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Abstract. We present instances of MPKCs (multivariate public key
cryptosystems) with design, given the best attacks we know, and im-
plement them on commodity PC hardware. We also show that they can
hold their own compared to traditional alternatives. In fact, they can be
up to an order of magnitude faster.
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1 Introduction

MPKCs (multivariate public key cryptosystems) [14,[31] are PKCs whose public
keys are multivariate polynomials in many small variables. It has two properties
that are often touted: Firstly, it is considered a significant possibility for Post-
Quantum Cryptography, with potential to resist future attacks with quantum
computers. Secondly, it is often considered to be faster than the competition.

Extant MPKCs almost always hide the private map Q via composition with
two affine maps S,T. So, P = (p1,..., pm) =T 0 Qo0 S: K" — K™, or

P:w=(wi,...,wy) rix:MSercSr%yrZ»z:MquLcT: (21,5 2m)
(1)
The public key consists of the polynomials in P. P(0) is always taken to be zero.
In any given scheme, the central map Q belongs to a certain class of quadratic
maps whose inverse can be computed relatively easily. The maps S, T are affine
(sometimes linear) and full-rank. The x; are called the central variables. The
polynomials giving y; in x are called the central polynomials; when necessary
to distinguish between the variable and the value, we will write y; = ¢;(x).
The key of a MPKC is the design of the central map because, solving a generic
multivariate quadratic system is hard, so the best solution for finding w given z
invariably turns to other means, which depend on the structure of Q.
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1.1 Questions

Four or five years ago, it was shown that instances of TTS and C*~, specifically
TTS/4 and SFLASH, are faster signature schemes than traditional competition
using RSA and ECC [IL[10,[33]. These two instances both been broken in the
meantime [I8[20]. Now that the width of a typical ALU is 64 bits, commodity
PC hardware has never been more friendly to RSA and ECC. While multivariates
still represent a future-proofing effort, can we still say that MPKCs are efficient
on commodity hardware?

1.2 Owur Answers

Currently the fastest multivariate PKCs seems to be from the Rainbow and ¢I1C
families [I6l17]. We run comparisons using Pentium IIT (P3) machines (on which
NESSIE contestants are tested) and modern Core 2 and Opteron (hereafter C2
an K8) machines. On these test runs, we can say that compared to implementa-
tions using standard PKCs (DSA, RSA, ECDSA), present instances of MPKCs
with design security levels of around 28° can hold their own in terms of efficiency.

In this paper, we describe how we select our Rainbow and ¢IC-derived in-
stances sketch our implementation. We also suggest the new approach of using
bit-slicing when evaluating in GF(16) or other small fields during the construc-
tion of the private map.

In the comparison here, we use D. J. Bernstein’s eBATSs system to do bench-
marking. We can conclude that

1. 3IC™p is comparable to SFLASH, but not as fast as Rainbow.
2. Rainbow is fast and T'TS faster, although the security is not as well studied.
3. 2ICTi is a very fast way to build an encryption scheme.

Table 1. Current Multivariate PKCs Compared on a Pentium IIT 500

Scheme result|SecrKey|PublKey|KeyGen|SecrMap|PublMap
RSA-1024 1024b| 128 B| 320 B| 2.7 sec| 84 ms| 2.00 ms
ECC-GF(2'%) 320b| 48 B 24 B| 1.6 ms| 1.9 ms| 5.10 ms

PMI+(136,6, 18, 8) 144b| 5.5 kB| 165 kB| 1.1 sec| 1.23 ms| 0.18 ms
rainbow (2%, 18,12, 12)|| 336b| 24.8 kB| 22.5 kB| 0.3 sec| 0.43 ms| 0.40 ms
rainbow (27, 24, 20, 20)|[ 256b| 91.5 kB| 83 kB| 1.6 sec| 0.93 ms| 0.73 ms

TTS (287 18,12,12) 336b| 3.5kB| 22.5kB|0.04 sec| 0.11 ms| 0.40 ms

TTS (247 24,20, 20) 256b| 5.6kB 83kB|0.43 sec| 0.22 ms| 0.74 ms

2ICTi (128,6,16) 144b 5 kB| 165 kB 1 sec| 0.03 ms| 0.17 ms
2ICTi (256,12,32) 288b| 18.5 kB| 1184 kB|14.9 sec| 0.24 ms| 2.60 ms
QUARTZ 128b| 71.0 kB| 3.9 kB| 3.1 sec| 11 sec| 0.24 ms
3IC-p(2%,32, 1) 380b 9 kB| 148 kB| 0.6 sec| 2.00 ms| 1.90 ms
pFLASH 292b| 5.5 kB| 72 kB| 0.3 sec| 5.7 ms| 1.70 ms
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Table 2. Comparison on One core of an Intel Core 2 (C2)

Scheme result|SecrKey|PublKey KeyGen| SecrMap| PublMap
PMI+(136, 6, 18, 8) 144b| 5.5 kB| 165 kB| 350.8 Mclk|335.4 kclk| 51.4 kclk
PMI+(136, 6, 18, 8)64b 144b| 5.5 kB| 165 kB| 350.4 Mclk|333.9 kclk| 46.5 kclk
rainbow (2%,18,12,12) || 336b| 24.8 kB| 22.5 kB| 110.7 Mclk|143.9 kelk|121.4 kclk
rainbow (2%,24,20,20) || 256b| 91.5 kB| 83 kB| 454.0 Mclk|210.2 kclk|153.8 kclk
rainbow (27,24, 20, 20)64b|| 256b] 91.5 kB| 83 kB| 343.8 Mclk|136.8 kclk| 79.3 kclk
TTS (25,18, 12, 12) 336b| 3.5kB| 22.5kB| 11.5 Mclk| 35.0 kclk|121.4 kelk
TTS (2%, 24, 20, 20) 256b| 5.6kB 83kB| 175.7 Mclk| 64.8 kclk| 78.9 kclk
2ICTi (128,6,16) 144b 5 kB| 165 kB| 324.7 Mclk| 8.3 kclk| 52.0 keclk
2IC™i (128,6,16)64b 144b 5 kB| 165 kB| 324.9 Mclk| 6.7 kelk| 46.9 kclk
2ICTi (256,12,32) 288b| 18.5 kB| 1184 kB|[4119.7 Mclk| 26.7 kclk|385.6 kclk
2ICTi (256,12,32)64b 288b| 18.5 kB| 1184 kB|4418.2 Mclk| 23.0 kclk|266.9 kclk
3IC-p(27,32, 1) 380b 9 kB| 148 kB| 173.6 Mclk| 503 kclk| 699 kclk
pFLASH 292b| 5.5 kB| 72 kB| 86.6 Mclk| 2410 kclk| 879 kclk
DSA/ElGamal 1024b 148B 128B| 1.08 Mclk| 1046 kclk| 1244 kclk
RSA 1024b 148B 128B| 108 Mclk| 2950 kelk| 121 kclk
ECC 256b 96B 64B 2.7 Mclk| 2850 kelk| 3464 kclk

Table 3. Comparison on One Core of an Opteron/Athlon64 (K8)
Scheme result|SecrKey|PublKey KeyGen| SecrMap| PublMap
PMI+(136, 6, 18, 8) 144b| 5.5 kB| 165 kB| 425.4 Mclk|388.8 kclk| 63.9 kelk
PMI+(136,6,18,8)64b || 144b| 5.5 kB| 165 kB| 424.7 Mclk|393.3 kclk| 60.4 kclk
rainbow (2°,18,12,12) || 336b| 24.8 kB[ 22.5 kB| 234.6 Mclk|297.0 kclk|224.4 kclk
rainbow (27,24, 20,20) || 256b| 91.5 kB| 83 kB| 544.6 Mclk|224.4 kelk|164.0 kelk
rainbow (2%, 24, 20, 20)64b|| 256b| 91.5 kB| 83 kB| 396.2 Mclk|138.7 kclk| 83.9 kelk
TTS (2%, 18,12, 12) 336b| 3.5kB| 22.5kB| 20.4 Mclk| 69.1 kclk|224.4 kclk
TTS (27, 24, 20, 20) 256b] 5.6kB|  83kB| 225.2 Mclk|103.8 kclk| 84.8 kclk
2ICTi (128,6,16) 144b 5 kB| 165 kB| 382.6 Mclk| 8.7 kclk| 64.2 kclk
2ICTi (128,6,16)64b 144b 5 kB| 165 kB| 382.1 Mclk| 7.5 kclk| 60.1 kclk
2ICTi (256,12,32) 288b| 18.5 kB| 1184 kB|5155.5 Mclk| 31.1 kelk|537.0 kelk
2ICTi (256,12,32)64b 288b| 18.5 kB| 1184 kB|5156.1 Mclk| 26.6 kclk|573.9 kelk
3IC-p(27,32, 1) 380b 9 kB| 148 kB| 200.7 Mclk| 645 kelk| 756 kclk
pFLASH 292b| 5.5 kB| 72 kB| 126.9 Mclk| 5036 kclk| 872 kclk
DSA/ElGamal 148B 148B 128B| 0.864 Mclk| 862 kclk| 1018 kclk
RSA 1024b 148B 128B| 150 Mclk| 2647 kelk| 117 kelk
ECC 256b 96B 64B 2.8 Mclk| 3205 kelk| 3837 kelk

1.3 Previous Work

In [4], Berbain, Billet and Gilbert describe several ways to compute the public
maps of MPKCs and compare their efficiency. However, they do not describe the
evaluation of the private maps.

[18] summarizes the state of the art against generalized Rainbow/TTS schemes.
The school of Stern et al developed differential attacks that breaks minus variants
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[24,120] and internal perturbation [23]. Ways to circumvent these attacks are
proposed in [I3}[19].

The above attacks the cryptosystem as an EIP or “structural” problem. To
solve the system of equations, we have this

Problem MQ(g;n,m): Solve the system p1(x) = p2(x) = -+ = p(x) = 0,
where each p; is a quadratic in x = (21, ..., 2, ). All coefficients and variables
are in K = GF(q), the field with ¢ elements.

Best known methods for generic MQ are F4-F5 or XL whose complexities [11],
21122/[32] are very hard to evaluate; asymptotic formulas can be found in [2]3132].

1.4 Summary and Future Work

Our programs are not very polished; it merely serves to show that MPKCs can
still be fairly fast compared to the state-of-the-art traditional PKCs even on the
most modern and advanced microprocessors. There are some recent advances in
algorithms also, such as computations based on the inverted twisted Edwards
curves [BL[6L[7], which shows that when tuned for the platform, the traditional
cryptosystems can get quite a bit faster. It still remains to us to optimize more
for specific architectures including embedded platforms. Further, it is an open
question on whether the TTS schemes, with some randomness in the central
maps, can be made with comparable security as equally sized Rainbow schemes.
So far we do not have a conclusive answer.

2 Rainbow and TTS Families

We characterize a Rainbow [16] type PKC with u stages:

— The segment structure is given by a sequence 0 < v1 < vg < -+ - < Uyt1 = N.
—Forl=1,...,u+1,set S;:={1,2,...,u} so that |S;| = v, and Sy C S1 C
«++ C Sut1 = S. Denote by o, :=vj41 — v and Oy := Sj41\ Sy forl=1---u.
— The central map Q has component polynomials ¥y, +1 = u,+1(X), Yo, 42 =
Quy+2(X), .+ y Yn = @n(X) — notice unusual indexing — of the following form

i n
Yk = qr(x) = ZZagf)xi:rj + Z ﬂi(k)xi, ifke O :={vy+1--v41}.

i=1 j=i i<vi41

In every qr, where k € Oy, there is no cross-term x;x; where both i and j
are in O at all. So given all the y; with v; < ¢ < w41, and all the z; with
J < vy, we can compute Ty 41, .-, Ty, -
S; is the i-th vinegar set and O; the corresponding i-th oil set.
— To expedite computations, some coefficients (agf)) may be fixed (e.g., set to
zero), chosen at random (and included in the private key), or be interrelated

in a predetermined manner.
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— To invert Q, determine (usu. at random) x1,...x,,, i.e., all z, k € Sy. From
the components of y that corresponds to the polynomials p/, ,,,...p), , we
obtain a set of 01 equations in the variables zy, (k € O1). We may repeat
the process to find all remaining variables.

For historical reasons, a Rainbow type signature scheme is said to be a TTS
[33] scheme if the coefficients of Q are sparse.

2.1 Known Attacks and Security Criteria

1. Rank (or Low Rank, MinRank) attack to find a central equation with least
rank [33].
CVlow rank ~ [qv1+1m<n2/2 - m2/6)/] m.

Here as below, the unit m is a multiplications in K, and vy the number
of vinegars in layer 1. This is the “MinRank” attack of [25]. as improved
by [833].

2. Dual Rank (or High Rank) attack [9,25], which finds a variable appearing
the fewest number of times in a central equation cross-term [18,[33]:

~ n—v' 3
C’high rank ~ |:q0 Y'n /6:| m,

where v’ counts the vinegar variables that never appears until the final seg-

ment.

Trying for a direct solution. The complexity is roughly as MQ(g; m,m).

Using the Reconciliation Attack [I8], the complexity is as MQ(q; vy, m).

5. Using the Rainbow Band Separation from [I§], the complexity is determined
by that of MQ(q;n, m + n).

6. Against TTS, there is Oil-and-Vinegar Separation [30,26L27], which finds an
Oil subspace that is sufficiently large (estimates as corrected in [33]).

-

Cuov ~ [¢"7*° "o 4 (some residual term bounded by 0°¢™°/3)] m.
o is the max. oil set size, i.e., there is a set of o central variables which are
never multiplied together in the central equations, and no more.

2.2 Choosing Rainbow Instances

First suppose that we wish to use SHA-1, which has 160 bits. It is established
by [18] that using GF(2®) there is no way to get to 289 security using roughly
that length hash, unpadded.

Specifically, to get the complexity of MQ(2%, m, m), to above 289 (the direct
attack) we need about m = 24. Then we need MQ(28,n,n+m) to get above 289
(the Rainbow Band Separation), which requires at least n = 42. This requires
an 192-bit hash digest plus padding and a signature length of 336 bits with the
vinegar sequence (18,12,12).

If we look at smaller fields, that’s a different story. If we use GF(2%), we need
20 oil variables each in the last segment and at least 20 vinegar variables in the
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first segment to get by the minrank and high rank attacks. To be comparable
to the sizes of 3TC-p, we choose the vinegar (structural) sequence (24,20, 20).
The digest is 160 bits and the signature 192. We use random parameters under
this framework and don’t do TTS. The implementations are described below. In
each of the two instances, the central map is inverted by setting up and solving
two identically-sized linear systems.

2.3 Choosing TTS Instances

TTS of the same size over GF(2%) or GF(2%) are 2x or more the speed of than
a Rainbow instance. They also tend to have instances also have much lower
memory requirement. But we don’t really know about their security.

The following are T'TS instances built with exactly the same rainbow struc-
tural parameters and called henceforth TTS/7. They have exactly the same size
input and output as the corresponding Rainbow instances:

TTS (28,18,12,12) K =GF(2%), n = 42, m = 24. Q is structured as follows:

11
Yi = X + Ui1To; + Ai2%o! + Zpijfl?jﬂsiﬂm(j)
§=0
+ Pi 127, (12)Tr; (15) T Pi13% 7, (13) Ty (16) T Pi, 14T, (14) Ty (17)5 ¢ = 18-+ 29
[indices 0---17 appears exactly once in each random permutation 7,
and exactly once among the o, o/ (where six o/ slots are empty)];
11
Yi = X + 01T, T Ai2%o! + A3Toy + Z 56j+29(]9ij56m(j) +pi,j+12$m(j+12))
§=0
+ Pi,24% 7, (24) T, (27) T Di,25%m,(25) Ty (28) T Pi,26T 7, (26)Tr; (29), ¢ = 30+ - - 41
[indices 0 - --29 appears exactly once in each random permutation 7,

and exactly once among the o, o/, 0" (where six o/ slots are empty)].
TTS (24,24,20,20) K =GF(24), n = 64, m = 40.

19
Yi = T +ai1To; + Ai2%o0 + Zpijxj+23xm(j)
j=0
+ Di20T 7, (20) T, (22) T Pi,21T7;(21) Ty (23), = 24+ 43
[indices 0---23 appears exactly once in each random permutation ;,
and exactly once among the o, o’ (there are only four o7)];
19
Yi = T +Ai1To; + Ai2%o! + Ai3T51 + Z Tj+44 (pijffm(j) + pi,j+205177ri(j+20))
j=0
+ Pi 40T, (40)Tr; (42) T Di a1 Tr,(41) T, (43), § = 44+ 63
[indices 0 - --43 appears exactly once in each random permutation ;,

and exactly once among the o, o', ¢’ (there are only four o).
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3 The £-Invertible Cycle (/IC) and Derivatives

The ¢-invertible cycle [I7] can be best considered an improved version or ex-
tension of Matsumoto-Imai, otherwise known as C* [28]. Let’s review first the
latter.

Triangular (and Oil-and-Vinegar, and variants thereof) systems are sometimes
called “single-field” or “small-field” approaches to MPKC design, in contrast to
the approach taken by Matsumoto and Imai in 1988. In such “big-field” variants,
the central map is really a map in a larger field IL, a degree n extension of a finite
field K. To be quite precise, we have a map Q : L — L that we can invert, and
pick a K-linear bijection ¢ : . — K". Then we have the following multivariate
polynomial map, which is presumably quadratic (for efficiency):

Q=¢oQog¢p L (2)

then, one “hide” this map Q by composing from both sides by two invertible
affine linear maps S and T in K", as in Eq. [l
Matsumoto and Imai suggest that we pick a K of characteristic 2 and this
map Q
Qixr—y=x"T", (3)

where x is an element in L, and such that ged(1l + g%, ¢" — 1) = 1. The last
condition ensures that the map Q has an inverse, which is given by

9 =" (4)
where h(1+ ¢%) = 1 mod (¢" — 1). This ensures that we can decrypt any secret
message easily by this inverse. Hereafter we will simply identify a vector space
K* with larger field L, and Q with Q, totally omitting the isomorphism ¢ from
formulas.

/IC also uses an intermediate field L. = K¥ and extends C* by using the
following central map from (IL*)* to itself:

Q:(X1,....X0) — (V1,..., Y2) (5)
= (X1 Xy, XoXs, ..., X1 Xe, XeXT).

For “standard 3IC”, £ = 3, a = 0. Invertion in (L*)? is then easy.

Q7 (Y1, Ya, V3) € (L)% o (VY1Y3/Ya, V/Y1Y2/Y3, /Y2Y3/Y1,).  (6)

Most of the analysis of the properties of the 3IC map can be found in [I7] —
the 3IC and C* maps has a lot in common. Typically, we take out 1/3 of the
variables with a minus variation (31C™).

For encryption schemes, “2IC” or £ =2, ¢ =2, a = 1 is suggested.

Qorc t (X1, Xa) — (X1 X2, X1X3), Que: (V1,Ya) — (Y1/Y5,Y2/Y1). (7)
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We construct 21ICi like we do PMI [12]: Take v = (v1,...,v,) to be an r-tuple of
random affine forms in the variables x. Let f = (f1,..., f») be a random r-tuple
of quadratic functions in v. Let our new Q be defined by

x =y = Qorc(x) + f(v(x))

where the power operation assumes the vector space to represent a field. The
number of Patarin relations decrease quickly down to 0 as r increases. For every
y, we may find Q7 1(y) by guessing at v(x) = b, finding a candidate x =
Q;IE (y +b) and checking the initial assumption that v(x) = b. Since we repeat
the high going-to-the-h-th-power procedure ¢" times, we are almost forced to let
q = 2 and make r as low as possible.

3.1 Known Attacks to Internal Perturbation and Defenses

(IC has so much in common with C* that we need the same variations. In
other words, we need to do 3IC™p (with minus and projection) and 2IC*i (with
internal perturbation and plus), paralleling C*~p and C**i (a.k.a. PMI+).

The cryptanalysis of PMI and hence 2ICi depends on the idea that for a
randomly chosen b, the probability is ¢ that it lies in the kernel K of the
linear part of v. When that happens, v(x + b) = v(x) for any x. Since ¢~" is
not too small, if we can distinguish between a vector b € T~ (back-mapped
into x-space) and b ¢ T~1K, we can bypass the protection of the perturbation,
find our bilinear relations and accomplish the cryptanalysis.

In [23], Fouque, Granboulan and Stern built a one-sided distinguisher using a
test on the kernel of the polar form or symmetric difference DP(w,b) = P(b +
w) — P(b) — P(w). We say that t(b) = 1 if dim kery, DP (b, w) = 28°4(2) _ 1,
and ¢(b) = 0 otherwise. If b € K, then ¢(b) = 1 with probability one, otherwise
it is less than one. In fact if ged(n, o) > 1, it is is an almost perfect distinguisher.
We omit the gory details and refer the reader to [23] for the complete differential
cryptanalysis.

Typically, to defeat this attack, we need to add a random equations to the
central map. For 2ICi as for PMI, both a and r are roughly proportional to
n creating 2IC7i like we did PMI+ [13]. PMI+(n,r,a, ) refers to a map from
GF(2") with r perturbations, a extra variables, and a central map of x — x2"+1,
Similarly, 2ICTi(n,r,a) refers to 2IC with r perturbations dimensions and a
added equations.

3.2 Known Attacks to Minus Variants and Defenses

The attack found by Stern etc. can be explained by considering the case of C*
cryptosystem. We recollect that the symmetric differential of any function G,
defined formally:

DG(a,x) := G(x+a) — G(x) — G(a) + G(0).
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is bilinear and symmetric in its variables a and x. Let ¢ be an element in the
big field L. Then we have

DQ(¢ - a,z) + DQ(a, ¢ - ) = (¢ +()DQ(a, ).

Clearly the public key of C*~ inherits some of that symmetry. Now not every
skew-symmetric action by a matrix M¢ that corresponds to an L-multiplication
that result in M?Hl + H;M¢ being in the span of the public-key differential
matrices, because S := span{H; : i = 1---n — r} as compared to span{H; :
i =1---n} is missing r of the basis matrices. However, as the authors of [20]
argued heuristically and backed up with empirical evidence, if we just pick the
first three M?Hl + H;M¢ matrices, or any three random linear combinations of

the form Y77\ b;(M{ H; + H;M¢) and demand that they fall in S, then

1. There is a good chance to find a nontrivial M. satisfying that requirement;

2. This matrix really correspond to a multiplication by ( in L;

3. Applying the skew-symmetric action of this M¢ to the public-key matrices
leads to other matrices in span{H; : ¢ = 1---n} that is not in S.

Why three? There are n(n — 1)/2 degrees of freedom in the Hj, so to form a
span of n—r matrices takes n(n —3)/2+r linear relations among its components
(n —r and not n because if we are attacking C*~, we are missing r components
of the public key). There are n? degrees of freedom in an n x n matrix U. So, if
we take a random public key, it is always possible to find a U such that

UTH, + HiU, UTHy + HoU € S =span{H; :i=1---n —r},
provided that 3n > 2r. However, if we ask that
UTH, + HU, U"Hy + HyU, UTHs + HsU € S,

there are many more conditions than degrees of freedom, hence it is unlikely to
find a nontrivial solution for truly random H;. Conversely, for a set of public keys
from C*, tests [20] shows that it almost surely eventually recovers the missing r
equations and break the scheme.

Similarly, [24] and the related [29] shows a similar attack (with a more complex
backend) almost surely breaks 3IC~ and any other /IC~. For the /IC case, the
point is the differential expose the symmetry for a linear map (X7, X2, X3) —
(&1X7, £&X5, £3X3). Exactly the same symmetric property is found enabling the
same kind of attacks.

It was pointed out [15] that Internal Perturbation is almost exactly equal to
both Vinegar variables and Projection, or fixing the input to an affine subspace.
Let s be one, two or more. We basically set s variables of the public key to be
zero to create the new public key. However, in the case of signature schemes,
each projected dimension will slow down the signing process by a factor of q. A
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differential attack looks for an invariant or a symmetry. Restricting to a subspace
of the original w-space breaks a symmetry. Something like the Minus variant
destroys an invariant. Hence the use of projection by itself prevents some attacks.

In [I9], it was checked experimentally, for various C* parameters n and 6, the
effect of restricting the internal function to a randomly chosen subspace H of
various dimensions s. This is a projected C*~ instance of parameters (g, n,r, s).
We repeated this check for 3IC~ and discover that again the attacks from [24129]
are prevented. We call this setup 3IC™p(q, k, s).

3.3 Choosing Instances

For signature schemes, we choose C*~p(2%,74,22,1), which uses 208-bit hashes

and is related to the original FLASH by the fact that it uses half as wide variables

and project one. We also choose 3IC~p(2%,32, 1), which acts on 256-bit hashes.
To invert the public map of projected minus signature schemes:

Put in random numbers to the “minus” coordinates.

Invert the linear transformation 7" to get y.

Invert the central map C* or 3IC to get x.

Invert the final linear transformation S to get w.

If the last component (nybble) of w is zero, return the rest, else go to step
1 and repeat.

Ol L=

For the encryptions schemes, we choose PMI4-(136, 6, 18, 8) and 2IC (128,6,16)
and (256,12,32).
To invert the public map of internally perturbed plus encryption schemes:

Invert the linear transformation 7" to get y.

Guess the vector b = v(x).

Invert the central map C* or 3IC on y — b to get x.

Verify b = v(x) and the extra a central equations; if they don’t hold, then
return to step 2 and repeat.

5. Invert the final linear S to get w.

=W o=

4 Implementation Techniques

Most of the techniques here are not new, just implemented here. However, we
do suggest that the bit-sliced Gaussian Elimination idea is new.

4.1 Evaluation of Public Polynomials

We pretty much follow the suggestions of [4] for evaluation of the public poly-
nomials. Le., over GF(2%) we use traditional methods, i.e., logarithmic and ex-
ponential tables (full 64kB multiplication is faster for long streaming work but
has a much higher up-front time cost for one-time use). Over GF(2%) we use
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bit-slicing and build lookup tables of all the cross-terms. Over GF(2) we evaluate
only the non-zero polynomials.

4.2 Operating on Tower Fields

During working with the inversion of the central map, we operate the big-field
systems using as much of tower fields as we can. We note that firstly, GF(2) =
{(0)2, (1)2}, where (-)2 means the binary representation. Then t% + ¢ + (1)q is
irreducible over GF(2). We can implement GF(22') recursively. With a proper
choice of o, we let GF(2%') = GF(22i71)[ti]/(tf + t; + «;).. One can also verify
that a;41 := a;t; will lead to a good series of extensions.

For a,b,c,d € GF(221‘71), we can do Karatsuba-style

(at; + b)(ct; + d) = [(a + b)(c + d) + bd]t; + [acc; + bd)

where the addition is the bitwise XOR and the multiplication of expressions of
a,b,c,d and o; are done in GF(22" ). Division can be effected via (at; +b) ™ =
(at; +a+b)(ab + b + a?a;) L.

While most of the instances we work with only looks at tower fields going
up powers of two, a degree-three extension is similar with the extension being
quotiented against t3+¢+1 and similar polynomials, and a three-way Karatsuba
is relatively easy. We can do a similar thing for raising to a power of five.

4.3 Bit-Sliced GF(16) Rainbow Implementations

It is noted in [4] that GF(4) and GF(16) can be bitsliced for good effect.
Actually, any GF(2%) for small k& can be bitsliced this way. In particular, it is
possible to exploit the bitslicing to evaluate the private map.

1. Invert the linear transformation 7" to get y from z. We can use bitslicing
here to multiply each z; to one columne of the matrix M, 1

Guess at the initial block of vinegar variables

Compute the first system to be solved.

Solve the first system via Gauss-Jordan elimination with bitslice.

Compute the second system to be solved.

Solve the second system via Gauss-Jordan elimination with bitslice. We have
computed all of x.

7. Invert the linear transformation S to get w from x.

S e W

Note that during the bitslice solving, every equation can be stored as four bit-
vectors (here 32-bit or double words suffices), which stores every coefficient along
with the constant term. In doing Gauss-Jordan elimination, we use a sequence
of bit test choices to multiply the pivot equation so that the pivot coeflicient
becomes 1, and then use bit-slicing SIMD multiplication to add the correct
multiple to every other equation. Bit-Sliced GF(16) is not used for TTS since
the set-up takes too much time.
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4.4 TTS Implementations
There are a few things to note:

1. Due to the sparsity of the central maps, setting up the Gaussian elimination
to run using bitslice takes too much time. Hence, for TTS in GF(16) we
complete the entire computation of the private map expressing each GF(16)
element as a nybble (4 bits or half a byte) and start the evaluation of the
public map by converting the nybble vector packed two to a byte, to the
bitslice form.

2. Again for GF(16), we maintain two 4kByte multiplication tables that allows
us to lookup either abc or ab and ac at the same time.

3. We use the special form of key generation mentioned in [33,[34]. That is,
following Imai and Matsumoto [28], we divide the coefficients involved in
each public key polynomial into linear, square, and crossterm portions thus:

2=y Prwi+ Y Quw+ Y  Rijpwiwi=» w; | Pt+Qiwi+»  Rijrw;|.
i i i<y i i<j

R;ji, which comprise most of the public key, may be computed as in [34]:

n—1
Rijr= Z (M7) g, (0—ntm) Z P ((Ms)ai(Ms)gj + (Ms)a;j(Ms)gsi)
l=n—m PTaTg in yp

The second sum is over all cross-terms p .z in the central equation for
ye. For every pair i < j, we can compute at once R;jx for every k in O(n?)
totalling O(n*). Similar computations for P, and Q;x take even less time.

The instances that we chose are tested not to suffer the same kind of attacks
that fell previous TTS schemes, but we still don’t have any conclusive evidence
one way or the other of how likely this type of system can stand in the long run.
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