

