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ABSTRACT
Participatory phone sensing is a new sensing paradigm that asks
volunteers to contribute their phones’ sensing capabilities and gather,
analyze, and share local knowledge about their surroundings. While
most existing participatory phone sensing systems are standalone
structures without cross-system integration, in this study, we pro-
pose a novel Comfort Measuring System (CMS) for public trans-
portation systems. CMS exploits the GPS and 3-axis accelerometer
functions of modern smart phones to measure the comfort level of
vehicle rides. Then, it mashes up the sensed data with the autho-
rized data of the public transportation system, and provides a de-
tailed comfort statistics as a value added service. Using real data
collected from a CMS deployed in Taipei City, we show that the
system can achieve a high hit rate in trajectory matching of phone
sensed data and the authorized bus data. Moreover, based on the
statistics, we demonstrate that the system is capable of ranking
the comfort levels of the bus services provided by different agen-
cies, and monitoring the comfort levels of the transportation system
overall. The system is also highly scalable without the cost of de-
ploying a sensing infrastructure. We believe that it has the potential
to provide a durable and large-scale comfort measuring service for
public transportation systems.

1. INTRODUCTION
The comfort of rides has been identified as one of the top criteria
that affect customers’ satisfaction with public transportation sys-
tems, and it has been shown that comfort is an important consid-
eration for passengers that use public transportation [16, 20, 21].
However, conventional comfort measuring approaches rely on ei-
ther personal interviews [22] or literature surveys [19], which are
generally labor-intensive and time-consuming, and are thus limited
in terms of scalability and timeliness.

With recent advances in sensing technologies and mobile handheld
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devices, participatory phone sensing has emerged as a new sens-
ing paradigm that exploits the sensing capabilities of modern smart
phones to gather, analyze, and share local knowledge about the mo-
bile phone owners’ surroundings [18]. Unlike conventional sensing
systems, participatory phone sensing does not rely on dedicated
sensing infrastructures and the top-down model of data collection.
Actually, it is more penetrative, because it supports grassroots sens-
ing (i.e., the bottom-up model), and it encourages participation at
personal, social, and urban levels [18].

The concept of participatory phone sensing has been implemented
in a variety of real-world applications. For instance, CenseMe
[28] uses the microphone and accelerometer of smart phones to
infers users’ activities and social context. Meanwhile, SoundSense
[27] employs machine learning techniques to classify both general
sounds (e.g., music and voices) and discover novel sound events
specific to individual users in their daily lives. In [17], Azizyan
and Choudhury propose using ambient information (e.g., micro-
phone, camera, accelerometer, and Wi-Fi) to classify the location
of a mobile phone. Nericell [29] employs mobile smartphones for
rich monitoring of road and traffic conditions via an array of sen-
sors (GPS, accelerometer, microphone) and communication radios.
Finally, trajectory sensing applications (e.g., Mobile Google Maps
[8], Waze [6], GeoLife [7], and CarWeb [2]) use the GPS of smart
phones to collect users’ daily life trajectories and provide differ-
ent location-based services as an incentive, such as real-time traffic
reporting [6, 8] and trajectory recommendation [2, 7]. However,
one weakness of these applications is that they are all standalone
systems without cross-domain knowledge and cross-system inte-
gration. As a consequence, they are limited in their ability to pro-
vide value-added services, and they cannot profile large-scale trans-
portation systems as a whole.

In this study, we propose a novel Comfort Measuring System, called
CMS, for measuring the comfort levels of rides on public trans-
portation systems. The CMS system is comprised of three parts:
1) data obtained through participatory phone sensing by volunteers
who sense and score their daily transportation experiences; 2) the
authorized data of public transportation systems, which provides
the reliable, accurate, and detailed information about vehicles in
the system; and 3) a matching algorithm that mashes up the results
of (1) and (2) for further analysis and statistical purposes. Using
the VProbe tool [15] and the authorized bus data provided by the
Taipei e-bus system [14], we deployed the CMS system in Taipei
City. During a 70-day experiment, we collected 425 trajectories,
labeled with vehicle identifiers, from 15 volunteers. Based on the
results, we make the following observations.



Figure 1: The architecture of the CMS system

1. The proposed trajectory matching algorithm can achieve a
high hit rate of 93.7%, as long as the contributed sensing
data is correct (i.e., without GPS errors) and the trajectory of
the vehicle measured is included in the authorized data.

2. In Taipei City’s public bus system, 4% of the bus rides are
considered comfortable, 17% are uncomfortable, and the rest
are in between the two extremes.

3. There is no significant difference in the comfort levels of bus
services provided by different bus agencies in Taipei City;
and the comfort levels vary a lot among bus services operated
by the same agency.

4. Light buses are more uncomfortable than low-floor and the
standard (single-decker) buses.

The remainder of this paper is organized as follows. In Section 2,
we present the CMS system and a trajectory matching algorithm.
In Section 3, we provide a preliminary set of experiment results
for the CMS system deployed in Taipei City, and we investigate
the factors that affect the comfort levels of public transportation
systems in detail. We then summarize our conclusions in Section
4.

2. THE COMFORT MEASURING SYSTEM
In this section, we present the proposed Comfort Measuring Sys-
tem (CMS) for evaluating public transportation systems. CMS is
comprised of three components: data collected through participa-
tory sensing by volunteers, authorized data of public transportation
systems, and data mashup and statistics, as shown in Figure 1. We
discuss each component in the following subsections.

2.1 Data Collected through Participatory Sens-
ing by Volunteers

The CMS system exploits the capabilities of modern smart phones
to sense commuters’ transportation experiences in a distributed and
participatory manner. CMS does not rely on any particular applica-
tions, and it supports many existing smart phone applications that
provide raw sensed data about trajectories and vibration measures,
e.g., Dynolicious Log Box [5], MobileLogger [11], SensorLogger
[13], Sensor Monitor [12], and VProbe [15].

Specifically, a trajectory is the path of a moving object (i.e., a ve-
hicle) through space. It is usually represented by a set of discrete
sample points on the path with a fixed time interval between every
two contiguous data points. Each data point contains a timestamp

of the sample, and its geographical location information (i.e., the
latitude and the longitude).

In addition, the vibration measures contain a sequence of 3-axis ac-
celerations collected by the G-sensor, which is a 3-axis accelerom-
eter now available in most off-the-shelf smart phones. We let ãx

t ,
ãy

t , and ãz
t denote, respectively, the accelerations sensed at time t

on the X , Y , and Z axes of the smart phone; then we apply the
calibration algorithm proposed in [26] to calculate ax

t , ay
t , and az

t ,
i.e., the real accelerations at time t on the X , Y , and Z axes fixed
to the center of the earth.

We let at denote the acceleration of the moving object estimated
at time t; and following the ISO 2631 standard [24], we obtain the
value of at by

at =
√

(1.4ax
t )2 + (1.4ay

t )2 + az
t
2, (1)

and calculate the acceleration level at time t, i.e., Lt, by

Lt = 20 log
at

aref
, (2)

where aref is a normalization factor with a constant value equal
to 10−5m/sec2 [25]. Then, following [4], we obtain the comfort
index at time t, i.e., Ct, by

Ct =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 , if Lt ≤ 83dB
2 , if 83dB < Lt ≤ 88dB
3 , if 88dB < Lt ≤ 93dB
4 , if 93dB < Lt ≤ 98dB
5 , if 98dB < Lt ≤ 103dB
6 , if 103dB < Lt

(3)

Finally, we calculate the comfort level of a trajectory by averag-
ing all the Ct scores that belong to that trajectory. Intuitively, the
smaller the average comfort level, the more comfortable will be the
transportation experience.

2.2 Authorized Data of Public Transportation
Systems

The CMS system requires the authorized data of public transporta-
tion systems, including the vehicle identifiers (i.e., license plate
numbers), the vehicles’ trajectories, and other miscellaneous in-
formation, such as the agency names, the types of the vehicles, and
the route numbers. By using the identifier and trajectory informa-
tion, the CMS associates commuters’ sensed data with the autho-
rized data (which we consider in the next subsection), and thereby
enables the scoring and ranking of each vehicle in the public trans-
portation system by outsourcing the measurement task to the crowd
(i.e., exploiting participatory sensing by volunteers). Moreover, by
considering other information about vehicle attributes, CMS can
provide more insights into the public transportation system; for ex-
ample, Which type of vehicle is most comfortable? Which bus route
is most comfortable? Which bus agency provides the most comfort-
able rides in the city? In the past, gaining such insights would not
have been possible without the deployment of a large-scale infras-
tructure.



With recent advances in GPS and wireless broadband technologies,
an increasing number of major cities world-wide have implemented
real-time tracking systems for their public transportation systems,
e.g., Boston (MA, USA) [10], Cambridge (UK) [1], Chicago (IL,
USA) [3], Seattle (WA, USA) [9], and Taipei (Taiwan) [14]; thus,
they provide perfect testing grounds for the CMS system. In this
study, we acquired the authorized data of the Taipei e-bus system
and evaluated the CMS system in Taipei City. However, the CMS
system can be applied in any city anywhere, as long as there are
people willing to contribute sensing data and the authorized data of
the city’s public transportation system is available.

The Taipei e-bus system was deployed by the Taipei City Govern-
ment in 2004. In the system, each participating bus has an on-
board unit (OBU), which is a thin-client with a GPS receiver and a
GPRS interface. The OBU transmits the bus’s information (the bus
identifier, GPS location, and status codes) to the network control
center (NCC) via the GPRS connection periodically (every 15 ∼
25 seconds). In 2010, the e-bus deployment involved 4,028 buses
(including low-floor buses, public light buses, and standard single-
decker buses) covering 287 routes and 15 operating agencies. The
system covers nearly the entire greater Taipei area (i.e., Taipei city,
Taipei county, and Keelung City). There are more than 180 mil-
lion passenger-trips every day. Through our collaboration with the
Taipei City government, we were allowed to download real-time
bus data every minute. On average, there are 3,865 trajectories and
3,235,460 data points each day.

2.3 Data Mashup and Statistics
In this subsection, we present the trajectory matching algorithm,
which finds the most similar trajectory in the authorized data for
a given trajectory contributed by a participant. We let TP k de-
note the k-th data point of the trajectory logged by the participant’s
smart phone (k = 1, 2, · · · , M ), and let TGj

i denote the j-th data
point of the i-th trajectory in the authorized data (i = 1, 2, · · · , G
and j = 1, 2, · · · , N ). Moreover, we define [TP k]∗i as the interpo-
lated data point of TP k on the i-th trajectory in the authorized data
(using linear interpolation and based on the timestamp of TP k).

Then, we define Δi as the trajectory distance between the user-
input trajectory and the i-th trajectory of the authorized data. The
value of Δi is calculated by Equations 4, where dist(∗, ∗) is a dis-
tance function that reports the Euclidian distance between the two
input GPS locations. Finally, the matching algorithm finds the tra-
jectory ĩ that has the minimum Δi value for i = 1, · · · , G, and
regards the ĩ-th trajectory of the authorized data and the user-input
trajectory record as the movement of the same vehicle. Thus, the
CMS system mashes up the comfort level measurement of the user-
input trajectory with the vehicle of the ĩ-th trajectory in the autho-
rized data and manipulates the statistics accordingly.

Δi =

M∑
k=1

dist(TP k, [TP k]∗i ) (4)

ĩ = arg min
i

Δi (5)

3. PRELIMINARY RESULTS
We now present the preliminary results of the CMS system that we
deployed in Taipei City in March 2010. Figure 2 shows a snapshot

Figure 2: The screen snapshot of the TPE-CMS system

Table 1: The hit rate of the proposed trajectory matching algo-
rithm

Results # of trajectories Percentage
Correct 357 84%

No bus data 41 9.64%
GPS errors 3 0.71%

Miss-matched 24 5.64%

of the deployed system, called TPE-CMS1. Using VProbe [15] as
the sensing tool2, we recruited 15 volunteers to collect bus trajecto-
ries in the city. We also asked the volunteers to label each trajectory
with the vehicle identifier (i.e., the license plate number), and then
used the proposed trajectory matching algorithm to compare the
volunteers’ labels with the matching results.

Between March 15 and July 22, 2010, the volunteers contributed a
total of 425 trajectories with labels. From the results shown in Ta-
ble 1, we observe that the proposed matching algorithm can achieve
a hit rate of 84% (357/425) in finding the vehicle identifier of the
user-input trajectory. Moreover, when analyzing the missed cases,
we found that 41 trajectories were missmatched because, according
to the authorized data, the vehicles of the labeled trajectories were
not in service (i.e., the OBUs were not turned on or they encoun-
tered some technical problems). In addition, 3 trajectories were
missmatched because there are obvious GPS errors in the user-
input trajectories. Thus, after discarding the two cases, our tra-
jectory matching algorithm achieved a hit rate of 93.7% (357/381),
which is highly accurate and favorable for the CMS system.

From the results shown in Figure 3, we observe that, among the col-
lected trajectories, only 4% of them were described as comfortable
(i.e., Ct ≤ 3.0), 17% of them were uncomfortable (i.e., Ct ≥ 5.0),
and the rest were in between the two extremes [24]. Moreover, the
results in Figure 4 show that the trajectories of bus agency 7 are rel-
atively more uncomfortable than those of the other agencies, while

1TPE-CMS: measuring comfort levels of Taipei buses;
http://vprobe.org/TPE-CMS/
2The sample rates of VProbe are 1 Hz for the GPS and 40 Hz for
the G-sensor.
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Figure 3: The CDF distribution of the comfort index among the
collected trajectories
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Figure 4: The statistics of the collected trajectories based on
the bus agencies

the trajectories of bus agencies 11 and 12 are more comfortable.
We also observe that the standard deviation of the comfort index
is quite large for most bus agencies. The result indicates that the
comfort index of trajectories is widely spread, and that ‘trajectory
diversity’ (i.e., the difference in the comfort index across trajecto-
ries) does exist within most bus agencies.
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Figure 5: The statistics of the collected trajectories based on
the bus types

We also investigated the impact of bus types on the comfort indexes
of the trajectories. The results in Figure 5 show that the trips on
light buses are more uncomfortable than those on low-floor buses
and standard buses. This is because the light buses serve suburbs
where the routes are usually winding and the roads may not be in
prime condition. Interestingly, the trajectories of low-floor buses
and standard buses have similar comfort index values, which is
counterintuitive to recent reports [23]. The reason is that the low-
floor buses serve urban areas; thus, it is inevitable that they will
stop more frequently to allow passengers to board/disembark. As a
result, there are no significant differences in the comfort indexes of
the trajectories of low-floor and standard buses.

4. CONCLUSION
In this paper, we propose a Comfort Measuring System (CMS) for
public transportation systems. CMS exploits data collected through
participatory phone sensing to measure the comfort level of each
vehicle ride. It then mashes up the sensed data with the authorized
data of the public transportation system to provide detailed insights
into the comfort levels of vehicle rides. Using real data collected
from the CMS system deployed in Taipei City, we validate the pro-
posed trajectory matching algorithm, and show that it can achieve
a hit rate of 93.7%. Moreover, based on the statistics, we show that
only 17% of bus rides in Taipei are considered uncomfortable, and
there are no significant differences between different bus agencies.



We also find that the comfort level varies a lot among the bus ser-
vices provided by the same agency, and smaller buses are the least
comfortable vehicles. Work on analyzing other factors that affect
comfort levels is ongoing (e.g., road conditions, drivers’ behavior,
and traffic congestion). We hope to report the results in the near
future.
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