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Coalition Formation for Resource Co-allocation
Using BDI Assignment Agents

Kiam Tian Seow, Kwang Mong Sim and Yuan Chia Kwek

Abstract— A new distributed agent algorithm for resource co-
allocation to different tasks is proposed. The algorithm extends
a BDI assignment algorithm with resource capability reasoning.
It enables resource agents to form coalitions via iterative BDI
reasoning and negotiation given the limited capabilities of the
resources vis-à-vis task requirements, without directly limiting
the coalition size. In the worst case analysis, the number of
negotiation rounds required by the algorithm is shown to be of
a polynomial order in the number of agents. Empirical evidence
from simulations shows that the algorithm yields favorable results
in terms of the number of effective coalitions formed for different
tasks. Fundamental differences between the proposed algorithm
and related work are also discussed.

Index Terms— Multiagent Systems, Software Agents, Resource
Co-allocation, Problem Solving, Planning

I. INTRODUCTION

Central to many real world applications in a non-centralized
environment is the fundamental problem of assigning tasks
to resources. The problem becomes even more challenging
in many practical settings where, instead of just assigning
every task to a different resource [1], some tasks need to
be co-allocated with more than one different resource, under
different constraints of resource (service) capability and task
requirement.

Perhaps the most basic is the linear (sum) assignment
problem (LAP) which deals with the question of how to
concurrently assign N distinct tasks to N distinct resources
on a one-to-one basis, with maximizing a summation objective
function as the optimal goal. LAP manifests itself in a diverse
range of interesting applications, either as a resource alloca-
tion problem or a subproblem of resource co-allocation, in
personnel management, vehicle transportation, manufacturing
and telecommunication, for which centralized algorithms have
been applied [2].

Our research aims to develop techniques to address dis-
tributed versions of these LAP (or LAP-based) applications,
emerged to exploit recent advancement in computer and inter-
net technology that has made it possible to have situated agents
collaboratively plan the assignments by themselves. This is in
contrast to a centralized algorithm planning for them. Solved
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this way, the basic problem is termed a collaborative LAP
(CLAP). While the centralized approach was acceptable in
the past, it limited active involvement of distributed agents in
incremental planning or problem solving.

Our recent work [1] has developed a BDI negotiation
algorithm MA3 to address CLAP. Using distributed agent
reasoning, agents representing different resources negotiate
for different tasks1, to optimize the sum-total of the A-QoS
(application quality-of-service) of one resource for one task.
This paper addresses a more general CLAP (G-CLAP) that
relaxes the allocation of strictly ‘one resource to one task’ to
‘several resources to one task’, motivating the idea of coalition
formation [3]. A coalition is a team of resource agents formed
to jointly service a task. G-CLAP seeks an efficient allocation
of resources (e.g., limited manpower in a company or sensors
of different capabilities in the same network) through coalition
formation, to allocate resource coalitions, each to effectively
handle a different task. The problem demands cooperation
among the resource agents involved. The main benefit of
coalition formation is either to accomplish tasks not possible
with resource agents acting alone, or to achieve effective
handling of tasks and a resulting increase in resource efficiency
with the agents working on teams, for different tasks.

In addressing G-CLAP as a distributed agent problem to
realize the benefit of coalition formation, an agent faces the
basic issue of deciding whom to team up with for which
tasks, given its resource capability vis-à-vis task requirements.
In so doing, each resource agent not only needs to reason
communicatively about its beliefs and preferences (in terms
of desires and intentions) as well as its collaborating agents’,
but also locally reason about its A-QoS to offer for each
task. The agent’s A-QoS or capability reasoning entails a
local model that would eventually decrease its A-QoS with
successive task commitments, and depends on various other
parametric constraints that characterize its resource capability.
Such constraints include maximum task loading and working
relationship with other agents for different tasks.

To develop such agents for G-CLAP, the key contribution of
the paper includes extending MA3 (Section II) to C-MA3 (Sec-
tion III) that inherits the BDI negotiation model in MA3 for
communicative reasoning, and incorporating a local (capabil-
ity) reasoning model (Section III-A.3) to compute successive
A-QoS offers. C-MA3 will find application in numerous online
planning domains, including a sensor network application,
where targets to be concurrently monitored (the tasks) may
each require different sensors (the resources) of limited capa-

1In the original MA3, task agents negotiate for different resources instead.
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bility which diminishes with increasing task commitments. For
instance, where three high value targets have been singled out
for concurrent monitoring, it is desirable that a higher level
command could check with three specific sensor agents, C-
MA3-enabled to negotiate and report if their coalitions formed
could effectively monitor the targets. Importantly, C-MA3 is
found to achieve, empirically, a high success rate in terms
of the number of effective coalitions formed for different
tasks (Section IV), and in the worst case, does so in a
number of negotiation rounds of a polynomial order in the
number of agents, as analytically established (Section III-D).
Fundamental differences that distinguish the proposed C-MA3

from related work are also examined (Sections V and VI).

II. CLAP & SOLUTION MA3: A REVIEW

This section presents CLAP and the relevant details of its
solution MA3 [1].

A. Problem Statement

Let T = {t0, t1, · · · , t|T |−1} and R = {r0, r1, · · · , r|R|−1}
denote a set of tasks and resources respectively; and dij =
d[ti, rj ], for ti ∈ T, rj ∈ R be a measure of the application
quality of service (A-QoS) that a resource rj ∈ R can offer
to a task ti ∈ T upon allocation. Assume |T | ≤ |R|. Then
formally, the objective of the |T | × |R| LAP is to find the
particular (total) assignment mapping Π : T → R such that
for ti, tj ∈ T , i �= j implies Π(ti) �= Π(tj), and the total A-

QoS Stot =

|T |−1∑
i=0

d[ti,Π(ti)] is maximized over all possible

permutations of Π. Intuitively, Π is a one-to-one mapping of
tasks to resources. Each permutation represents an assignment
(or allocation) set.

The basic approach [1] is to have each task agent represent
(i.e., assume the responsibility of selecting a resource r ∈ R

for) a task ti ∈ T and initially possess A-QoS knowledge of
task ti ∈ T only, namely, the individual A-QoS values d[ti, r]
for all resources r ∈ R.

The objective of LAP thus becomes the joint (social) goal
of these task agents, and the resulting problem is called a
collaborative LAP (CLAP). In attempting to reach an optimal
assignment solution, the basic issue a task agent faces is rea-
soning what resource exchange option to propose, as embodied
in MA3.

B. BDI Negotiation Algorithm MA3: A Model Overview

Among the agent architectures/models (see [4, Ch. 1]), the
BDI model [5], [6] is one of the best known and studied model
of practical reasoning. Based on a philosophical model of hu-
man practical reasoning, originally developed by M. Bratman
[7], the basic model guides us to develop an agent to decide
moment by moment which action to take in the furtherance of
a goal. We adapt this model, motivated by its appropriateness
in allowing us to conceptualize and metaphorically describe an
agent’s reasoning mechanism, moment by moment, in terms
of the agent’ mental attitudes B (Belief), D (Desire) and
I (Intention) to solve CLAP. However, two aspects clearly

differentiate our work from existing BDI models. In the first is
our approach to modelling. Existing BDI models are developed
without concisely formulating the problems they attempt to
solve while in our work, the BDI model is developed with a
clear formulation of the problem it addresses, namely, CLAP.
In the second, each moment is not a moment of reasoning in
reaction to changes in its environment, but a negotiation round
of collaborative reasoning - in fact, existing BDI models give
no architectural consideration to explicitly multiagent aspects
of behaviour [8] that is essential for addressing CLAP.

The proposed distributed agent algorithm MA3 divides the
agents’ reasoning process into negotiation rounds, and in each
round, performs negotiative means-end reasoning, where the
end is to increase the social value, i.e., the total allocated
A-QoS, using the means of resource exchange between two
task agents. In each round, each task agent locally accesses
and directly acts only on its own row of A-QoS data, and
determines its belief set - the information or evidence that
indicates all the possible options - the alternative resources -
a task agent can exchange its current resource selection for,
to achieve its end. Every task agent then begins negotiating
by communicating with one another to acquire A-QoS data
from any task agent whose current resource selection is in
the agent’s belief set. In collaborating, any such agents will
respond with the required A-QoS values, using which the agent
would deliberate to determine its own desire set - the means
of exchanging its current resource selection for options that
survive the deliberation (in that the social value will increase
when exchanged for any of these options) with the respective
agents (currently holding on to these options). As a final step
in a negotiation round, the agent will select the best (local)
desire - the one that offers a net exchange gain that is the
highest from the agent’s perspective - as its intention, which
it would then use as the basis for a resource exchange proposal.
All the agents’ resource exchange intentions (or the lack
thereof) would undergo arbitration to decide which two agents
to proceed with the resource exchange, before negotiation is
concluded, and the next round begins. MA3 terminates when
simultaneously, all task agents have no (more) intention to
exchange resources.

C. BDI Concept Formalization

To formally ground the BDI concepts for CLAP, the follow-
ing CLAP-specific data structures are formally defined in such
a way that they can be naturally interpreted as a task agent’s
beliefs, desires and intentions computed in an arbitrary round
of collaborative negotiation. In these definitions, the current
resource selections of all agents refer to those made under an
arbitrary permutation of Π.

Definition 1 (Belief Set Bi): Given that an agent ti ∈ T ’s
current resource selection is ri ∈ R. Then its (current) belief
set Bi is given by

Bi = {r ∈ R | d[ti, r] > d[ti, r
i]} (1)

If Bi �= ∅, this means that agent ti ∈ T has at least one
alternative resource selection r ∈ Bi that may lead to increase
in total A-QoS Stot (when made in exchange with an agent
whose current selection is r ∈ R).
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Definition 2 (Desire Set Di): Given that an agent ti ∈ T ’s
current resource selection is ri ∈ R and its belief set is Bi,
Bi �= ∅. An arbitrary agent tj ∈ T whose current resource
selection is rj ∈ R is said to accept agent ti ∈ T ’s beliefs
Bi if rj ∈ Bi. To generate the desired exchange options or
desires Di, agent ti ∈ T broadcasts its beliefs Bi and current
selection ri ∈ R, and an arbitrary agent tj ∈ T who accepts
the beliefs would respond with a pair of A-QoS values d[tj , r

j ]
and d[tj , r

i], so that for each of the |Bi| responses received, the
corresponding resource exchange option [(ti, r

j), (tj , r
i), ρ] ∈

Di (i.e., is agent ti ∈ T ’s desire) if ρ > 0, where ρ is defined
by

ρ = −d[ti, r
i] + d[ti, r

j ] − d[tj , r
j ] + d[tj , r

i] (2)
If ρ > 0, it means that there is a net exchange gain if agent
ti ∈ T gives up its current selection ri ∈ R and selects rj ∈ R,
and in exchange, agent tj ∈ T gives up its current selection
rj ∈ R and selects ri ∈ R. Thus, any desire d ∈ Di, when
carried out, will definitely lead to an increase in total A-QoS
without violating Π. Quite naturally, it provides the motivation
for agent ti ∈ T to want to exchange its current resource
selection.

Definition 3 (Intention Ii): Given that an agent ti ∈ T ’s
desire set is Di, Di �= ∅. Then, agent ti ∈ T ’s intention Ii is
given by

Ii = [(ti, r
j), (tj , r

i), ρ] ∈ Di, for which

ρ = max{ρ′ | [−,−, ρ′] ∈ Di }
(3)

Agent ti ∈ T ’s decisive stance or intention has to be Ii since
it is the best exchange option that the agent can propose. It is
said to have no intention if either Bi = ∅ or Di = ∅.

Finally, in the role of arbitration, an intention with the
highest exchange gain, i.e., one that contributes to the highest
increase (in total A-QoS) if carried out, is selected from all
the agents’ intentions Ii ∈ I gathered.

With the above formalization, the distributed agent algo-
rithm MA3 may be specified; it handles the simple role of
arbitration through a dedicated agent.

D. Distributed Agent Algorithm

MA3 assumes that |T | = |R| = N , and consists of an
arbitration agent (or arbiter) and a team of task agents, t ∈ T .

1) Algorithmic Details: The generic BDI reasoning mech-
anism of a task agent and the simple role of the arbitration
agent in an arbitrary round of collaborative negotiation can
now be described as follows:

MA3 : Collaborative (Task) Agent

1) If agent believes that there are alternative resource selections
which may lead to increase in total A-QoS, it would, based on its
(local) beliefs, generate the desired exchange options or desires,
from which the best option will be chosen as its intention.

2) Agent submits its intention (or the lack thereof) to the arbitration
agent.

3) Concurrent with Step 1 and Step 2, it responds to any requesting
task agent whose beliefs it accepts, by sending to the requesting
agent the A-QoS values as required for computing the requesting
agent’s desire.

4) Agent changes its resource selection (and then acknowledges it),
proceeds to next round of negotiation or quit, as decided by the
arbitration agent.

r0 r1 r2 r0 r1 r2

t0 {14} 5 8
MA

3

=⇒ t0 {14} 5 8
t1 2 {6} 4 t1 2 6 {4}
t2 8 7 {3} t2 8 {7} 3

Table (a) Table (b)

Fig. 1. Example to illustrate MA3

MA3 : Arbitration Agent

1) Agent first receives the intentions (or the lack thereof) of all the
task agents.

2) If agent sees that all task agents have no intention to exchange,
it terminates the negotiation by telling all task agents to quit.

3) Otherwise, it
a) selects an intention with the highest exchange gain and

instructs the two agents concerned to proceed with the
resource exchange.

b) receives acknowledgement of resource exchange made as
instructed (from the two agents concerned), before telling
all task agents to proceed to next round of negotiation.

It has been established that MA3 always terminates in a
finite number of negotiation rounds. Although it does not
guarantee an optimal agreement on termination, it has been
empirically shown to produce one within about 10% of the
optimal almost all the time.

2) An Example: To illustrate the working mechanisms of
the proposed MA3, consider an example problem: Fig. 1
shows two assignment tables or matrices for the problem, in
which the resource selection of each agent ti ∈ {t0, t1, t2}
is represented by enclosing the corresponding A-QoS value
within {}.

Referring to Fig. 1, Table (a) represents a randomly se-
lected (initial) assignment and Table (b) represents a solution
assignment. The following illustrates how the solution can be
obtained by collaborative negotiations.

• Round 1
– Agent t0 selects r0 and agent t1 selects r1 (as

initialized). Both agents believe that they have the
best selection because their belief sets are empty,
hence no desire, and therefore no intention.

– Agent t2 selects r2 (as initialized) but believes that
there are alternative resource selections that may
increase the total A-QoS, namely resources r0 and
r1. It therefore generates its desired exchange options
as follows:
∗ for exchange with agent t0, the exchange gain is

−d[t2, r2] + d[t2, r0] − d[t0, r0] + d[t0, r2]

which is equal to −3 + 8 − 14 + 8 = −1 ≤ 0.
∗ for exchange with agent t1, the exchange gain is

−d[t2, r2] + d[t2, r1] − d[t1, r1] + d[t1, r2]

which is equal to −3 + 7 − 6 + 4 = 2 > 0.
∗ Hence, its only desire is [(t2, r1), (t1, r2), 2] and

is therefore also its intention.
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– To get the required pairs of A-QoS values {d[t0, r0],
d[t0, r2]} and {d[t1, r1], d[t1, r2]} for computing its
desire set as done above, agent t2 broadcasts its
belief set {r0, r1} and current selection r2 ∈ R. The
respective agents whose current resource selection
is in agent t2’s belief set respond with those values.
In subsequent rounds, such broadcasts and responses
are deemed understood and will not be mentioned
again.

– Agents t0, t1 and t2 send their intentions (or the lack
thereof) to the arbitration agent.

– The arbitration agent tells agent t1 to change its
resource selection to r2 and agent t2 to change it
to r1.

– Once both agents t1 and t2 inform the arbitra-
tion agent that they have changed the selections as
instructed, the arbitration agent tells all agents to
proceed to next round of negotiation.

• Round 2
– Agent t0 selects r0 and believes that it has the best

selection because its belief set is empty, hence no
desire, and therefore no intention.

– Agent t1 selects r2 but believes that an alternative
resource selection r1 may increase the total A-QoS.
It therefore generates its desired exchange options as
follows:
∗ for exchange with agent t2, the exchange gain is

−d[t1, r2] + d[t1, r1] − d[t2, r1] + d[t2, r2]

which is equal to −4 + 6 − 7 + 3 = −2 ≤ 0.
∗ Hence, it has no desire, and therefore no intention.

– Agent t2 selects r1 but believes that an alternative
resource selection r0 may increase the total A-QoS.
It therefore generates its desired exchange options as
follows:
∗ for exchange with agent t0, the exchange gain is

−d[t2, r1] + d[t2, r0] − d[t0, r0] + d[t0, r1]

which is equal to −7 + 8 − 14 + 5 = −8 ≤ 0.
∗ Hence, it has no desire, and therefore no intention.

– Agents t0, t1 and t2 send their lack of intentions to
the arbitration agent.

– The arbitration agent tells all agents t0, t1 and t2 to
quit. The final resource selections of the agents yield
the solution as shown in Table (b) of Fig. 1.

E. Negotiation Complexity

We conclude the review with a complexity result for MA3 in
terms of the number of negotiation rounds, and an approach
to reducing communication time per negotiation round. The
proof of the complexity result is presented elsewhere [9].

Theorem 1: Given an arbitrary N ×N CLAP instance, the
worst-case complexity of MA3 in terms of the number of
negotiation rounds is O(N2).

For conceptual clarity, the basic model has presented full
BDI reasoning for every round of negotiation. In an actual im-
plementation, a task agent would need to (and can easily) avoid

full BDI reasoning whenever possible since the determination
of especially its desires requires communication to request for
the necessary A-QoS data from a number of its collaborating
agents, and this could incur a lot of communication time. It
turns out that if we allow the arbitration agent to announce the
resource exchange intentions that were executed in a previous
negotiation round, and this can be easily implemented, a task
agent need not always have to do full BDI reasoning beyond
the first negotiation round; only two task agents, say agents
tx and ty , involved in the resource exchange per arbitrated
intention would need to perform full BDI reasoning in the
current round, say round k; and we note that the worst case
complexity of computing an agent ti’s beliefs r ∈ B

k
i ⊆ R

according to Eq. (1) is a linear order O(N). As for each of
the rest, say agent tz , its intention would remain the same
as its previous one and so no BDI reasoning is needed, if
any resource exchanged in round k − 1 is not in its beliefs;
otherwise, with its beliefs unchanged, i.e., B

k
z = B

(k−1)
z , it

would only need to carry out DI reasoning, by updating its
desire set D

k
z with D

k−1
z (i.e., desire set determined in the

previous round k − 1) but with 1) all desires that involve a
resource exchanged in round k−1 deleted; and 2) new desires
determined in round k added. A new desire of each agent tz
is deliberated using Eq. (2) for exchange gain computation,
using A-QoS data acquired not through the agent broadcasting
its current beliefs as in the first round, but directly requesting
the required A-QoS data from only one or both the agents tx
and ty per executed intention, provided their current resource
selections are in B

k
z . Such a negotiation is said to involve

non-redundant BDI reasoning, which helps reduce the average
communication time per round.

III. G-CLAP & PROPOSED SOLUTION C-MA3

The characteristic constraint of exactly 1 : 1 assignment
in CLAP may be too stringent for many applications. Some
tasks might need to be assigned to a set of resources, and
more generally, these resource sets need not be disjoint (i.e.,
are overlapping), meaning some resources service more than
one task. This generalizes a strictly 1 : 1 assignment to 1 : q

assignment (or p : 1 assignment), for p, q ≥ 1.
To illustrate, consider an example with T = {t0, t1, t2} and

R = {r0, r1, r2}. A T -centered optimal solution could consist
of the assignment set

{ (t0, {r0, r1, r2}), (t1, {r1, r2}), (t2, {r2}) } ,

which contains 1 : 3, 1 : 2 and 1 : 1 assignment elements,
respectively. The resource subsets {r0, r1, r2}, {r1, r2} and
{r2} are termed agent teams or coalitions for the respective
tasks t0, t1 and t2. Note that the allocated resource sets
(between any two tasks’) are not necessarily disjoint. An
equivalent R-centred solution set is

{ ({t0}, r0), ({t1, t0}, r1), ({t2, t1, t0}, r2) } ,

which contains 1 : 1, 2 : 1 and 3 : 1 assignment elements,
respectively. Equivalently, the assigned task sets are not nec-
essarily disjoint. A collaboration problem concerned with such
assignments is called a general CLAP (G-CLAP), which seeks
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a concurrent allocation of m different resources, m ≥ 1, for
every task to optimize the sum-total A-QoS of the concurrent
allocations.

To address a version of G-CLAP, we propose a distributed
agent algorithm, C-MA3. Essentially, it uses MA3 iteratively,
but with task set T and resource set R exchanged. In so doing,
we instead have C-MA3 resource agents, each representing a
different resource; and they negotiate for tasks to form a team
of resource agents r ∈ R for every task t ∈ T .

This more complex G-CLAP is formulated and addressed
under different parametric constraints that, importantly, char-
acterize the capabilities of the resources vis-à-vis task require-
ments without directly limiting the coalition size, as presented
in the next section.

A. Terminology & Problem Formulation

The statement for a |R| × |T | G-CLAP can be formally
specified following the definition and characterization of 1) a
non-increasing A-QoS function under task loading, modelling
a resource capability, 2) team forming and task commitments
in ordered sets, and 3) team effectiveness in terms of task
requirements and member compatibility.

1) A-QoS Function, Committed Tasks & Resource Team:
Let d[ti, rj , lj ] ≥ 0 denote the available A-QoS - the optimal
level of effectiveness - that resource rj ∈ R can offer to
an arbitrary task ti ∈ T , when it is Hc

j -committed. Hc
j =

{tj0 , tj1 , · · · , tjy
, · · · , tj(lj−1)

} ⊆ T . Let variable lj denote
the number of tasks in set Hc

j , lj ≥ 0. Where it is necessary
to explicitly indicate the number of tasks lj in Hc

j , we also
rewrite it as Hc

j {lj}. Hc
j {lj} is ordered in that a task is

selected and included as the y-th element tjy
∈ Hc

j when
it was offered an A-QoS of d[tjy

, rj , y] by resource rj ∈ R at
a stage when the resource was already assigned with y tasks.
As will be made clearer later, ordering is needed to index
in set Hc

j the tasks committed and added to it at successive
negotiation stages when they were offered different A-QoS
values by the same resource rj ∈ R.

Let Ri = {ri0 , ri1 , · · · , rix
, · · · , ri|Ri|−1

} ⊆ R denote a
subset allocated to task ti ∈ T , and is said to be a resource
team for task ti ∈ T . Similarly, Ri is ordered, i.e., rix

∈
Ri, the x-th element in Ri, offered an A-QoS of d[ti, rix

, x]
for task ti ∈ T , by which it was added to the team Ri at a
negotiation stage2 indexed by (x + 1).

2) Resource Compatibility & Team Effectiveness: Let re-
source subset Fj ⊆ R denote only the members in set R that
resource rj ∈ R can team up with, inclusive of itself, to service
an arbitrary task, such that for two arbitrary sets Fa ⊆ R and
Fb ⊆ R,

ra ∈ Fb iff rb ∈ Fa (4)

Following (4), an arbitrary resource ra ∈ Fb ⊆ R is said to
be a mutual affiliate of resource rb ∈ R, in the sense that they
are complementary resources such that the A-QoS values they
offer for each task are additive.

Let γi > 0 denote the A-QoS threshold for task ti ∈ T . It is
the minimum level of A-QoS required of a team of resources

2This stage is the (x + 1)-th negotiation session of a proposed solution
algorithm for G-CLAP (Section III-B).

to service the task. How a value like γi is determined is
application dependent. It is important to note, as with most
existing approaches, modelling specific application parameters
before applying an approach is a design problem.

Definition 4 (Member Compatibility): In a team Ri ⊆ R,
a team member rix

∈ Ri is said to be compatible with task
ti ∈ T iff

d[ti, rix
, x] ≥

(
λiix

.
γi

mi

)
, with λiix

≤ 1 (5)

λiix
is said to define the compatibility factor of resource rix

∈
R (with respect to servicing task ti ∈ T ). mi ≤ |Ri| denotes
the number of mutual affiliates assembled in team Ri that offer
non-zero A-QoS values to service ti ∈ T . Henceforth, each
such affiliate is called a contributing team member of Ri. The
right-hand side of (5) defines the member-level threshold of a
contributing resource rix

∈ R for ti ∈ T .
Definition 5 (Team Effectiveness): An arbitrary resource

team Ri ⊆ R is said to be effective for task ti ∈ T iff all
its contributing members are compatible with task ti ∈ T and
its coalition value - the sum-total A-QoS contribution by these
members - exceeds the threshold for task ti ∈ T , i.e.,

d[ti, Ri] ≥ γi, where d[ti, Ri] =

|Ri|−1∑
x=0

d[ti, rix
, x] (6)

By Definition 5, we (implicitly) follow a standard assumption
[10] that there are design means to transform the utility values
held by different agents into common A-QoS (utility) units for
interagent comparison.

Referring to right-hand side of (5), we have noted that(
(1 − λiix

).
γi

mi

)
represents the tolerable deviation from the

‘average’ threshold (per required resource). Therefore, to sat-
isfy (6), this deviation must be compensated for by the other
contributing members in team Ri.

Let nj = |Fj |. Then since contributing members in any
team Ri must also be mutual affiliates by definition,

min{nix
| rix

∈ Ri} ≥ mi (7)

Thus, that a contributing member rix
∈ Ri is compatible

implies that

d[ti, rix
, x] ≥

(
λiix

.
γi

nix

)
, with λiix

≤ 1. (8)

The right-hand side of (8) defines the necessary threshold of
task ti ∈ T for resource rix

∈ R. Not greater than that in
(5), it is checked against during negotiation (as seen later
in Condition 1 of Constraint Zeroize-A-QoS for the A-QoS
model (9)), since mi for a team Ri is not known a priori the
negotiation, whereas nj for a resource rj ∈ R can be made
known.

3) A Model for Loaded A-QoS Function: Let Lj denote the
load capacity, the limit in the number of tasks that resource
rj ∈ R can concurrently service. A formula for an A-QoS
function follows. It models (the reasoning that determines) a
resource rj ∈ R’s uncommitted available/remaining service
capability for a task ti ∈ T when it has just been admitted
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as the x-th element3 in some team Rz (for a task tz ∈ T ),
i.e., zx = j or equivalently, committed task tz ∈ T as its y-th
element in Hc

j , i.e., jy = z, and it is possible z �= i. Note that
(numerically) x = y = (lj − 1).

For all ti ∈ T , lj ≥ 1,

d[ti, rj , lj ] =

⎧⎨
⎩

0 if Constraint Zeroize-A-
QoS holds,

αij otherwise
(9)

for which

αij =

⎧⎪⎪⎨
⎪⎪⎩

d[ti, rj , lj − 1] −
	ij [l

+
j ]

if d[ti, rj , lj − 1] > 0
and ti �= tjy

∈ Hc
j and

d[tjy
, rj , lj − 1] > 0,

d[ti, rj , lj − 1] otherwise,

where

• 	ij [l
+
j ] ≥ 0, and is said to define the amount of loss

in effectiveness of resource rj ∈ R for task ti ∈ T ,
due to it committing to one more task tjy

∈ T , i.e.,
Hc

j {lj} = Hc
j {lj − 1} ∪ {tjy

}, jy �= i; l+j ≤ lj denotes
the number of such committed tasks tjy

∈ Hc
j {lj} for

which d[tjy
, rj , lj − 1] > 0. Note that lj = y + 1 since

Hc
j is ordered.

• Constraint Zeroize-A-QoS is a disjunction of the follow-
ing conditions:

1) αij <
(
λij .

γi

nj

)
; resource rj ∈ R cannot meet the

necessary threshold of task ti ∈ T .
2) ti = tjy

∈ Hc
j {lj}; resource rj ∈ R was allocated

to ti ∈ T .
3) l+j = Lj ; the load capacity of resource rj ∈ R has

been fully utilized.
4) d[ti, Vi(x+1)] ≥ γi; allocated effectiveness for task

ti ∈ T has reached or exceeded threshold γi, where
Vi(x + 1) = {ri0 , ri1 , · · · , rix

} denotes a partial
team formed (for task ti ∈ T ), x ≥ 0; Vi(0) = ∅.

5) rix
∈ Vi(x + 1) and d[ti, rix

, x] > 0, but rix
�∈ Fj ;

the contributing member rix
∈ R that just joined

team Vi(x + 1) is not rj ∈ R’s affiliate.

With (9), we see that d[ti, rj , L
j ] = 0 ≤ d[ti, rj , L

j − 1] ≤
· · · ≤ d[ti, rj , 1] ≤ d[ti, rj , 0].

Definition 5 of team effectiveness and the non-increasing A-
QoS reasoning model (9) imply an additive but not necessarily
a super-additive environment4; the former definition suggests
the bigger the coalition, the better it is, but this is constrained
by the latter model which suggests the addition of agents to a
task coalition is costly in the sense that doing so, these agents
become subsequently less able to meet the A-QoS demands
of the other tasks. Therefore expanding coalitions, especially
up to a grand coalition (one that includes all the agents [12])
for a task may not be beneficial overall.

3This occurs immediately following the (x + 1)-th negotiation session of
the proposed algorithm for G-CLAP (Section III-B).

4In a super-additive condition [11], adding more agents into a coalition is
always beneficial.

4) The |R| × |T | G-CLAP Statement: Assume |T | ≤ |R|.
Then formally, the objective, given A-QoS reasoning model
(9) in an additive environment, is to find the particular (total)
assignment mapping

Π : T → 2R (10)

such that every team Π(ti) is effective (Definition 5) and the
total A-QoS

Sctot =

|T |−1∑
i=0

d[ti,Π(ti)] (11)

is maximized over all possible permutations of Π.
In addressing (a softer version of) G-CLAP, unlike MA3 for

CLAP which is concerned with achieving high total A-QoS
solutions, the proposed solution C-MA3, detailed in the next
section, seeks to form as many effective resource teams Π(ti),
ti ∈ T as possible and aimed towards, though not necessarily
achieving, the (secondary) social goal max{Sctot(11)}. Impor-
tantly, trading the social goal for lower negotiation complexity
(Section III-D) does not result in low success rate in forming
effective teams (Section IV).

The original G-CLAP as formulated is a complex opti-
mization problem. Formulating an approach to G-CLAP that
also achieves its social goal (i.e., yields a globally optimal
solution) is an important but challenging direction that should
be pursued in future work.

B. Proposed Solution: C-MA3

C-MA3 assumes that |T | = |R| = N , and consists of an
arbitration agent (or arbiter) and a group of r-agents, r ∈
R. A r-agent is the resource agent representing (i.e., having
the responsibility of selecting tasks t ∈ T only for) resource
r ∈ R, and initially possesses only A-QoS knowledge of the
resource it represents, initially d[t, r, 0] > 0 for all t ∈ T .

We call one complete run of the extended algorithm C-MA3

a course. A course consists of several sessions of negotiation,
and one session involves several negotiation rounds. The
reference data of agent rj ∈ R for the (x + 1)-th session are
summarized in Table I. The main idea, then, is to iteratively
run each session using MA3 on iteratively updated A-QoS
values, until all A-QoS values reduce to 0.

TABLE I

AGENT rj ∈ R’S REFERENCE DATA FOR (x + 1)th SESSION

t0 t1 · · · t(N−1)

λ0j λ1j · · · λ(N−1)j

γ0 γ1 · · · γN−1

d[t0, Vo(x)] d[t1, V1(x)] · · · d[tN−1, VN−1(x)]
constants: nj , Lj

t0 t1 · · · t(N−1)

d[t0, rj , x] d[t1, rj , x] · · · d[t(N−1), rj , x]
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1) Reasoning Mechanism: The purpose of negotiation is to
allocate, for each task ti ∈ T , an effective team Ri, Ri =
Π(ti) ⊆ R. In C-MA3, every resource agent rj ∈ R negotiates
to form its committed task set Hc

j first, from which the teams
Ri can be easily determined if desired. Every resource agent
rj ∈ R will commit to a task ti ∈ T selected after each
session, by adding it to its set Hc

j . As a result, after the 1st

session, updating the allocable A-QoS values using (9) for the
2nd session yields values of d[ti, rj , 1] for all ti ∈ T , rj ∈ R.
Inductively, updating the allocable A-QoS values for the (x+
1)-th session yields values of d[ti, rj , x] for all ti ∈ T , rj ∈ R.
In forming a team Π(ti) such that every resource agent needs
to technically add a task to its set Hc

j after every session, non-
contributing team members (allocating zero A-QoS values for
task ti ∈ T ) may also be included. Only contributing members
in a team Ri can service task ti ∈ T ; the rest can be removed.

A C-MA3 resource agent’s reasoning mechanism may be
presented as follows:

C-MA3 : Collaborative (Resource) Agent rj ∈ R

1) Initialize according to

d[ti, rj , 0] :=

{
0 if d[ti, rj , 0] <

(
λij .

γi

nj

)
,

unchanged otherwise.

2) Iteratively
a) run a session of negotiation via MA3;
b) add task selected to committed-task set Hc

j as the last
element (counting from left);

c) share and accumulate allocated (partial team) effectiveness
for every task;

d) update, for every task, the A-QoS values according to (9);
until it has set all its A-QoS values to 0, and is informed to end
the course.

3) Compute to check its compatibility (Definition 4) with each commit-
ted task tjx ∈ Hc

j , and verify team Rjx ’s effectiveness (Definition
5).

Implicit in C-MA3 is an arbitration role which can be
assumed by a dedicated agent or one of the resource agents,
referred to as the arbitration agent. To start the next session,
every resource agent involved will first inform the arbitration
agent if it is interested to proceed; it is not interested if it has
set all its A-QoS values to 0. The arbitration agent will inform
all the resource agents to end the negotiation course when all
resource agents have indicated the lack of interest to proceed.
Within each session, the arbitration agent proceeds as per that
in MA3.

As a final remark, in running MA3 iteratively, C-MA3 is
attempting to attain the best possible allocation (i.e., one with
maximum total A-QoS) of one different resource to every task
in each session. In doing so, the coalition size might tend to be
minimized since the cumulative team effectiveness for every
task should reach or exceed the task threshold sooner.

C. An Example

To illustrate the mechanism of C-MA3, consider an example
of a 3×3 G-CLAP, with T = {t0, t1, t2} and R = {r0, r1, r2}.
All resources are mutual affiliates, i.e., R = F0 = F1 = F2,

hence nj = 3. The other constant values for γi, λij , 	ij [lj ]
and Lj , are given as follows:

Task Resource task-capability
requirements Task-resource characteristics Task loading

γ0 = 6 λij = 1 L0 = 2
γ1 = 10 �i0[1] = 1.8, L1 = 2
γ2 = 8 �i1[1] = 0.0, �i2[1] = 2.0 L2 = 2

The resource agents’ data for session 1 are listed in Table II.

TABLE II

REFERENCE DATA OF AGENTS rj ∈ R ON ALL TASKS ti ∈ T FOR 1st

SESSION, x = 0

λij

γi

d[ti, Vi(0)]

nj = 3

Lj = 2
d[ti, rj , 0]

(a) Data

t0 t1 t2
1 1 1
6 10 8
0 0 0

t0 t1 t2

(6) 9 7*

(b) r0

t0 t1 t2
1 1 1
6 10 8
0 0 0

t0 t1 t2

10* (3) 4

(c) r1

t0 t1 t2
1 1 1
6 10 8
0 0 0

t0 t1 t2

8 5* (2)

(d) r2

TABLE III

REFERENCE DATA OF AGENTS rj ∈ R ON ALL TASKS ti ∈ T FOR 2nd

SESSION, x = 1

λij

γi

d[ti, Vi(1)]

nj = 3

Lj = 2
d[ti, rj , 1]

(a) Data

t0 t1 t2
1 1 1
6 10 8
10 5 7

t0 t1 t2

0 7.2* (0)

(b) r0

t0 t1 t2
1 1 1
6 10 8
10 5 7

t0 t1 t2

(0) 3 4*

(c) r1

t0 t1 t2
1 1 1
6 10 8
10 5 7

t0 t1 t2

0* (0) 0

(d) r2

TABLE IV

REFERENCE DATA OF AGENTS rj ∈ R ON ALL TASKS ti ∈ T FOR 3rd

SESSION, x = 2

λij

γi

d[ti, Vi(2)]

nj = 3

Lj = 2
d[ti, rj , 2]

(a) Data

t0 t1 t2
1 1 1
6 10 8
10 12.2 11

t0 t1 t2

0 (0) 0

(b) r0

t0 t1 t2
1 1 1
6 10 8

10 12.2 11

t0 t1 t2

0 0 (0)

(c) r1

t0 t1 t2
1 1 1
6 10 8
10 12.2 11

t0 t1 t2

(0) 0 0

(d) r2

In one operational implementation, the arbitration agent first
informs all the three agents about the three tasks and inform
them to get ready for negotiation. Upon A-QoS initialization,
each agent would then respond to the arbitration agent that it
is ready. Once the arbitration agent has received all the three
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responses, it would inform the three agents to proceed with
Session 1.

In illustrating, each agent begins the (x+1)-th session with
a task selection whose A-QoS value is within (), and when the
session ends, it has a new task selection whose A-QoS value
is marked ‘*’ on the same reference data table (e.g., Table II
for the 1-st session).

After Session 1, we have: Hc
0 = {t2}, Hc

1 = {t0} and
Hc

2 = {t1}. The agents share and accumulate the allocated
effectiveness values for every task, as reflected in Table III:
d[ti, Vi(1)]. Each agent then computes and updates the rest
of the data accordingly for Session 2, as shown in Table III.
Each agent then informs the arbitration agent if it is interested
to proceed with Session 2; it is not interested if it has set
all its A-QoS values set to to 0. Because at least one agent
is interested, the arbitration agent informs the three agents to
proceed with Session 2.

After Session 2, we have: Hc
0 = {t2, t1}, Hc

1 = {t0, t2}
and Hc

2 = {t1, t
?
0}. For easy identification in this illustration,

we tag any task tjx
∈ T in set Hc

j that has d[tjx
, rj , x] = 0

with a superscript ‘?’, to indicate that resource rj ∈ R is
non-contributing for task tjx

∈ T . As usual, the agents share
and accumulate the allocated effectiveness values for every
task, and then compute and update the data accordingly for
Session 3, as shown in Table IV. Each agent then informs the
arbitration agent if it is interested to proceed with Session 3.
Because all agents are now not interested, the arbitration agent
informs them to end the negotiation course.

For this negotiation course, after removing the tasks that
will not be serviced (i.e. those superscripted with ‘?’ in sets
Hc

j ), the task selections of the three resource agents are as
follows: For agent r0 ∈ R, the committed task set is {t2, t1},
for agent r1 ∈ R, it is {t0, t2}, and for agent r2 ∈ R, it
is {t1}. For this example, the overall assignment solution is
found to be optimal, with a total A-QoS of (7 + (9− 1.8)) +
(10 + (4 − 0)) + (5) = 33.2. All teams are effective because
in team R0, d[t0, {r1}] = d[t0, r1, 0] = 10 ≥ γ0; in team R1,
d[t1, {r2, r0}] = d[t1, r2, 0] + d[t1, r0, 2] = 5 + (9 − 1.8) =
12.2 ≥ γ1, and in team R2, d[t2, {r0, r1}] = d[t2, r0, 0] +
d[t2, r1, 1] = 7+(4−0) = 11 ≥ γ2, respectively with m0 = 1,

d[t0, r1, 0] = 10 ≥
(
λ01.

γ0

m0

)
, m1 = 2, d[t1, r2, 0] = 5 ≥(

λ12.
γ1

m1

)
, d[t1, r0, 1] = (9 − 1.8) ≥

(
λ10.

γ1

m1

)
, and m2 =

2, d[t2, r0, 0] = 7 ≥
(
λ20.

γ2

m2

)
, d[t2, r1, 1] = (4 − 0) ≥(

λ21.
γ2

m2

)
.

D. Worst-case Complexity of Coalition Formation

This section presents a complexity result for C-MA3 in
terms of the number of negotiation rounds. Proof of the result
requires the following lemma.

Lemma 1: Given an arbitrary N × N G-CLAP instance,
the maximum number of sessions required by C-MA3 is of
the order O(N).

Proof: In the worst case, each A-QoS value of a resource
for a task is non-zero initially, and in every session, for every
resource agent rj ∈ R, only the A-QoS value of the task
ti ∈ T selected following every session is zeroized (i.e., only

Condition 2 of Constraint Zeroize-A-QoS is satisfied). So the
(minimum) number of A-QoS values zeroized after the first
session is N .

If N is even, all N agents will make mutual exchanges
at least once for non-zero A-QoS values in every subsequent
session. It follows that after k sessions, k ≥ 1, there are k

zeroized A-QoS values, with respect to both a resource agent
and a task. Thus, the (minimum) number of non-zero A-QoS
values that are zeroized per session is N . Since the algorithm
will terminate when all N2 A-QoS values have been reduced
to 0, the maximum number of sessions required is N .

If N is odd, say 2r + 1, r ≥ 1, then after the first session,
the (minimum) number of A-QoS values zeroized is 2r per
session for the next (2r−1) sessions. Thus, after 2r or (N−1)
sessions, a minimum of N +2r(2r−1) or N +(N−1)(N−2)
A-QoS values would have been zeroized. Subsequently, it is
2 per session until all N2 A-QoS values have been zeroized,
giving an addition of N2−[N+(N−1)(N−2)]

2 or (N − 1) more
sessions. This leads to a maximum total of 2(N −1) sessions.
Hence the result.

Theorem 2: Given an arbitrary N × N G-CLAP instance,
the worst-case complexity of C-MA3 in terms of the number
of negotiation rounds is O(N3).

Proof: The complexity of C-MA3 is determined by the
core computation of iterating MA3 in sessions. Since, from
Theorem 1, the worst-case complexity of MA3 is O(N2) in
terms of the number of negotiation rounds, and by Lemma
1, the number of sessions required by C-MA3 is bounded by
O(N), it follows that the worst-case complexity of C-MA3 is
O(N3). Hence the result.

IV. C-MA3 SIMULATIONS AND DISCUSSION

To conduct a performance evaluation, we first prototyped a
simulator for algorithm C-MA3. The simulator consists of a
centralized program running on a personal computer. For an
N × N problem instance, the program generates and inputs
each of the N ! initial assignment solutions to a reasoning
mechanism which computes the agents’ task selections which
would have resulted from the distributed agent algorithm C-
MA3.

In principle, C-MA3 can handle an arbitrary problem size
N . But for a complete unbiased simulation, the number of
simulation runs or courses carried out is N ! per problem
instance. Clearly for a big N , it can become intractably
time consuming to simulate for a large number of problem
instances. For experimental purposes, we limit N = 6,
requiring 6! (or 720) simulation runs per problem instance.
Despite this limit, we note that the simulation results also
provide a practical reference for addressing larger problems
that can be decomposed into smaller subproblems for C-MA3.
Problem decomposition, however, is usually done based on
application-specific criteria; this is beyond the scope of this
paper.

The problem instances were generated under the following
settings: For all ti ∈ T , rj ∈ R, Fj = R (hence nj = N ),
λij = 1, Lj = N , and 	ij [l

+
j ] = 0; d[ti, rj , 0] and γi were

randomly generated. A problem is said to be ‘solvable’ if
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there is at least one initial assignment (in Session 1) out of
N ! on which the simulator arrives at an assignment solution
in which all teams are effective. We ran the simulations
until 100 solvable problem instances were generated and
simulated. Only the simulation results for solvable instances
were recorded.

The simulation results show that the maximum number of
sessions per run was about 4 < N and the maximum number
of rounds per course was 21 << N3. In terms of the number
of negotiation rounds, MA3 has a worst-case complexity of
O(N2) (Theorem 1). However, running as a session in C-
MA3, it is empirically lower since, due to A-QoS zeroization,
the number of negotiation rounds decreased (or the negotiation
speed increased) in each successive session This is depicted
in Fig. 2(a). All these suggest that practically, C-MA3 might
frequently form coalitions in a number of rounds of a lower
order than its worst-case analytical bound of O(N3) (Theorem
2).

#S 

N
um

be
r 

of
 r

ou
nd

s 
in

 S
es

si
on

 #
S

Successive sessions in a run of  
�

- � � 3

(a) Number of negotiation
rounds in successive Session
#S of a run

0.677

0.936

1.0000.992

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

   =N     >=N-1  >=N-2  >=N-3
Number of tasks satisfied

P
ro

b
ab

ili
ty

(b) Probability of a run con-
verging with a specific number
of tasks effectively satisfied,
N = 6

Fig. 2. C-MA3 simulations: Some empirical (average) results for 100
randomly generated 6 × 6 solvable problem instances

The increase in speed in successive sessions means that
if C-MA3 were to be halted in the midst, the leverage on
this feature will be lost. However, it does not imply that the
algorithm is not anytime ready; a solution (a team for each
task) is still anytime available whenever C-MA3 needs to be
halted before it would have normally terminated. But as with
any anytime ready algorithm, high solution quality cannot be
guaranteed whenever it is halted this way; herein unlike that
for MA3 which is solely concerned with efficiency in resource
utilization, solution quality includes effectiveness in handling
tasks, i.e., is also defined in terms of the number of tasks
effectively satisfied by the resource teams formed.

It is also found that the average number of tasks satisfied
was 0.9N . A general observation is that the larger the number
of sessions required, the larger the number of tasks found to be
effectively satisfied. Finally, in Fig. 2(b), we present, graphi-
cally, the average probabilities obtained of C-MA3 converging
with N , at least (N −1), (N −2), and (N −3) tasks satisfied.

It can be inferred that for N = 6, a solvable problem instance
is almost guaranteed (99.2%) to have at least (N − 2) tasks
satisfied.

V. RELATED WORK

C-MA3 provides an anytime ready solution for G-CLAP,
and is simple and easy to implement. It is perhaps the only
attempt that uses the solution concept of BDI assignment in
negotiation for coalition formation. A unique feature is that as
negotiation progresses, the C-MA3 resource agents, following
every session, check for satisficing solutions, i.e., whether the
coalitions being formed are effective enough for each task,
while also reasoning to update their capability status according
to their A-QoS models (9).

1) Coalition Formation: Under different problem scenarios,
coalitions can be formed, either by centralized reasoning for
self-interested agents [3], [13], [14] within a game-theoretic
framework, or by distributed reasoning among agents within
a multiagent framework which can be cooperative [15] or non-
cooperative [16]. The coalitions formed are either disjoint [13],
[14] or overlapping [15].

In [17], [15], coalition formation has been utilized as
a means for cooperative agents to coordinate the order of
execution of sub-tasks, so as to maximize some system utility
outcome (reminiscent of the total A-QoS in our context), but
not necessarily reducing the execution time. In our work, it is
utilized as a means for cooperative (resource) agents to have
their resources effectively co-allocated to handle independent
tasks concurrently (i.e., tasks that need to be done in the same
time period). Each resource agent in C-MA3 has a task loading
limit - a necessary and intuitive characterization of resource
capability - without directly limiting the number of agents on
a team as imposed in [15] to reduce algorithmic computations.
Unlike with C-MA3, the optimal solution that may be attained
by the latter given a limit on agent team size can be arbitrarily
far from the actual optimal solution (without the limit), as
noted in [14].

Other related work has focussed on coalition formation in
competitive, game-theoretic environments (e.g., among dif-
ferent companies or self-interested individuals). In this set-
ting [16], [14], coalition formation involves three activities:
1) coalition structure generation (grouping the agents into
coalitions), 2) solving each coalition’s (optimization) problem
within the coalition, and 3) dividing the value of each coalition
among member agents. In ours, it involves, roughly speaking,
interleaving the first two activities among the C-MA3 resource
agents to form agent coalitions during problem solving, con-
current with a different activity 3) which checks, as a necessity
for team effectiveness, each cumulative coalition value - the
sum-total A-QoS contribution by all contributing members
in a coalition as it is being formed - against a (minimum)
task requirement. Activity 3) helps determine if the coalition
formation is successful, and is completed after coalition mem-
bers’ compatibility with assigned tasks and the effectiveness of
their fully formed coalitions have been verified. The existing
approach differs fundamentally from ours on activity 3), since
coalition formation is by self-interested agents concerned with
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how gains from cooperation are to be distributed [16], while
ours is by cooperative task-centric resource agents concerned
with whether the coalitions formed provide enough A-QoS’s
(the gains) to satisfy task requirements.

The proposed C-MA3 complements related research work
with overlapping coalition formation by distributed agent rea-
soning in a cooperative multiagent framework for a different
resource co-allocation problem, G-CLAP.

2) Distributed Constraint Reasoning: There are some ef-
forts not cast in the context of coalition formation but appear to
have addressed a similar problem in the context of distributed
constraint reasoning, notably, work on distributed constraint
optimization problem (DCOP) (e.g., [18], [19]). In principle,
CLAP and G-CLAP are DCOPs. However, being perhaps
overly general, existing DCOP techniques seek to indirectly
minimize the cost values associated with satisfying constraints
between agents, not directly the values associating the vari-
ables and their individual domain values. In reformulating
CLAP as a DCOP, T becomes a set of ‘variables’, R becomes
a finite discrete domain for every variable ti ∈ T , but the
function to maximize5 becomes a rather unintuitive one given
by

∑N−1
i=0 fi(A), where A = {(t, r) | t ∈ T, r ∈ R} is a

solution set and fi(A) is a (valued constraint) function of
(N − 1)-ary constraint, (ti �= tk) ∀tk ∈ T, k �= i, that when
satisfied with ti = r, returns the element d[ti, r] of the standard
CLAP formulation.

In any case, current DCOP techniques are still largely
algorithmic; they do not exploit important agent concepts such
as BDI, agent coalition and capability reasoning to provide
conceptually clearer agent-based solutions that aid in the better
understanding of fundamental application problems. DCOP
techniques also do not lend themselves readily to incremental
problem solving, so their solutions are not guaranteed to be
anytime ready, unlike MA3 and C-MA3.

3) Contracting: In [20], the idea of contracting to address
a task allocation problem [20] is proposed. The problem
definition [20, p. 68, Definition 1] is similar to G-CLAP
but is also not cast in the context of coalition formation.
More importantly, the individual agents considered therein
are self-interested, and each deals with a cost function of
handling subsets of tasks. This contrasts with C-MA3 resource
agents which are cooperative, and informed with a resource
capability model (9). This model explicitly characterizes the
non-increasing capability level of a collaborative agent for
uncommitted tasks, as negotiation progresses and the agent
continually commits to more tasks. Technically, contracting
strives to achieve an optimal task allocation whereas our ap-
proach enables resource capability reasoning through iterative
BDI assignment negotiation [1] to arrive at as many effective
coalitions as possible; global efficiency in resource utilization
(social goal) is treated as a secondary objective.

4) Other Related Approaches: Outside the realm of coali-
tion formation, there are several other approaches to over-
lapping problems on allocation of objects, be they resources,
tasks or roles. For example, in [21], BDI and POMDP models

5We assume that current DCOP techniques for minimizing cost can be
easily modified for maximizing utility (or A-QoS).

are combined to address role allocation in teams. In [22], the
idea of capability matching to perform allocation is proposed.
In [23], [24], different ideas of auctions to decide on how
tasks should be assigned or allocated are developed. As
with C-MA3, these different techniques treat modelling an
application a design issue outside their jurisdiction. In [25], a
role (re)allocation algorithm is developed to enable autonomy
of role reallocation to shift between a human supervisor and
the agents. Other related approaches include reconfiguration
methods for reforming a team [26], self-adapting organizations
[27] and dynamic re-organizing groups [28].

The main idea that distinguishes from existing allocation
approaches is our introduction of resource capability (rea-
soning) models for the formation of effective coalitions: this
enables negotiation that dynamically allocates, taking into
explicit account of individual capability of agents that would
naturally lower as the agents commit to additional tasks in
the process of their joining and forming task coalitions. The
negotiation process is accelerated by Constraint Zeroize-A-
QoS for the A-QoS model (9), which decrements an agent’s
balance capability accordingly upon its task commitment that
concludes a session, up to or before its task loading limit is
reached.

VI. CONCLUSION & FUTURE WORK

We have presented a BDI coalition formation algorithm C-
MA3 as an approximate but effective solution of low negotia-
tion complexity to N × N G-CLAP, a resource co-allocation
problem. C-MA3 extends MA3 [1] by inheriting its BDI nego-
tiation model for communicative reasoning, and incorporating
a local A-QoS (capability) reasoning model, exploited to avoid
computing all possible coalitions and directly limiting the
coalition size. To the best of our knowledge, no other coalition
formation research has attempted to solve a resource co-
allocation problem that explicitly considers resource capability
reasoning.

Empirical evidence from C-MA3 simulations on solvable
N ×N G-CLAP instances shows that C-MA3 yields favorable
results in terms of the number of effective coalitions formed
for different tasks. An objective assessment shows that in the
worst case, the algorithm can form coalitions in a number of
negotiation rounds of a polynomial order O(N3) (Theorem 2),
with empirical evidence suggesting that practically, the com-
plexity order can frequently be lower. Future work includes
gathering more insights of C-MA3 with varied parametric
settings, conducting a probability evaluation on the various
extents (e.g., within 5%, 10%) that the total A-QoS of a
solution produced deviates from the optimal one (social goal)
achievable, and seeking ways to speed up coalition formation
and improve global efficiency. To demonstrate the practical
applicability of C-MA3, it is also expected to include empirical
studies to be carried out 1) in a context specific to an
application (e.g., resource allocation in Grid computing), and
2) on a large scale.
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