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Abstract

MIFARE Classic is the world’s most widely deployed
RFID (radio-frequency identification) technology, and it
is supposed to be protected by the proprietary Crypto-
1 stream cipher. However, it proved inadequate after
weaknesses in the design and implementation of Crypto-
1 and MIFARE Classic started surfacing since late 2007
[6, 7, 11–15].

Some users reacted by upgrading to more secure al-
ternatives such as MIFARE DESFire. However, many
(especially in Asia) opted to “patch” MIFARE Classic
instead. Their reasoning might have gone as follows:

“The most serious threat comes from efficient card-
only attacks, where the attacker only needs an off-the-
shelf reader and a PC to tamper a target tag. All effi-
cient card-only attacks depend on certain implementa-
tion flaws. Ergo, if we just fix these flaws, we stop the
most serious attacks without an expensive infrastructure
upgrade.”

One such prominent case is the “EasyCard 2.0,” to-
day accepted in Taiwan as a means of electronic pay-
ment not only in public transportation but also in con-
venient stores, drug stores, restaurants, cafes, supermar-
kets, book stores, movie theaters, etc.

We believe that the whole “patching” approach is
questionable because Crypto-1 is fundamentally still a
weak cipher. In support of our proposition, we present a
new card-only attack based on state-of-the-art algebraic
differential cryptanalytic techniques [1]. Still using the
same cheap reader as previous attacks, it takes 2–15 min-
utes of computation on a PC to recover a secret key of
EasyCard 2.0 after 10–20 hours of data collection. We
hope the new attack makes our point sufficiently clear,
and urge all MIFARE Classic users with important trans-
actions — such as electronic payment — to upgrade to

more secure alternatives soon.

1 Introduction

MIFARE Classic, a brand owned by the NXP Semicon-
ductors, is the most widely used RFID technology in to-
day’s world, with billions of chips sold worldwide. It
is used in many public-transportation ticketing systems
in, e.g., Beijing, Chongqing, Guangzhou, Boston, the
Netherlands, London, Seoul, Taipei, etc. In recent years,
it has even found its way into electronic payment systems
in several Asian countries including China and Taiwan.

The proprietary Crypto-1 stream cipher is designed
to provide cryptographic protection to MIFARE Classic.
NXP Semiconductors has never made public the detailed
algorithm of Crypto-1. Nevertheless, starting from late
2007 in a series of papers, the specifications and several
weaknesses of the cipher have been found via reverse en-
gineering and cryptanalysis [6, 7, 11–15]. As Courtois et
al concluded: “The security of this cipher is therefore
close to zero” [7]. Users of MIFARE Classic around the
world responded differently to this incident. Some kept
silent, while others promptly announced plans to migrate
to more secure technologies such as MIFARE DESFire.

In this paper, we shall investigate in detail one such
replacement being deployed in Taipei, an early adopter
and aggressive user of MIFARE Classic. Branded un-
der the name “EasyCard,” more than 35 million cards
have been issued in Taipei since the official release in
2002, with more than 4.6 million transactions per day in
2012. Starting from 2010, the card is also accepted as
a means of electronic payment by almost all convenient
store chains, as well as drug stores, eateries, cafes, su-
permarkets, book stores, movie theaters, etc. Similar use
of MIFARE Classic is reported in several cities in China
including Beijing, Chongqing, and Guangzhou.



In a nutshell, not only does Crypto-1 use way too short
a key (48 bits) by today’s standards, its cipher structure
also allows very easy recovery of its internal state (and
hence the secret key) if the attacker learns a small number
of contiguous keystream bits [11]. This allows a sniffer
to recover the secret key if it is placed in proximity when
a pair of legitimate reader and tag are in a transaction.

There are two serious implementation flaws which
also cause weaknesses: (i) Parity bits are encrypted
along with the original plaintext, which leaks informa-
tion on keystream bits; (ii) the 32-bit tag nonces used in
the authentication satisfy a degree-16 linear recurrence
relation and can be controlled (by appropriately timing
the authentication attempts). Together, they allow ex-
tremely efficient attacks even when the attacker only has
access to the tag [12].

Compared with sniffer-based attacks, these efficient
card-only attacks are arguably much more serious be-
cause of the low entry barriers: all an attacker needs is a
PC and a cheap, off-the-shelf reader, so any ordinary per-
son can launch such an attack in private by downloading
the appropriate software from the internet.

In late 2012, the EasyCard Corporation rolled out the
so-called “EasyCard 2.0,” a dual-interface smart card
that is compatible with existing EasyCard readers, yet
with all implementation flaws fixed. The tag nonces seem
random and unpredictable, and the tag responses are in-
distinguishable whether the parities sent by the reader are
rm correct or not. This renders all existing efficient card-
only attacks [6, 7, 11–13] ineffective, as we have veri-
fied through experiments. This doesn’t stop, of course,
brute-force attacks, which are arguably less threatening
because it takes years of computation on an ordinary PC.
The attacker would need to have access to expensive su-
percomputers, e.g., GPU or FPGA clusters, in order to
recover the keys within a reasonably short amount of
time. As a result, the EasyCard Corporation seems con-
fident that EasyCard 2.0 can be “reasonably secure,” as
the computational power required by brute-force attacks
is way beyond the reach of an ordinary person.

In this paper, we will show that such a sense of security
is false. Namely, we will present a new card-only attack
based on state-of-the-art algebraic differential cryptana-
lytic techniques [1]. The attack is highly practical: it uses
the same cheap reader as previous attacks [6, 7, 11–13]
and takes 2–15 minutes on a PC to recover the secret key
of EasyCard 2.0 or other similar implementations of MI-
FARE Classic. The extra price one needs to pay for the
new attack is a slightly longer time for data-collection,
typically 10–20 hours. We note that this is not atypically
long for differential attacks. Overall, this is a significant

improvement over the brute-force attacks, which would
take about 4 years on the same PC.

The rest of this paper is organized as follows. In Sec-
tion 2, we will first give some background information on
the cipher itself and the cryptanalytic techniques we have
used to attack it. We will then present our new attack in
Section 3 and empirical resultss in Section 4. Finally, we
will discuss the implications and conclude this paper in
Section 5.

2 Background and Related Work

2.1 Crypto-1 and the MIFARE Classic Au-
thentication Protocol

Crypto-1 is a stream cipher used to provide crypto-
graphic protection to MIFARE Classic tags and contact-
less smart cards. For more than a decade, its design was
kept secret by NXP, along with the rest of MIFARE Clas-
sic. After the details of MIFARE Classic was reverse-
engineered in 2007 [11, 14, 15], many weaknesses have
been discovered, and with them many attacks. These at-
tacks vary greatly in efficacy. The first few key-recovery
attacks exploit the weaknesses of the cipher and gather
the required information either by direct communication
with a legitimate reader or by eavesdropping a commu-
nication session. Although some system vendors argue
even today that these attacks are impractical, the cipher
itself was by then considered cryptographically broken.

A few months later, better, card-only attacks were pub-
lished [12]. These exploit several properties in the au-
thentication protocol of MIFARE Classic as well as flaws
in generating tag nonces.

For the sake of completeness, we include a brief de-
scription of Crypto-1 and its use in the authentication
protocol of MIFARE Classic. Crypto-1 uses a 48-bit lin-
ear feedback shift register (LFSR) with nonlinear out-
put filter [11]. The feedback function of the LFSR is
F(s0,s1, . . . ,s47) := s0⊕ s5⊕ s9⊕ s10⊕ s12⊕ s14⊕ s15⊕
s17⊕ s19⊕ s24⊕ s25⊕ s27⊕ s29⊕ s35⊕ s39⊕ s41⊕ s42⊕
s43. With every tick of the clock, 20 bits from the LFSR
are fed into the function f to generate one new bit of the
keystream. Then the LFSR shifts one bit to the left, and
the new rightmost bit is filled by the output of F — or
(if the operational phase calls for inputs) F XORed with
an input bit. F is primitive: the LFSR has a period of
248−1 clock cycles, the maximum possible.

The function f or output filter consists of two layers of
nonlinear functions. The first layer is a mixed combina-
tion of two 4-input nonlinear functions fa and fb, and the
second layer is a 5-input function fc. Here, fa = 0x2c79,
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Figure 1: The structure of the Crypto-1 stream cipher
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Figure 2: Authentication Protocol in MIFARE Classic.

fb = 0x6617, fc = 0x7907287b in “table form” (col-
lating the output bits as the input goes lexicographically
over its range), and f can then be expressed as

f (s0, . . . ,s47) := fc( fa(s9,s11,s13,s15),

fb(s17,s19,s21,s23), fb(s25,s27,s29,s31),

fa(s33,s35,s37,s39), fb(s41,s43,s45,s47)). (1)

Note that each has an equal number of 0 and 1 bits,
and hence outputs 0 or 1 each with probabily 1/2 if in-
put bits are independently and uniformly distributed over
F2 [12].

On being powered up by the reader’s electromagnetic
field, the tag sends its uid to the reader to start the anti-
collision phase. The reader may then request to authen-
ticate a specific block. The tag sends back a challenge
nonce nT in plaintext. Meanwhile, nT ⊕ uid is shifted
into the LFSR state of Crypto-1. All subsequent com-
munication is encrypted with the keystream, and we will
use the notation {X} to represent the ciphertext of X , i.e.,
X ⊕ keystream. Next, the reader picks its challenge nR,
which will also be shifted into the cipher, and sends {nR}
followed by the answer {aR} to the tag’s challenge. Fi-
nally, the tag replies with its answer {aT} to conclude
the authentication procedure (see Fig. 2). If the tag and
the reader used the same secret key for the initial state of
their ciphers, this authentication procedure should bring
the ciphers on either side to the same internal state, and

the two keystreams generated by both ends will be hence-
forth in sync.

2.2 Existing card-only attacks against MI-
FARE Classic

The best known attacks have been summarized by Gar-
cia et al. [12], which we will recapitulate here for the
sake of completeness. The card-only attacks mainly ex-
ploited the following weaknesses.

1. The communication of MIFARE Classic follows the
ISO 14443-A standard, which requires that a parity
bit be sent after every 8 bits of transmission. How-
ever, in MIFARE Classic, these parity bits are com-
puted over the plaintext, and the keystream bit used
to encrypt the parity bits is reused to encrypt the
next bit of plaintext. Furthermore, during authenti-
cation, the tag would not reply anything if the re-
ceived messages have incorrect parity, i.e., the tag
checks the authenticity of the reader’s answer only
if the parity bits are correct.

2. If all parity bits are correct but the encrypted answer
{aR} to the tag’s nonce cannot be correctly verified,
the tag responds with an encrypted 4-bit error code.
Since the error code is fixed, this leaks 4 keystream
bits.

3. The 32-bit tag nonce is actually generated by a 16-
bit LFSR which runs in a deterministic cycle after
it powers up. Therefore, controlling or measuring
when the reader sends every authentication request
basically gives us control or a very good guess to
the next tag nonce.

4. When a reader is already communicating with a tag
(i.e., having authenticated to certain sector), the pro-
tocol of a subsequent authentication for a new sec-
tor differs slightly from the initial one in that the
tag nonce will be encrypted by the new sector key
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before transmitted to the reader. Since the first tag
nonce was sent in plaintext, and the timing between
two authentication attempts is known, an attacker
can guess the second tag nonce and recover 32 bits
of keystream with high accuracy.

Taking advantage of the weakness in the parity bits,
the attacker can ask to authenticate for a sector of the tag
at hand and answer the tag’s challenge with random {nR}
and {aR} (totally 8 bytes) accompanied with 8 random
parity bits. On average, one out of 256 trials will the
attacker receive the encrypted error code from the tag.
Each such trace reveals 12 bits of information (8 parity
bits and 4 error code bits) on the secret key. In practice,
six traces are enough for the offline brute-force check of
the secret key. It takes 6 · 256 = 1536 trials on average
to gather these traces and can be accomplished within a
minute. The offline part of this attack is to check which
key out of the 248 possible keys generates all “correct”
parity and error code bits in these traces, and the com-
puting time depends on the implementation realized by
the attacker. Pessimistically, the run-time of checking on
a powerful FPGA cluster like COPACOBANA is around
half an hour.

Two other attacks try to trade online communication
for the offline computing time using the weakness that
tag nonces nT can be controlled precisely by timing the
authentication requests. The attacker may substantially
reduce offline search space by fixing either tag or reader
nonce while varying the other, and look for specific prop-
erties.

In the second card-only attack [12], the tag nonce nT
is fixed. The attacker searches for a reader nonce nR such
that flipping the last bit in each byte of nR also flips the
following encrypted parity bit, which averages around
28500 authentication attempts or 15 minutes. Such a nR
let us cut approximately 15 bits from the offline search
space, enabling a standard desktop to finish the compu-
tation in around 1 minute.

For the third attack [12], the attacker fixes response of
the reader to {nR} = 0 = {aR} = 0, and searches for an
nT such that the tag responds with the desired encrypted
error code. For example, it might be desired that the
encryption bits for the code are all zero, which means
that the ciphertext would be identical to the plaintext.
Such search takes 4096 attempts on average since we
need 12 bits (8 parity plus 4 keystream bits) to be exactly
zero. The direct offline search in a huge precomputed
table (with around 236 entries) of the cipher states that
could lead to such pattern may take about one day. How-
ever, with some further attempts to find the parity bits
that correspond to the same nT but different nR and aR

(e.g., {nR}= {aR}= 0xffffffff), one can split the ta-
ble into 4096 parts. This not only makes it easier to store
and read the table but also speeds up the offline search
significantly.

A fourth attack [12] tries to derive from a known sector
key 32 keystream bits generated by a sector key using an-
other unknown one. That, plus the parity-bit weakness in
the parity bits, and Crypto-1 being strucutured such that
the stream can be separated into odd and even-numbered
bits, let us further reduce the search space. As a result,
around only three authentication attempts and less than a
second of offline computation would be needed to deter-
mine the second sector key.

Impact and current countermeasures. The last at-
tack is particularly critical as it takes less than one second
per additional key, making is feasible to “pickpocket” a
card wirelessly if a deployed system leaves unused sec-
tors with default keys or does not diversify keys. There-
fore, several countermeasures have been implemented in
newer versions of MIFARE Classic cards, such as Easy-
Card 2.0, that are still compatible with legacy systems.

First and most importantly, the generator of the tag
nonce is replaced by a better random number genera-
tor (RNG) such that it is no longer possible to control
or predict nT . Also, it is a true 32-bit RNG instead of
having a period of 216. This improvement breaks al-
most all card-only attacks depicted in this section except
the brute-force attack since all the techniques to reduce
the search space make use of the flaw in tag nonce gen-
eration. Furthermore, these new cards now always re-
ply with encrypted error code if the authentication fails,
whether the parity bits are correct or not. It is no longer
possible to gather the required information for the brute-
force attack described above.

2.3 Algebraic differential cryptanalysis

Algebraic cryptanalysis brings the concept of apply-
ing algebraic techniques to attack various cryptographic
primitives, e.g., block ciphers, stream ciphers, and pub-
lic key systems. It is usually done in two major steps.
First, a set of multivariate polynomial equations over a
finite field is constructed to describe the cryptographic
scheme. This system of equations is formulated in a way
that its solutions correspond to certain secret information
of the cryptographic scheme. The second step is then to
solve the system using techniques such as SAT solvers or
Gröbner-basis algorithms. As a result, the efficiency of
this category of attacks is strongly related to the quality
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of the constructed equations as well as the performance
of the system-solving technique in use.

The idea of algebraic cryptanalysis is not new. Back
in 1949, Shannon already noted the relationship between
breaking a good cipher and solving a complex system
of equations [16]. Shannon probably was thinking about
how to build a good cipher, but this concept gives us a
hint of checking possible weaknesses of cryptosystems
using algebraic techniques. However, it was not until
the huge progress in the efficiency of system solving, es-
pecially the solving of multivariate polynomial systems,
that people started to consider system-solving as legiti-
mate attacks. The invention of XL, F4, and F5 [5, 9, 10]
and their variants greatly boosted the speed of solving
multivariate polynomial systems. Also, the substantial
advances in the performance of SAT solvers provides us
with an alternative, namely to transform problems into
boolean formulas and search for solutions.

Differential cryptanalysis exploits information leaked
by special pairs of input and output differences, called
differentials, in a block cipher to distinguish its output
from random or to recover (some of) its key bits [2].
Such an attack is statistical in nature and usually requires
a large number of plaintext-ciphertext pairs, especially
in the context of known-plaintext or ciphertext-only at-
tacks, for which the attacker cannot freely choose the
plaintexts. Even before its publication, differential crypt-
analysis has played a very important role in cipher de-
sign. It is so successful that today’s standard procedures
for designing a new cipher include checking differential
immunity.

In the recent seminal work [1], Albrecht and Cid tried
to incorporate the information obtained from differen-
tial characteristics into algebraic attacks. They proposed
three methods, labeled simply as Attack A, B, and C, of
obtaining and using such information. It happens that At-
tack B works for us even though it was ineffective against
the PRESENT cipher [17]. The reason is that we have a
much better distinguisher to be detailed in Section 3.

2.4 SAT solvers

Satisfiability (SAT) is the problem of deciding if a
boolean formula is satisfiable, i.e., if there exists an as-
signment to the variables such that this boolean formula
evaluates to true. Usually the boolean formula is read in
conjunctive normal form (CNF), which is a conjunction
(logical AND) of clauses formed by disjunctive (logical
OR) literals. A literal is either a variable or its negation.
A complete SAT solver eventually either find a satisfying
assignment to the variables or proves the problem unsat-

isfiable.
Most modern complete SAT solvers are based on the

DPLL algorithm [8], which is simply a branch-and-
backtracking search algorithm with an additional tech-
nique called unit propagation to speed up the search pro-
cedure. All efficient solvers also incorporate conflict
analysis techniques to learn new clauses, whuch help
pruning the search tree, with the difference mainly in
policies for deciding the next branching literal and their
schemes for clause learning.

SAT solvers let us solve problems with large number
of variables within reasonable time and have been exten-
sively used in electronic design automation (EDA). Re-
cently, they are also adopted in other fields such as arti-
ficial intelligence, model checking, bioinformatics, and
cryptanalysis. SAT solvers can be used as a solving en-
gine in a larger solver, i.e., as a subroutine for finding
solutions to suitably formulated boolean SAT subprob-
lems. Alternatively, it can also be extended to take ad-
vantage of the structure in the target problems. For ex-
ample, the award-winning CryptoMiniSat adds the abil-
ity to deal with XOR clauses, which play an important role
in problem instances arising from cryptanalysis. Since an
XOR clause with l literals will expand to 2l−1 OR clauses,
incorporating such an ability not only saves memory us-
age to a great extent, but also significantly accelerates the
search speed if the majority of the clauses in the problem
are XOR clauses.

3 Our attacks

As mentioned in Section 2.1, the introduction of im-
proved MIFARE Classic cards, e.g., EasyCard 2.0,
blocks all existing efficient card-only attacks while main-
taining compatibility with legacy readers. In this sec-
tion, we illustrate several potential attacks using modern
cryptanalysis techniques against these new cards.

Since the tag now replies with an encrypted error code
to every authentication failure (including parity error),
it leaks four keystream bits per authentication attempt.
We call the data collected in one failed authentication
attempt a trace and derive a set of algebraic equations
for the four keystream bits as the following. Let x =
(x0, . . . ,x47) denote the initial state of the LFSR, i.e., the
secret key. The new state of the LFSR after inputting an
n-bit sequence i can be written in a form like:

Ai(x) = Lnx+vi, (2)

where L is a linear transformation that depends only on
the LFSR’s feedback function F , and vi is a 48-bit vector
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that depends on the input i. Then the keystream bit gen-
erated by the nonlinear filter right after the input i can be
obtained by

ai = f (Ai(x)). (3)

Both uid and nT are transmitted in plaintext. It is then
easy to express the LFSR state after inputting uid⊕ nT
in terms of the unknowns x0, . . . ,x47 using Eq. (2). Al-
though only the encrypted reader nonce is available (in
fact, it is generated by the attacker in card-only attacks),
it is still possible to decrypt {nR} using the keystream
bits obtained by Eq. (3) and derive subsequent LFSR
states and keystream bits in the form of polynomials of
x0, . . . ,x47. By equating the 4 keystream bits to their cor-
responding polynomials, we get 4 equations per trace of
failed authentication session. It is then theoretically pos-
sible to collect sufficiently many equations (≥ 12) and
solve the resulted system using Gröbner-basis or SAT
solvers.

In practice, however, the main difficulty of the alge-
braic attack described above lies in the last step, namely,
solving the resulted polynomial system. In fact, the de-
gree of such systems saturates due to the nonlinearity in-
troduced by the recurrent decryption of {nR}. In order to
speed up the solving procedure, we try to extract more
information from the traces using algebraic differential
cryptanalytic techniques.

According to Eq. (2), we know that the difference of
two LFSR states that descend from a common ancestor
is Ai(x)⊕Aj(x) = vi⊕vj, where i and j are two input bit
streams of the same length. It means that we can know
the LFSR state difference after two different nT ’s, even
though we cannot control it. This is easy to circumvent,
however, as one can keep authenticating with a card at
hand, hoping that the desired differences will eventually
show up. For example, we are interested in those pairs
which have only one bit difference in the LFSR state after
inputting uid⊕ nT , especially when the different bit lies
at the leftmost possible position. More specifically, let yi,
yj denote the LFSR states after inputting i, j that corre-
spond to two different tag nonces, then our target would
be the pairs such that ∆y = yi⊕yj = 0x000080000000.
Since nT has only 32 bits, one bit difference at position
16 (cf. Fig. 1) is the furthest we can get. Thanks to the
birthday paradox, it does not take too long to gather suf-
ficiently many such pairs.

Once such a pair is obtained, we can try to manipu-
late the nR of the second trace so that the difference of
the LFSR state after inputting nR is 0. Because nR is
transmitted in ciphertext, we will need to guess the dif-
ference in keystream bits whenever there is a difference

in inputs to the nonlinear filter function. Such a cancel-
lation of input difference could be examined by check-
ing whether the tag responds with an identical encrypted
error code. In other words, the four keystream bits ob-
tained after each authentication failure are used as an or-
acle for confirming whether our guesses in {nR} success-
fully produce the desired differential or not. In practice,
there are false positives due to collision. We will discuss
more about this in Section 4.1 along with the success rate
of guessing the difference bits.

More specifically, our goal in this stage is to keep
pushing bits with zero difference into the LFSR. Since
there is only one bit of difference at position 16 of the
LFSR state at the beginning of this stage, we only need
to keep our eyes on it. When it is shifted to a position
that is not part of input to the nonlinear filter function
f , the difference in keystream bit is 0. In this case, we
know exactly what the difference in the corresponding
bits of {nR} should be by inspecting the feedback func-
tion of LFSR. However, for positions 15, 13, 11, and 9
(cf. Fig. 1), we need to guess the output keystream bits of
the nonlinear function f . If all four guesses are correct,
then we get a pair of traces with identical LFSR state af-
ter shifting in nR. Let zk, z′k be the LFSR states of the pair
after shifting in k bits. Then the following four equations,
or differential relations, should hold.

f (z′k)⊕ f (zk)= f (zk⊕e48−k)⊕ f (zk)=
∂ f

∂ z48−k
(zk)= δk,

(4)
where ek is the 48-bit vector with 1 in the k-th position
and 0 elsewhere, and δk is the guessed difference, for
k = 33,35,37,39.

In addition to Eq. (4), by taking a closer look at state
z33, we devise the following formula as a filter to reduce
the search space of our attack.(

∂ f
∂ z15

(z33)⊕δ33

)(
∂ 2 f

∂ z15∂ z47
(z33)⊕1

)
= 0. (5)

Any state assignment that does not satisfy Eq. (5) would
result in ∂ f

∂ z15
(z33) 6= δ33 and ∂ 2 f

∂ z15∂ z47
(z33) = 0 at the same

time. This means that, no matter what the value of the
newly input bit (z47) is, the output of f would not be
equal to our guessed value, which contradicts with the
fact that we have already reached the same LFSR state in
both traces at the end of the authentication session. As a
result, we have an additional equation for each successful
pair of traces, which is expected to work as a filter that
eliminates 1/4 of the solution space. In practice, there is a
high degree of dependency among the traces, but it does
not take too long to collect sufficiently many pairs such
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that only a few candidate solutions can pass all filters.
Based on our experience, these filters help tremendously
in solving the nonlinear system.

4 Empirical results and Discussion

4.1 Dealing with false positives

In practice, the oracle used in our attack is not 100% cor-
rect. Because we can only observe four keystream bits, it
is possible for two traces to have the same keystream bits
yet different internal states. In our experiments, around
26% of the cases where the four keystream bits agree are
actually false positives. As a result, not all the collected
differential relations, i.e., Eq. (4) and (5), can be incorpo-
rated in the final system to solve. Alternatively, we can
use the following method to reduce the search space in
real implementation.

We note that only 18 bits (z9,z11,z13,z17,z19, . . . ,z45)
might have an effect on the evaluation of Eq. (5), which
we call the filter equation here. Random assignments to
these 18 bits should be in the solution space of the filter
equation with probability q = 3/4, given that the filter
function f is unbiased. Additionally, the correct assign-
ment should be a solution to those filter equations col-
lected from the true positive results. If we collect suffi-
ciently many pairs and rank all 218 possible assignments
by their number of correct evaluations to the collected
filter equations, the correct assignment should be very
close to the top of the list with a high probability. There-
fore, the list serves as a good guide for guessing the 18
bits in the resultant system of equations. We can substi-
tute the 18 variables with the bit assignments according
to the list and try solving the system using SAT solvers.
According to our empirical results, it takes around 2 to
15 minutes for CryptoMiniSat to solve the system if the
18 bits are assigned with correct values.

The next question is how many pairs are sufficient to
put the correct assignment at the top of the list with high
probability. Assume that in total N such differential pairs
are collected, among which Ñ are true positives. The
number of filter equations that the correct assignment
would evaluate to true, denoted by N1, should have the
following probability mass function.

Pr[N1 = n] =
(

N− Ñ
n− Ñ

)
qn−Ñ(1−q)N−n,n = Ñ, . . . ,N.

(6)
Furthermore, if we denote the rank of the correct assign-

Number of filter
equations (N) Percentile Rank(ρ)

90 75 11
110 90 8
130 95 4
150 99 6

Table 1: The percentiles of ρ (Ñ/N = 74%)

ment in the list by ρ , then we have

Pr[ρ = k|N1 = n] =
(

M−1
k−1

)
a(n)M−k[1−a(n)]k−1,

(7)
where M = 218 and a(n) = ∑

n−1
i=0

(N
i

)
qi(1− q)N−i is the

probability that an incorrect assignment evaluates less
than n filter equations to true. Using Eq. (6) and (7),
it is straightforward to compute the probability function
of the rank of the correct assignment by

Pr[ρ = k] =
N

∑
n=Ñ

Pr[ρ = k|N1 = n]Pr[N1 = n]. (8)

We compute the percentiles of the rank of the correct
bit assignments for various numbers of filter equations
and summarize the most useful results in Table 1. This
gives us an estimate of how many pairs would be suffi-
cient to substantially reduce the expected number of tri-
als we have to perform before finally solving the system.
For example, given 150 filter functions collected, we are
able to solve the system in less than 7 trials with a proba-
bility of 99%. This is a very good result because in most
cases, we just need to repeat the computation a few times
before we can recover the key.

4.2 The complete attack
We first summarize our attack procedure as follows.

1. Initiate (failing) authentication sessions with the tar-
get tag and record in a database each nT received,
vnT , and four keystream bits s used to encrypt the
returned error code.

2. For each (nT ,vnT ,s) received, check whether
vnT ⊕ 0x000080000000, matches any vn′T

already
recorded. If so go to Step 3, having found a
pair of nT ’s that produce the state difference ∆y =
0x000080000000. Otherwise repeat Step 1.

3. Guess four δk’s and manipulate {nR} accordingly.
Check whether we see the same four keystream
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bits. If so, record the four differential relations
(cf. Eq. (4)) thus found.

4. Repeat Steps 1-3 until we have collected enough
differential relations (about 600–1000, or 150 to
250 successful attempts), then we use the method
from Section 4.1 to remove the false positives.

5. Feed the differential relations, along with (i) some
equations on keystream bits, to a Gröbner-basis or
SAT solver, and (ii) the 18-bit solution to the filter
equations (cf. Section 4.1) as hint bits, to the (SAT-)
solver and solve for the key. Empirically, we need
about 1 keystream bit equation for every 4–5 differ-
ential relations.

We note that the differential relations, as a system of
equations, tend to be highly redundant and have multiple
solutions. It is to avoid ending up with such a wrong
solution, that in step 5 we must add a few equations on
keystream bits in order to obtain a unique solution with
high probability.

Also, we have tried several different solvers includ-
ing the built-in Gröbner-basis solver in Maple, as well as
PolyBoRi [3]. Empirically, CryptoMiniSat outperforms
the other solvers by a large margin. Hence we only report
the timings obtained using CryptoMiniSat for the rest of
the paper. The results also show that the hint bits are ex-
tremely helpful to CryptoMiniSat, usually resulting in a
tremendous speed-up.

A submarine patch. We had bought a fair number of
EasyCards on the streets of Taipei between 2009 and
2012 trying to track there were different editions of Easy-
Cards. Surprisingly, we discovered that EasyCard 2.0
was actually not the first “patch” attempted by the Easy-
Card Corporation. There is actually another different
kind of EasyCard, that we shall refer to as EasyCard 1.5,
which has been surreptiously in circulation since late
2010 or early 2011.

Although to all outward appearances EasyCard 1.5 is
identical to EasyCard 1.0, it has a better RNG which
makes nT neither predictable nor controllable based on
timing. This already defeats some (but not all) existing
card-only attacks, even though EasyCard 1.5 performs
otherwise identically to the original. For example, since
the parities attack relies on the capability of controlling
nT , such an improved RNG already makes the attack
time much longer if still possible at all. We represent
this fact using a question mark in Table 3, in which we
summarize the time required to carry out various attacks.
It is perhaps surprising that the EasyCard Corporation

Card type Parities checked nT generation
EasyCard 1.0 Yes Predictable
EasyCard 1.5 Yes Somewhat random
EasyCard 2.0 No (always 0x0) Random

Table 2: Types of EasyCards attacked in our experiments

managed to resist the temptation of announcing a secu-
rity upgrade and kept this modification under wraps for
so long. The differences among the three types of Easy-
Cards are summarized in Table 2.

From Table 3, it is clear that our attack is the most
practical one among the effective attacks against Easy-
Card 2.0 in the sense that our attack can be carried out by
an ordinary person in private with an off-the-shelf reader
and a PC.

In Table 3, the GPU result is taken from Chih et al. [4],
while all other experiments are all carried out on a PC
with 2.3 GHz AMD CPU. The data collection, on the
other hand, is performed on a laptop PC with 2.0 GHz
Intel CPU. For CPU brute-force attack, we obviously
have not run it to completion but extrapolate based on
the timing result of a partial run instead. We use open-
source software whenever possible, but we have also im-
plemented and optimized some of the attacks. We are
in the stage of cleaning up our software, which will be
released as open-source.

5 Concluding remarks

In this paper, we have demonstrated a highly practical
attack against the EasyCard 2.0, which is marketed as
having patched the vulnerabilities of previous implemen-
tations of MIFARE Classic. By applying algebraic dif-
ferential cryptanalysis techniques, our card-only attack
can recover the secret key of EasyCard 2.0 within one
day. This includes the time for online data collection and
offline computation, both of which can be carried by a
working platform that costs no more than a few hundreds
of US dollars and is affordable even to the least wealthy
attacker. This again shows the weakness of the Crypto-1
cipher, and highlights the unfortunate the fact that “se-
curity” protocols based on unsound ciphers, such as MI-
FARE Classic, is not suitable for important transactions
such as electronic payment.

It is noteworthy that although our attack takes advan-
tage of some specific weaknesses of Crypto-1, the alge-
braic differential techniques we have developed in this
work could also apply to other ciphers or even hash func-
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Attack type Online time Compute time 1.0 1.5 2.0
Sniffing attack 2 sec. < 2 sec.

√ √ √
GPU brute-force [4] 5 sec. 14 hours

√ √ √
CPU brute-force 5 sec. 4 years

√ √ √

Parities attack > 3 min. < 30 sec.
√

?
Nested authentications 15–75 sec. 25–125 sec.

√ √
Our attack 10–20 hours 2–15 min.

√

Table 3: Timing comparison of all known attacks

tions. All we need is a way to collect algebraic (dif-
ferential) equations from the target cipher and send the
resulted system to Gröbner-basis or SAT solvers. Cur-
rently, we believe that such a technique, combined with
the advances in the solvers, is quite general and power-
ful. The next step of our research is to investigate and
analyze in full the strengths, shortcomings, and perfor-
mance of this technique.

References
[1] ALBRECHT, M., AND CID, C. Algebraic techniques in differen-

tial cryptanalysis. In Proceedings of the 16th International Work-
shop on Fast Software Encryption (Berlin, Heidelberg, 2009),
O. Dunkelman, Ed., FSE 2009, Springer-Verlag, pp. 193–208.

[2] BIHAM, E., AND SHAMIR, A. Differential cryptanalysis of
DES-like cryptosystems. In Proceedings of the 10th Annual In-
ternational Cryptology Conference on Advances in Cryptology
(London, UK, UK, 1991), CRYPTO ’90, Springer-Verlag, pp. 2–
21.

[3] BRICKENSTEIN, M., AND DREYER, A. PolyBoRi: A frame-
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