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Abstract 

Motivation: Ethnic origin is a complex trait that can be affected via multiple genetic 

factors. The traditional method, based on studying one gene or a few genes at a time, 

is not effective in profiling such a complex nature. Due to the advancement in high 

throughput genotyping, massive polymorphism (marker) information becomes avail-

able. Polymorphisms contain information on individuals’ inherited traits including 

disease susceptibility, physical appearance, ethnic origins, etc. However, typing mul-

tiple genetic markers can still be costly, and constructing an appropriate ethnic classi-

fier may involve heavy computation. To cope with these problems, we propose a new 

method that can accomplish two things at a low computational cost: finding a mini-

mum number of genetic markers and constructing an ethnic classifier based on this 

minimum set of markers. 

Results: We present the following three types of results: (1) By testing on artificial 

datasets with specified degrees of separation, our results suggest that, when popula-

tion groups have distinguished ethnic origins, the number of prototypes and the test 

accuracy of the classifier constructed by APL are nearly constant with respect to n, as 

long as n exceeds a threshold. On the other hand, when the groups are of high admix-

ture, both the number of prototypes and the test accuracy of the constructed classifier 
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become unstable. (2) The proposed adaptive prototype learning (APL) method has 

much lower training cost and comparable test accuracy to two other methods, 

STRUCTURE and Support Vector Machines (SVM). (3) In the largest dataset con-

sisting of 661 individuals, we are able to achieve 98.8% accuracy at top-36 markers 

chosen from 431 STRP markers, and 99.4% accuracy at top-48 markers chosen from 

the same set 431 markers. This is a rather favorable result in comparison with two 

former studies that achieve lower accuracy rates at higher number of markers. 

Availability: The algorithm presented in this paper has been implemented in C. 

Source code is freely available for download at: 

http://dar.iis.sinica.edu.tw/Download%20area/apl.htm. 

Contact: fchang@iis.sinica.edu.tw 

1. Introduction 

Accurate population stratification is essential in genetic researches and in medi-

cal decision-making processes. As indicated by several papers, however, ethnic ori-

gins derived from subjective self-reports can seriously bias the results of genetic stud-

ies (Helgason et al., 2005, Kittles et al., 2002, Pritchard et al., 2001, Risch et al., 

2002). A more scientific and accurate alternative for ethnic identification can be per-

formed by way of genetic markers. However, previous studies based on relatively 

small sets of genetic markers also drew contradictory conclusions on the usefulness of 

discrete genetic categories toward biomedical studies (Burchard et al., 2003; Cooper 

et al., 2003; Haga et al., 2003; Risch et al., 2002; Schwartz, 2001). With recent ad-

vances in unraveling the human genome, profiling of ethnic origin using multiple ge-
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netic polymorphisms has become possible (Hoggart et al, 2004, Patterson et al., 2004, 

Pritchard et al., 2000). In addition, recent applications of some cluster analysis meth-

ods to large sets of genetic markers demonstrated that the resultant clusters exhibit 

good concordance with the commonly used ethnic groups: African, European/West 

Asian, East Asian, Pacific Islanders, and Native American (Bowcock et al., 1994; 

Calafell et al., 1998; Rosenberg et al., 2002; Tang et al., 2005). It was pointed out that 

the previous contradictory conclusions could be resulted from the number and the 

type of genetic markers used in the studies (Risch et al., 2002).  

Nevertheless, genotyping a large number of markers can be costly. The effective 

representation of population stratification should rely on the right markers, rather than 

simply on a large number of markers. In this paper, we propose a method that can ac-

complish the following two things: finding the right set of markers and constructing a 

classier on this set. The proposed method consists of two technical ingredients. First, 

when a set of markers is given, an adaptive prototype learning (APL) algorithm is 

used to determine the location and the number of prototypes (cluster centers) for each 

ethnic group. Second, the set of markers is ranked based on a metric, called informa-

tion gain, and APL is applied to the sets with an increasing number of ranked markers, 

until a desirable classification error is reached. 



 4

We first demonstrate the effectiveness of the classifier constructed by our 

method using artificial datasets with specified degrees of separation. We then apply 

the proposed method to four datasets consisting of various subpopulations excerpted 

from HGDP-CEPH Human Genome Diversity Cell Line Panel (Cann et al., 2002). To 

compare APL with some existing classification algorithms, we also apply the follow-

ing algorithms to the same datasets: a model-based approach adopted by STRUC-

TURE (Pritchard et al., 2000), and a margin-based approach adopted by SVM (Vap-

nik, 1995). The results show that our method achieves results at comparable accura-

cies with other two methods, but at a much faster training speed.  

In the largest dataset that comprises 127 Africans, 108 Southern Americans, 226 

East Asians, 161 Europeans, and 39 Oceanians, totaling to 661 individuals, our 

method achieves 98.8% accuracy at top-36 markers chosen from 431 STRP markers, 

and 99.4% accuracy at top-48 markers chosen from the same 431 markers. These re-

sults are favorable as compared with some previous studies, based on smaller datasets, 

that achieve lower accuracy rates at higher number of markers. 

2. The Method 

2.1 Construction of Feature Vectors out of Genetic Markers 

With the exception of sex chromosomes, each human chromosome has two copies, 

one from the male and the other from the female parent. For convenience of discus-
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sion, we denote one of the two copies as u-copy and the other as v-copy. To label a 

copy as u or v has no implication of its parental origin, since this information is not 

available from the chromosome itself. We also assume that there are L genetic mark-

ers that we want to study. Each marker has also two copies, each residing in a chro-

mosome copy. For the lth marker, the data we collect from its two copies are denoted 

as ui and vi, l = 1, 2, …, L. We thus form two vectors out of the L markers: 

⎩
⎨
⎧

=
=

}., ... ,, {
}, ..., ,, {
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21

L

L
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uuu
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                      (1) 

To compare the genetic polymorphisms between two individuals, we can com-

pare their U and V. For this purpose, we first derive a feature vector out the two vec-

tors. In case ui and vi assume only two values: 1 if a certain feature has been found 

and 0 otherwise, we obtain the feature vector as 

F1(U, V) = U + V.                       (2) 

This derivation of feature vectors is suitable for Alu insertion markers, which are 

genetic markers consisting of the presence/absence of “a family of non-coding DNA 

sequence” (Makalowski, 1995). Such a derivation, however, is not adequate for short 

tandem repeat polymorphism (STRP) markers (Weber and May, 1989). In the latter 

context, where ui and vi denote the number of times an STRP marker repeats itself, 

these numbers should be understood as indices rather than numbers in a coordinate 

system. Thus, to obtain a feature vector for them, we have to first transform the 
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multi-valued U into a binary-valued Ub, where the lth component of U expands to Nl 

components of Ub and Nl is the number of possible values of ui. We perform a similar 

transformation of V into Vb, and then obtain the feature vector as 

F2(U, V) = Ub + Vb.                       (3) 

where the expanded feature vector F2 has the length of ∑ =
=

L

l lND
1

. Thus, for exam-

ple, if U = (1, 2), V = (3, 2), N1 = 3, and N2 = 4, we obtain Ub = (1, 0, 0, 0, 1, 0, 0), Vb 

= (0, 0, 1, 0, 1, 0, 0), and F2(U, V) = (1, 0, 1, 0, 2, 0, 0). In fact, from F2(U, V) and the 

fact that N1 = 3, and N2 = 4, we immediately infer that one copy of the first marker 

does not repeat itself and another copy has 2 repetitions, while both copies of the sec-

ond marker have two repetitions. 

When we have obtained a feature vector out of each gene profile, we are able to 

compute the L2-distance between two feature vectors F = (f1, f2, …, fL) and G = (g1, 

g2, …, gL), defined as 

∑ =
−=− L

l ll gf
1

22 )(  |||| GF .                   (4) 

2.2 Adaptive Prototype Learning Algorithm 

A prototype classification method, which has been successfully applied to the recog-

nition of character images (Chang et al., 2004a; Chang et al., 2004b; Chang et al. 

2005; Chou et al., to appear; Liu et al., 2005) and potentially applicable in many other 

multi-class classification problems, is used in this paper for classifying human popu-
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lation via their genetic polymorphisms. The proposed method is basically a clustering 

method. However, unlike the approach in Rosenberg et al., 2002, which forms clusters 

from samples of different labels (ethnic types), our method forms homogenous clus-

ters in the sense that each cluster consists of samples of the same label. Our method 

thus starts with a set of training samples labeled with their ethnicity. A learning algo-

rithm then proceeds to determine the number as well as the location of prototypes, 

whereas prototypes are defined as prototypes. The algorithm consists of two loops. 

The outer loop decides whether all clusters are homogeneous and, when they are not, 

identify those labels for which we want to build more prototypes. The inner loop 

computes the prototype locations for the number of prototypes specified by the outer 

loop. 

We use the fuzzy c-means (FCM) clustering technique (Bezdek, 1981) in the in-

ner loop to compute the prototype locations. FCM assigns, to each sample x and a 

given cluster center C, a grade of membership that varies inversely with the distance 

between x and C. The cluster center is the weighted average of all samples, with 

grades of membership serving as the weights. This technique relies on an iterative 

process to find the location of cluster centers. The convergence of the iterative process 

is always guaranteed, although not necessarily to the optimal value of the squared er-

ror criterion. 
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In the problem of ethnic classification, we assume that all individuals are repre-

sented as feature vectors (see Section 2.1) in the D-dimensional Euclidean space. Pro-

totypes are also vectors in the same space and do not have to be samples per se. The 

prototype construction process is designed to determine the number and location of 

prototypes. When FCM is used to adjust the location of prototypes, there is no guar-

antee that all samples get absorbed eventually (Chang et al., 2004a). In order to ensure 

that the construction process terminates, we have to make a special control as follows. 

If an unabsorbed sample x is used as a seed for generating new C-prototypes, we 

check whether this addition produces any empty domain of attraction (DOA), where 

the DOA of a prototype p is defined as the set of samples of the same label that find p 

as the nearest prototype. If the DOAs are empty, we declare x as futile and restore all 

old C-prototypes. When a sample is declared futile at some iteration, it will not be 

taken as a sample at any later iteration. The process terminates, when all samples are 

either absorbed or declared as futile, whereas a sample x is absorbed if there is a pro-

totype p such that p has the same label as x and ||x – p||2 < ||x – q||2 for all other pro-

totypes q. The details of this process, referred to as adaptive prototype learning or 

APL, are stated as follows. 

1. For each label C, initiate a C-prototype and set n(C) = 1. 
2. Set all_absorbed = 0. 
3. Outer loop: while all_absorbed equals 0 { 
4. For each sample, perform absorption check. 
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5. If no more un-absorbed samples exists, set all_absorbed = 1. 
6. If there are un-absorbed samples 
7. Inner loop: for each label C { 
8. If there are still unabsorbed C-samples 
9. Set to_augment = 1. 
10. Else 
11. Set to_augment = 0. 
12. Endif 
13. While to_augment equals 1 { 
14. Select a C-sample x out of unabsorbed C-samples. 
15. Employ FCM to determine n(C)+1 C-prototypes, using x 

and all existing C-prototypes as seeds. 
16. If some of the prototypes have empty DOA 
17. Declare x as futile. 
18. Else 
19. set to_augment = 0. 
20. Endif 
21. } 
22. n(C) = n(C)+1.  
23. } End of inner loop 
24. Endif 
25. } End of outer loop 

In Line 1, the initial C-prototype is set to be the statistical average of all 

C-samples. In Line 14, the selection of x is made in the following way. Let ΨC be the 

set of un-absorbed C-samples. Each member of ΨC casts a vote to the nearest member 

in this set. The member that receives the highest vote is selected as x. In Line 15, 

FCM is employed to update prototypes as follows. Let xj, j = 1, 2, …, JC, be a set of 

C-samples. The center ci of cluster i, i = 1, 2,…, n(C)+1, is determined as a weighted 

average of all samples by 
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where uij is the grade of membership of xj in cluster i and m is the fuzzifier parameter 

specified by users. In all applications considered in this paper, the fuzzifier parameter 

m is set to 1.1. The grade of membership uij is determined by 

( )
( )∑ =

−

−

−

−
=

CJ

k
mki

mji
iju

1
1

2

1
2

||||/1

||||/1

xc

xc
 .                   (6) 

FCM is an iterated procedure that first computes grades of membership using (6) 

with {ci} being the set of seeds. It then updates the cluster centers using (5) and the 

grades of membership using (6). This process continues until the number of iterations 

reaches 50, or 0 |||| =−∑ new
ii

old
i cc . The final cluster centers are then assigned as new 

prototypes. 

Proof for the convergence of the APL: 

The number of futile samples is bounded from above, since it cannot exceed the 

total number N of samples. So we assume that the last futile sample is created at itera-

tion J, with J ≤ N. If all samples are absorbed at the end of J, we are done with the 

proof. Otherwise, we will continue to create more prototypes, all with non-empty 

DOAs. If the number of unabsorbed samples never deceases to zero, then we shall 

eventually have more DOAs than samples, implying that some DOA is empty, con-

flicting with the requirement that all DOAs are non-empty.  
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What we have just described is the hard version of APL, which constructs as 

many prototypes as possible to accomplish a zero training error rate. This may not fit 

well with the situation in which noisy samples exist in the training dataset. To insist 

on a zero error rate in this case can compromise the prediction power of the resultant 

classifier. A better way to do is to maintain the error rate to a level so as to generate 

the best test accuracy. To do so requires a cross-validation task, in which we ran-

domly divide the training data into K parts, or K folds. In each trial, we use K-1 folds 

as training data and construct prototypes from them with the APL, and the remaining 

fold as the validation data, on which the test accuracy the prototypes can be tested. 

In the trial in which the kth fold is used as the validation data, we construct pro-

totypes and record the following information. For a given level of training error rate e, 

we record the lowest number nk(e) of iterations at which the training error rate falls 

below e. We also compute the validation accuracy vk(e) for the prototypes constructed 

at iteration nk(e). Let ./)()(
1

Kevev K
k k∑ =

=  The optimal training error rate is then  

).(maxaug eve
e

opt =                     (7) 

At the end of the prototype construction process, i.e., when a zero training error rate is 

achieved, we are able to obtain all v(e) for all e, and thus v(eopt). This constitutes the 

soft version of APL. From this point on, we assume that the soft version of APL is 

used. 
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2.3 Selection of Genetic Markers 

The prototypes built by APL for ethnic groups turns out to be quite stable, as reflected 

in the following fact. Suppose that the total quantity of genetic markers is M. We first 

rank these M markers according to a metric, to be defined in a moment. We then sort 

these markers according to this metric. Let Fn be the set of top-n markers, n = 1, 2, …, 

M. We build prototypes on the feature vectors whose features are taken from Fn. We 

denote the number of prototypes as Pn. It turns out that Pn stays nearly constant when 

we increase n by one at a time. The relative stability of Pn means that a subset of ge-

netic markers is can be as good as the whole set of marker for discriminating ethnic 

types. It also means that researchers can focus their efforts on such a subset and 

achieve the same results as working with a gigantic set. 

To be able to derive a reduced set of markers, we must provide a measure of dis-

criminative power for markers. Note that the concern here is which and how many 

genetic markers are sufficient. This is not the same as what is dealt in dimension re-

duction, whose goal is to find a reduced set of linearly combined features. What we 

are interested here is a subset of markers, rather than some linear combinations of all 

markers. 

Let us first define a few terms. C = {C1, C2, …, Ci, …} be the collection of eth-

nic types, and {m1, m2, …, mj, …} be all possible values that can be obtained from 



 13

marker m. One problem associated with the marker, as we mentioned before, is that a 

marker has two copies. Since they may assume two different values, we view each 

copy as a separate sample. The two copies of the same marker are therefore viewed as 

two independent samples. The discriminative power of a marker is then defined as the 

gain of information: 
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where |Ci| = the number of samples whose ethnic type is Ci, ∑= i iCC ||  || , |mj| = the 

number of samples whose m-marker assumes value mj, ∑= j imm ||  || , and |Ci ∧ mj| = 

the number of samples whose ethnic type is Ci and whose marker m assumes value mj. 

The information gain is the difference between the entropy H(C) and the condi-

tional entropy )|( mH C . It measures how much uncertainty about ethnic identities 

can be reduced due to the information carried by the marker m. We rank all markers 

according to this metric. For n = 1, 2, …, M, let Pn be the number of prototypes for 

top-n markers, and vn the validation accuracy of these prototypes. Note that both Pn 

and vn are average numbers, since they are averages of results obtained in K trials.  

The minimal number of markers is then chosen to be the smallest m such that 

ε≤− || Mn vv  and Mn PP ≤  for 0nmnm +≤≤ , where ε is a positive real number 
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and n0 a positive integer, specified by users. In Section 3, we shall specify the values 

of ε and n0 for the datasets on which we perform the experiments. 

3. Experiment Results. 

In this section, we first apply APL to some artificial datasets, each of which consists 

of two ethnic groups with a specified degree of separation. We then apply APL to 

some real ethnic datasets and also to compare its performance with that of two other 

algorithms: STRUCTURE, and SVM. In both experiments, we employ 5-fold 

cross-validation. The average accuracy on the validation data is denoted as the valida-

tion accuracy. 

3.1 Performance Evaluation on Artificial Data 

Before testing on real datasets, we wish to investigate the effectiveness of APL with 

some artificial datasets. For this purpose, we generate a dataset that has two ethnic 

groups G1 and G2, each of which consists of n individuals. We assume that each indi-

vidual has two copies of chromosomes and d genes. Thus, for ethnic group g, we gen-

erate 2n vectors of the form 

) ..., , ,( 21
g
id

g
i

g
i xxx                          (8) 

where g
ijx  is a random variable, g = 1, 2; i = 1, 2, …, 2n; j = 1, 2, …, d. We further 

assume that two consecutive vectors of the form (8) represent two copies of chromo-
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somes of the same individual. 

The degree of separation between G1 and G2 is controlled by parameters µ∆  

and σ, where µ∆  determines the mean differences between G1 and G2 and σ deter-

mines the concentration of each group (a low σ corresponds to a high concentration). 

In our experiment, we consider four pairs of ( µ∆ , σ): (10, 5), (10, 10), (2, 10), and (0, 

10). In addition, we set n = 100 and d = 40. 

Figures 1a-1d correspond to the four pairs of ( µ∆ , σ). Each of these figures 

contains two curves that plot the number of prototypes and the validation error (= 

100% - validation accuracy) of these prototypes for a given number of markers. If the 

number of markers is n, it is understood that markers of top-n ranks are employed. 

Thus, in Figure 1a, the two ethnic groups are highly separated, since the mean differ-

ence between them is large ( µ∆ =10) and each group is rather concentrated (σ=5). 

The solid line shows that APL builds one prototype per ethnic group, when the num-

ber of markers exceeds 2. The dashed line shows that APL achieves 0% validation 

error, under the same condition. As we move on to the other three pairs of ( µ∆ , σ), 

the two ethnic groups become less and less separated, since their mean differences 

become smaller and each group is less concentrated, so APL builds more and more 

prototypes for the same number of markers, as shown in Figures 1b–1d. However, 

even when the two ethnic groups are seriously overlapped, as in the case of Figure 1d, 
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the average number of APL prototypes per ethnic group is close to 1, when the num-

ber of markers exceeds 25. 

 
( µ∆ , σ) = (10, 5) 

(a) 

( µ∆ , σ) = (10, 10) 

(b) 
( µ∆ , σ) = (2, 10) 

(c) 

( µ∆ , σ) = (0, 10) 

(d) 

Figure 1. The clustering performances of APL during the marker-selection process 
evaluated using six datasets of different degrees of separations. 

3.2 Performance Evaluation on Real Ethnic Data 

To create datasets for the training and testing purpose, we draw our data from the da-

tabase HGDP-CEPH Human Genome Diversity Cell Line Panel (Cann et al., 2002), in 

which a total of 1,064 lymphoblastoid cell lines (LCLs) from 1,051 individuals in 51 
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different subpopulations were collected, and 431 STRP markers were typed from the 

DNA of the LCLs. We create four datasets, denoted as A, B, C, and D, each of which 

consists of genotyping data of various subpopulations, excerpted from five major con-

tinents: Africa, America, Asia, Europe, and Oceania. As shown in Table 1, the popu-

lation per continent in the four datasets is composed of individuals from a single race, 

a single nation, two nations, and multiple nations, respectively. 

When applying APL to these datasets to produce prototypes for a given number 

of markers, we also apply SVM and STRUCTURE to the same data. The three algo-

rithms, APL, SVM, and STRUCTURE, are all conducted in a 5-fold cross-validation, 

so that each of these algorithms produces its own validation accuracy for a given 

number of markers. For SVM, we employ RBF-based soft-margin version, where the 

value range of the RBF parameterγ is taken as {10a: a = -6, -5, …, 2}, and the value 

range of the penalty factor C is taken as {10b: b = -4, -2, …, 3}. The search for the 

optimal γ and C is through the 5-fold cross validation. Figures 2 plots the accura-

cies achieved by the three algorithms for the four datasets. The STRUCTURE result 

for dataset D is missing, however, due to the untraceable failure of the executable 

code supplied by Pritchard (Pritchard et al., 2000). 

Table 1. The subpopulations excerpted from each continent. 

Data distribution in dataset A African Biaka Pygmies (36) 
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American Maya (25) 

Asian Han (45) 

European French (29) 

Oceanian NAN Melaneian (22) 

African Kenya (20) 

American Mexico (50) 

Asian China (184) 

European France (53) 

Data distribution in dataset B 

Oceanian Bougainville (22) 

African Kenya, Congo (56) 

American Mexico, Brazil (95) 

Asian China, Japan (215) 

European France, Italy (103) 

Data distribution in dataset C 

Oceanian Bougainville, NewGuinea (39)

African

Central African Republic, De-
mocratic Republic of Congo, 
Senegal, Nigeria, Namibia, 

Kenya (127) 

American Mexico, Brazil, Colombia(108)

Asian China, Japan, Cambodia (226)

European
France, Italy, Orkney Islands,
Russia Caucasus, Russia (161)

Data distribution in dataset D 
 

Oceanian Bougainville, NewGuinea (39)
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(a) (b) 

(c) (d) 

Figure 2. Comparison of validation accuracies achieved by APL, STRUCTURE, and 
SVM applied to the four datasets. 

It is shown in Figure 2 that the three algorithms achieve comparable accuracies 

(the differences are mostly within 1%) in the four datasets and the accuracies degen-

erate in a similar fashion as the number of excerpted subpopulations per continent in-

creases. Despite of the similarity in their results, the APL is advantageous in its much 

shorter training time compared with those of STRUCTURE and SVM, as shown in 

Table 2. It is seen there that APL spends seconds to accomplish the job, while 

STRUCTURE and SVM usually have to spend hours. 

Table 2. Comparison of training time by APL, STRUCTURE, and SVM, applied to 
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the four datasets. 

Dataset APL STRUCTURE SVM 
A 4 sec 2hr 23 min 8 sec 31min 28 sec 
B 10 sec 4hr 12 min 58sec 1hr 14min 20sec 
C 19 sec 6hr 56min 25sec 3hr 0min 47sec 
D 29 sec --- 5hr 7min 31sec 

 

In Section 2.3, we define the minimal number of markers to be m such that 

Mn PP ≤  and ε≤− || Mn vv  for .0nmnm +≤≤  Throughout all the experiments, we 

set ε = 0.005 and n0= 10. Recall that the APL prototypes are cluster centers. It is 

therefore interesting to compare the number of clusters obtained by APL with those 

by STRUCTURE, which is also a clustering-based method. The results are shown in 

Figure 3. In all the four datasets, APL obtains five prototypes (one prototype per con-

tinent), for .10+≤≤ mnm  The minimal numbers of markers are found to be 21, 35, 

38, and 36 respectively. As shown in Figures 3a to 3c, the number of APL prototypes 

is much more stable than the number of STRUCTURE clusters. In Figure 3d, we do 

not plot the number of STRUCTURE clusters, due to the failure of the executable 

code on the dataset D. 
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(a) (b) 

(c) (d) 

Figure 3. Number of clusters obtained by APL and by STRUCTURE. 

Dataset D is the largest dataset among the four, which comprises 127 Africans, 

108 Southern Americans, 226 East Asians, 161 Europeans, and 39 Oceanians, totaling 

to 661 individuals. Our method, using APL as the classification technique and infor-

mation-gain as the as the ranking metric, achieves 98.8% at top-36 markers, and 

99.4% at top-48 markers, as listed in Table 3. In comparison, we quote two previous 

results by Bamshad et al., 2003, and by TuraKulov and Easteal, 2003. Both methods 

use STRUCTURE as the classification technique and randomization as the means for 

ranking, while using different types of markers to be described in a moment. Bamshad 
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et al. works on a dataset consisting of 58 Africans, 67 Asians, and 81 Europeans, to-

taling to 206 individuals. Their method achieves 90% accuracy at 60 markers, ran-

domly chosen from 160 markers (consisting of 100 Alu and 60 tetranucleotide mi-

crosatellites), and 99% accuracy at 100 markers randomly chosen from the same 160 

markers. TuraKulov and Easteal, on the other hand, work on a dataset consisting of 30 

Afro-Americans, 30 Asians, and 30 Caucasians, totaling to 90 individuals. Their 

method achieves 90% accuracy at 100 markers randomly chosen from 5,074 SNP 

markers. 

Table 3. Top-48 STRP markers employed by our method, resulting in 99.4% accuracy 
on dataset D. 

 STRP markers 
Chromosome 1 GTTTT002P, TTTA063P, ATA43C09M, ATA20F08P, 

GATA2B02Z, AAT252, AAT258 
Chromosome 2 GATA181G08M, AAT263P, ATA16D09 
Chromosome 3 ATC3D09, ATA57D10M, AAC030 
Chromosome 4 ATT077P, TAGA049, ATT015, AATA045, GATA150B10 
Chromosome 5 GATA12G02 
Chromosome 6 AGC001b, GATA30A08M, SE30, ATA1F08, TATC050zM 
Chromosome 9 GATA61F04, ATA42G04P 
Chromosome 11 AAT265M, AAT268 
Chromosome 12 AAT262, ATA080M, ATA63A05P 
Chromosome 13 GTT035 
Chromosome 14 ATAC026P, ATGG002 
Chromosome 16 TTTA028, AAT226, ATA063 
Chromosome 17 AAT095, AAT083 
Chromosome 18 CTG008 
Chromosome 19 TTTA075P 
Chromosome 20 GATA65E01, AAAT007 
Chromosome 22 TTA015P, AGAT055Z, AGAT121P 
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Chromosome 23 AAT193, AAAT112P 

4. Conclusion 

In this paper, we propose a method that selects markers and builds prototypes on 

these markers. This method works in the following order. First, it uses the informa-

tion-gain metric to sort all markers. Second, it employs APL to construct prototypes 

on top-n markers, with increasing n. Third, it determines the minimal number of 

markers, based on cross validation results. This method is compared favorably with 

two other approaches, using SVM or STRUCTURE as classification techniques and 

the same metric for ranking markers: the three approaches achieve comparable accu-

racy results, while our method runs at a much faster speed than the other two in train-

ing. The experimental results also show that our method comes up with rather stable 

number of prototypes as well as accuracy rates, as the number of markers exceeds the 

minimum one. These results are also favorable in comparison with some previous 

studies that achieve lower accuracy rates at larger numbers of markers, while working 

on smaller datasets. 

References 

[1] Bamshad, M.J. et al., (2003) Human population genetic structure and inference of 

group membership. Am. J. Hum. Genet., 72, 578-589. 

[2] Bezdek, J.C., (1981) Pattern Recognition with Fuzzy Objective Function Algo-

rithms. New York: Plenum. 



 24

[3] Bowcock, A.M. et al., (1994) High resolution of human evolutionary trees with 

poly-morphic microsatellites. Nature, 368, 455–457. 

[4] Burchard, E.G.., et al. (2003) The importance of race and ethnic background in 

bio-medical research and clinical practice. N. Engl. J. Med., 348, 1170-1175. 

[5] Calafell, F. et al., (1998) Short tandem repeat polymorphism evolution in humans. 

Eur. J. Hum. Genet., 6, 38–49. 

[6] Cann, H.M. et al., (2002) A Human Genome Diversity Cell Line Panel, Science, 

296, 261-262. 

[7] Chang, F. et al., (2004a) A Prototype Classification Method and Its Application to 

Handwritten Character Recognition, IEEE SMC, 4738-4743, Hague. 

[8] Chang, F. et al., (2004b) Applying A Hybrid Method to Handwritten Character 

Recognition, Intern. Conf. Pattern Recognition 2004, 2, 529-532, Cambridge. 

[9] Chang F. et al. (2005), Caption Analysis and Recognition for Building Video In-

dexing Systems, ACM Multimedia Systems Journal, 10, 344-355. 

[10] Chou C.-H. et al., A Prototype Classification Method and Its Use in a Hybrid 

Solution for Multiclass Pattern Recognition, to appear in Pattern Recognition. 

[11] Cooper, R.S. et al (2003) Race and genomics. N. Engl. J. Med., 348, 1166-1170. 

[12] Haga, S.B. and Venter, J.C. (2003) Genetics. FDA races in wrong direction. Sci-

ence, 301, 466. 

[13] Helgason, A. et al. (2005) An Icelandic example of the impact of population 

structure on association studies. Nature Genetics, 37, 90-95. 

[14] Hoggart C.J. et al. (2004) Design and analysis of admixture mapping studies. Am. 

J. Hum. Genet., 74, 965-978. 

[15] Kittles, R.A. et al, (2002) CYP3A4-V and prostate cancer in African Americans: 

causal or confounding association because of population stratification? Hum 

Genet., 110, 553-60. 



 25

[16] Liu, Y.-H. et al., (2005) Language Identification of Character Images Using Ma-

chine Learning Techniques, Inter. Conf. Document Analysis and Recognition, 

Seoul. 

[17] Makalowski, W. (1995) SINEs as a genomic scrap yard: An essay on genomic 

evolution; in TheImpact of Short Interspersed Elements (SINEs) on the Host 

Genome (Maraia, R.J. & Austin, R.G.,eds.) 81-104, Landes Company. 

[18] Patterson, N. et al., (2004) Method for high-density admixture mapping of dis-

ease genes. Am. J. Hum. Genet., 74, 979-1000. 

[19] Pritchard, J.K. et al., (2000) Inference of population structure using multilocus 

geno-type data. Genetics, 155, 945-959. 

[20] Pritchard, J.K., Donnelly, P. (2001) Case-control studies of association in struc-

tured or admixed populations. Theor. Pop. Biol., 60, 227-237 

[21] Risch, N., et al. (2002) Categorization of humans in biomedical research: genes, 

race and disease. Genome Biol., 3, comment2007. 

[22] Rosenberg, N.A. et al., (2002) Genetic structure of human populations. Science, 

298, 2381–238. 

[23] Schwartz, R. S. (2001) Racial profiling in medical research. N. Engl. J. Med., 

344, 1392-1393. 

[24] Tang, H, et al. (2005) Genetic structure, self-identified race/ethnicity, and con-

founding in case-control association studies. Am. J. Hum. Genet., 76, 268-275. 

[25] Turakulov, R. and Easteal, S. (2003) Number of SNPS loci needed to detect 

population structure. Human Heredity, 55, 37-45. 

[26] Vapnik, V. (1995) The Nature of Statistical Learning Theory, Springer-Verlag, 

New York. 

[27] Weber J.L. and May P.M. (1989) Abundant class of human DNA polymorphisms 

which can be typed using the polymerase chain reaction. Am. J. Hum. Genet., 



 26

44, 388-396. 

 


