
Reliable Multicast Routing for Software-Defined
Networks

Shan-Hsiang Shen*, Liang-Hao Huang*, De-Nian Yang* and Wen-Tsuen Chen*†

*Institute of Information Science, Academia Sinica, Taipei, Taiwan
†Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

Email: {sshen3, lhhuang, dnyang, chenwt}@iis.sinica.edu.tw

Abstract—Current traffic engineering in SDN mostly fo-
cuses on unicast. By contrast, compared with individual
unicast, multicast can effectively reduce network resources
consumption to serve multiple clients jointly. Since many
important applications require reliable transmissions, it is
envisaged that reliable multicast plays a crucial role when an
SDN operator plans to provide multicast services. However,
the shortest-path tree (SPT) adopted in current Internet is
not bandwidth-efficient, while the Steiner tree (ST) in Graph
Theory is not designed to support reliable transmissions since
the selection of recovery nodes is not examined. In this paper,
therefore, we propose a new reliable multicast tree for SDN,
named Recover-aware Steiner Tree (RST). The goal of RST is
to minimize both tree and recovery costs, while finding an RST
is very challenging. We prove that the RST problem is NP-
Hard and inapproximable within k, which is the number of
destination nodes. Thus, we design an approximate algorithm,
called Recover Aware Edge Reduction Algorithm (RAERA),
to solve the problem. The simulation results on real networks
and large synthetic networks, together with the experiment on
our SDN testbed with real YouTube traffic, all manifest that
RST outperforms both SPT and ST. Also, the implementation
of RAERA in SDN controllers shows that an RST can be
returned within a few seconds and thereby is practical for
SDN networks.

Keywords—SDN, multicast, traffic engineering, reliable
transmissions

I. INTRODUCTION

Software-defined networking (SDN) is a new architec-
ture that enables flexible network resources management to
support a huge amount of data delivery [1]. It separates the
control plane and data plane in a network and allows the
control plan to be programmable for effectively optimizing
the network resources allocation. OpenFlow [2] in SDN
consists of two main components: controllers (SDN-Cs)
and forwarding elements (SDN-FEs). A controller takes
control plane from switches and installs the corresponding
forwarding policies through secured interfaces. Forwarding
elements in switches are flexible to support various forward-
ing rules for different traffic. Compared with the traditional
distributed shortest-path routing, SDN enables a centralized
computation on unicast routing for traffic engineering [3]
to improve the network throughput. Nevertheless, multicast
traffic engineering for SDN has attracted much less attention
in the literature.

Multicast is designed to deliver contents to a large
number of destinations. Compared with unicast, multicast

can effectively reduce the bandwidth consumption in back-
bone networks by around 50% [4], because it exploits a
tree, instead of disjoint paths, to connect the source and
destinations; thus, it avoids unnecessary traffic duplication
in intermediate nodes. For multimedia traffic, previous
studies [5] further pointed out that multicast is able to
release the load in the network links and I/O at the video
servers, while VCR-like interactivity required by video-
on-demand services can also be supported in multicast
[5], [6]. Current multicast routing standards, such as PIM-
SM [7], connect the source and a group of destinations
by a shortest-path tree. Traffic engineering is difficult to
be supported in a shortest-path tree since the path from
the root (i.e., source) of the tree to each destination is
still the shortest path. Since the path to each destination
is calculated individually, the shortest-path tree loses many
good opportunities to reduce the bandwidth consumption
by aggregating more edges in the paths, i.e., letting the
paths share more common edges. By contrast, a Steiner
tree (ST) [8] in Graph Theory is more promising because
it minimizes the number of edges in a tree required for
a multicast group. Nevertheless, ST is not adopted in the
current Internet since it is computationally intensive and
difficult to be deployed in a distributed manner. Fortunately,
with the emergence of SDN, it now becomes a feasible
approach to reduce the bandwidth consumption of multicast
traffic. Nevertheless, even the multicast delivery is equipped
with such a power theoretical tool to minimize the network
resources consumption, users will not choose the multicast
delivery option if reliable transmissions are not provided in
multicast.

Nowadays, many applications rely on reliable trans-
missions, even multimedia applications such as YouTube,
Microsoft Smooth Streaming, and MPEG DASH [9]. To
support reliable transmissions in multicast, source-based
reliable multicast [10] is first introduced to directly recover
the loss packets from the source, but it suffers from the
scalability problem since the source is inclined to be over-
whelmed because it needs to provide loss recovery for a
large number of destinations [11]. To effectively address
this crucial issue, a hierarchical architecture [11], [12] with
on-tree recovery nodes placed between the source and the
destinations is proposed to facilitate local loss recovery.
The idea is similar to the web and multimedia cache/proxy
servers widely deployed today, with the goal to facilitate
local services and avoid load concentration on the source
node. However, it is not necessary to deploy an explicit
high-performance server with a large storage for a recovery

node, because a recovery node only needs to temporarily
cache a tiny window of packets, instead of the whole files
in a proxy server. Therefore, reliable multicast has been
implemented in the current routers [13], [14], and it is
important for a multicast tree to choose and span some
recovery nodes in order to facilitate effective loss recovery.

It is envisaged that a lower recovery cost will be reduced
if a destination is close to its recovery node, but in this
case more recovery nodes are necessary to be included
in the tree. On the other hand, if the source is the only
recovery node, the source implosion problem will limit the
scalability of multicast. For SDN networks, it is necessary
for a multicast tree to span suitable recovery nodes for
local loss recovery and minimize the recovery load and the
corresponding traffic, but the Steiner-tree routing does not
consider the selection of the recovery nodes and thus is
difficult to facilitate local loss recovery, especially when
some network nodes are not able to play the role as the
recovery nodes. In the worst case, the Steiner tree may not
be able to span any recovery nodes. Therefore, it is desired
to design a new algorithm to jointly find the routing of
a multicast tree and the selection of recovery nodes for
multicast traffic.

In this paper, therefore, we propose a new reliable
multicast tree for SDN, called Recover-aware Steiner Tree
(RST). Given the source and destinations in a multicast
group, together with the set of candidate recovery nodes
in the network and a non-negative integer r, the RST
problem aims to find a tree to 1) connect the source and
the destinations and 2) span at most r recovery nodes
as intermediates in the tree for local loss recovery. The
objective is to minimize the summation of the tree cost
and total recovery cost, while the tree cost is the total cost
of all edges in the tree [8]. To support a large number of
destinations, it is encouraged to facilitate local loss recovery
by selecting the recovery nodes close to the destinations.
Therefore, the recovery cost of a destination v is the cost
of the path from its local proxy (i.e., recovery node) u
to v in the tree [11], and a smaller recovery cost implies
lower retransmissions delay and bandwidth consumption.
Similarly, the recovery cost of a recovery node u is the cost
of the path from the source s to u in the tree. Parameter
r plays an important role as the tuning knob. By setting a
larger r, more recovery nodes can be selected in the tree to
effectively decrease the recovery cost, but the temporarily
caching overhead also increases. SDN-C can find the best
tradeoff by setting different r to find the desired solution.

Compared with the shortest-path tree, the RST is envis-
aged to allocate the network resources more efficiently since
both the routing and the selection of the recovery nodes
are considered jointly. Compared with the ST, finding the
RST is more challenging due to the selection of recovery
nodes and its impacts on routing. The ST problem is NP-
Hard but can be approximated within ratio 1.55 [15], and
it is thus in APX of complexity theory. It means that there
exists an approximation algorithm for ST that can find a tree
with the total tree cost at most 1.55 times of the optimal
solution. However, the RST problem is more difficult. We
prove that the problem is NP-hard but not able to be
approximated within k, which is the number of destinations
in a multicast group. To solve RST efficiently, we propose
a k-approximation algorithm, named Recover Aware Edge
Reduction Algorithm (RAERA), which can be deployed

in SDN controllers. RAERA is divided into two phases,
Tree Routing Phase and Recovery Selection Phase, to
minimize both tree and recovery costs. Because no (k1−ε)-
approximation algorithm exists in RST for an arbitrarily
small ε > 0, RAERA achieves the best approximation ratio.

The rest of this paper is organized as follows. Sec-
tion II summarizes the literature. Section III presents the
problem formulation and the hardness result. We design a
k-approximation algorithm in Section IV, and Section V
presents the results of our algorithm in a small real network,
large synthetic networks, and our SDN testbed. Finally, we
conclude this paper in Section VI.

II. RELATED WORKS

Previous works on SDN have extensively explored the
issues on traffic engineering for unicast traffic in SDN.
Agarwal et al. [3] considered unicast traffic engineering
in the case where a SDN-C controls only a few SDN-
FEs in the network, and the rest of the network adopts
a standard routing protocol, such as OSPF. The merits
of traffic engineering brought by only a limited number
of SDN-capable nodes are demonstrated. Mckeown et al.
[2] pointed out that OpenFlow can be deployed with
heterogeneous switches. Sushant et al. [16] shared their
experience of SDN development for the private WAN of
Google Inc. Qazi et al. [17] proposed a new system design
in SDN for the middleboxes. Furthermore, Mueller et al.
[18] presented a cross-layer framework in SDN, which
integrates a novel dynamic traffic engineering approach with
an adaptive network management. Nevertheless, multicast
traffic engineering has not been addressed in the above
works.

Current multicast routing standards [7] employ the
shortest paths provided by unicast routing protocols [19] to
build shortest-path trees for distributed multicast routing.
However, in spite of simple construction, the shortest-
path tree is difficult to effectively reduce the bandwidth
consumption. By contrast, the Steiner tree [8] is able to
find a tree with the minimum cost. Nevertheless, the Steiner
tree is not adopted in the current Internet because it is
computationally intensive and difficult to be constructed in
a distributed manner. To address this issue, overlay Steiner
trees [20], [21] for P2P environments were proposed as an
alternative way. Those approaches find the P2P clients to be
directed connected by a path in an overlay tree. However,
the path between any two P2P clients is still the shortest
path in the network, and the routing of the P2P tree is
thereby difficult to be optimized.

Reliable transmissions for loss packet recovery are
crucial in many Internet applications, even the multimedia
streaming applications such as YouTube, Microsoft Smooth
Streaming, and MPEG DASH [9]. The source node is in
charge of the lost packet recovery in TCP for unicast traffic.
Nevertheless, it has been manifested that this simple source-
recovery strategy is not scalable [11], [12] for multicast
to support a large number of destinations, because the
source node will be overwhelmed by the acknowledgement
from the destinations and the required recovery traffic.
To effectively address this issue, by exploiting the idea
of local services via proxy servers [22], a hierarchical
architecture [11], [12] with on-tree recovery nodes placed
between the source and the destinations is proposed to

facilitate local loss recovery, while the deployment of the
recovery nodes has not been considered as an issue in
the previous works since the recovery nodes only need to
support temporary caching, and the literature thus mostly
focused on the development of a low-overhead protocol
with acknowledgement (ACK) or negative acknowledge-
ment (NAK). Specifically, Reliable Multicast Transport
Protocol II (RMTP-II) [11] properly designed the interval
between subsequent ACKs to reduce the number of ACK
messages from a destination to its recovery node, or from a
child recovery node to its parent recovery node. Pragmatic
General Multicast (PGM) [12] proposed NAK elimination
and NAK suppression to further reduce the number of
NAK messages delivered. NACK-Oriented Reliable Multi-
cast (NORM) Transport Protocol [23] incorporated forward
error corrections (FEC). Without a reliable multicast scheme
deployed in the SDN network, it is envisaged that most
multicast applications will still choose the unicast delivery,
which incurs a huge amount of waste in the network
resources due to unnecessary traffic duplication.

The above reliable multicast approaches assume that the
recovery nodes have been allocated in a shortest-path tree
and thus focus on minimizing the number of ACK and
NAK messages accordingly. However, to support reliable
multicast, it is necessary for a multicast tree to span suitable
recovery nodes for local loss recovery and minimize the
recovery load and the corresponding traffic, but the Steiner-
tree routing does not consider the selection of the recovery
nodes and thus is difficult to facilitate local loss recovery,
especially when only a few network nodes are able to play
the role as the recovery nodes. Therefore, it is desired
to design a new algorithm to jointly find the routing of
a multicast tree and the selection of recovery nodes for
multicast traffic.

III. PROBLEM DESCRIPTION

A. Problem Formulation

In this paper, we propose a new multicast tree for SDN,
called Recover-aware Steiner Tree (RST). RST T aims to
minimize the tree cost and the recovery cost for multicast
traffic. In addition to finding the set of edges spanning the
source s and the destination set D, it is necessary to identify
at most r recovery nodes in a set R in T . More specifically,
consider a directed graph G(V,E), where V and E denote
the set of nodes and directed edges, respectively. Each edge
e ∈ E is associated with a cost1 c(e) : E → R

+, where
R

+ is a set of positive real numbers. To find the recovery
cost, we first define the recovery path P for each destination
node in D and each recovery node in R as follows.

Definition 1: For each node v in D ∪ R, the parent
recovery node par(v) of v is a node u ∈ R ∪ {s} in the
path from s to v in T , such that there is no other recovery
node between u and v in the path. The path from par(v) to
v in T is called the recovery path Pv of v. The total cost

1In wired networks, packets are lost and dropped usually due to network
congestion, which are difficult to be predicted and avoided. Thus, in traffic
engineering [24], a congested link is assigned a higher cost so that it will
have a smaller chance to be selected in a routing algorithm for a new
traffic connection. In other words, a link with more packet losses and
experiencing a larger delay will be assigned a higher cost.

of edges in the recovery path P is called the recovery cost2

w(Pv) of v.

We define the tree cost and the recovery cost and then
formulate the RST problem as follows.

Definition 2: The cost of the ordinary traffic is repre-
sented by the tree cost c(T), which is the sum of the edge
cost c(e) for every edge e ∈ T . The cost and the recovery
delay of the recovery traffic are represented by the recovery
cost w(T), which is the sum of the recovery cost w(Pv)
for every node v ∈ D ∪R.

Definition 3: Given G(V,E), a destination node set
D ⊆ V , a candidate recovery node set C ⊆ V , a non-
negative integer r, and a non-negative value α, the Recover-
aware Steiner Tree (RST) problem is to find a recovery set
R ∈ C with |R| ≤ r and a tree T spanning s and D such
that c(T) + αw(T) is minimized.

In the RST problem, SDN-C can flexibly adjust the
tradeoffs between the local storage overhead and the re-
covery cost w(T) by testing different r. With a large r,
more nodes in T will be involved to temporarily store the
multicast traffic for loss recovery, but the recovery cost can
be effectively reduced. In addition, SDN-C can flexibly tune
the weight α according to the network status. If the network
is heavily loaded, it is necessary to assign a larger α such
that the assignment of R will play a more important role
in order to effectively reduce the recovery cost.

Since the RST problem addresses both the routing of
a tree and the section of recovery nodes, it is envisaged
that the RST problem is more difficult than the traditional
ST problem. As follows, we show that the RST problem is
very challenging in complexity theory by proving that it is
NP-Hard and not able to be approximated within |D|c for
every c < 1.

B. Hardness result

The RST problem is NP-Hard because it equals to the
ST problem when α is 0. In other words, the ST problem
is a special case of the RST problem. However, the RST
problem is much more challenging because the ST problem
can be approximated within ratio 1.55 [15] and is thus in
APX in complexity theory, but we find out that the RST
problem is much more difficult to be approximated. The
following theorem proves that the RST problem cannot
be approximated within |D|c for every c < 1, by a gap-
introducing reduction from the Set Cover problem.

Theorem 1: For any ǫ > 0, there exists no |D|1−ǫ

approximation algorithm for the RST problem with α > 0,
assuming P 6= NP.

Proof: We prove the theorem with the gap-introducing
reduction from the Set Cover problem. For a bipartite graph

2When a packet loss occurs, a recovery node can (1) retransmit the
packet to individual destination not receiving the packet [11], (2) multicast
the packet again to all downstream nodes [11] in its subtree, or (3) subcast
the packet only to the downstream nodes not receiving the packet [12].
For the last scheme, the recovery cost is difficult to be evaluated as a
static term in the objective function of the RST problem, since the set
of downstream nodes not receiving a packet varies from time to time.
Therefore, we first explore the first two schemes accordingly. We present
the problem formulation of the first scheme and show that the second
scheme is a special case of the problem formulation by setting α = 0.
The advantage is that the recovery cost can also represent the recovery
delay in this case.

(X,Y,E), the Set Cover problem aims to find out whether
there exists a k-node subset of X that can cover all nodes
in Y . For an instance of the Set Cover problem, we build
an instance of the RST problem on G(V,E), such that
• if (X,Y,E) has a k-node subset of X covering all nodes
in Y , then OPT(G) ≤ (α+ 1)(k + 1)|D|, and
• if (X,Y,E) does not have a k-node subset of X covering
all nodes in Y , then OPT(G) > (α+ 1)(k + 1)|D|2−ǫ,
where OPT(G) is the optimal solution of G for the RST
problem.

We first detail how to build the instance of the RST
problem from the Set Cover problem. For any given k and
(X,Y,E), we construct a new graph G with V including
X and |Y |p, copies of Y , where p is the smallest integer

such that p ≥ 1+log(α+1)+log(k+1)−logα

ǫ
− 1, and the base

of logarithm is |Y |. One additional source node s is added
to V and connected to each node of X . The cost of each
edge from s to X is set to |Y |p+1, and the cost of each
edge from X to each copy of Y is set to 1. Destination set
D is set to all nodes in the |Y |p copies of Y , and r is set
to k. Candidate recovery node set C is set to V .

If (X,Y,E) has a k-node subset A of X covering all
nodes in Y , we are able to find a tree rooted at s with
the edges from s to all nodes in A and the edges from
all nodes in A to every node of all copies of Y , and R is
set as A. Thus, tree T is a feasible solution of the RST
problem because the source s is connected to every node
in D via T . It can act as an upper bound of the RST
problem in G. Since |Y |p+1 = |D|, the tree cost c(T) is
k|D| + |D|, and the recovery cost w(T) is k|D| + |D|.
Therefore, OPT(G) ≤ (k|D| + |D|) + α(k|D| + |D|) =
(α+1)(k+1)|D|. On the other hand, if (X,Y,E) does not
have a k-node subset of X covering all nodes in Y , then
the optimal tree must contain at least k+1 nodes in X , and
for each copy of Y , at least one vertex connects to a non-
recovery node, leading to a much higher recovery cost (i.e.,
at least |D||Y |p) due to a longer recovery path from every
node in D to the source s. Hence, OPT(G) > α|D||Y |p =
(α + 1)(k + 1)|D||Y |p−(log(α+1)+log(k+1)−logα) = (α +

1)(k+1)|D|(|Y |p+1)
p−(log(α+1)+log(k+1)−log α)

p+1 = (α+1)(k+

1)|D|2−
1+log(α+1)+log(k+1)−log α

p+1 ≥ (α + 1)(k + 1)|D|2−ǫ.
Since ǫ can be arbitrarily small, for any ǫ > 0, there is
no |D|1−ǫ approximation algorithm for the RST problem,
assuming P 6= NP. The theorem follows.

C. Mixed Integer Linear Programming

In the follows, we design a Mixed Integer Linear Pro-
gramming (MILP) formulation for the RST problem, and
the formulation can collaborate with any commercial MILP
solver, such as IBM ILOG CPLEX [25], to find the optimal
solutions for small instances of the problem. Specifically,
let Nv denote the set of neighbor nodes of v in G, and
u is in Nv if eu,v is an edge from u to v in E. Let s
denote the source of the multicast group, and D denote
the destination set. The output tree T needs to ensure that
there is only one path in T from s to every node in D.
To achieve this goal, our problem includes the following
binary decision variables. Let binary variable πd,u,v denote
if edge eu,v is in the path from s to a destination node d. Let
binary variable εu,v denote if edge eu,v is in T . Intuitively,
when we are able to find the path from s to each destination
node d with πd,u,v = 1 on every edge eu,v in the path, the

routing of the tree with εu,v = 1 for every edge eu,v in T
can be constructed with the union of the paths from s to
all destination nodes in D

To find the recovery cost, let binary variable ρv denote
if v is a recovery node in T , and let κv denote the recovery
cost of each node v, κv ≥ 0. The objective function of the
RST problem is as follows.

min
∑

eu,v∈E

cu,vεu,v + α

[

∑

d∈D

κd +
∑

v∈C−D

ρvκv

]

,

where cu,v = c(eu,v). The first and second terms are the
tree cost and the recovery cost, respectively. The second
term includes the recovery costs for the destinations and
the recovery nodes, while

∑

v∈C−D

ρvκv ensures that only the

recovery cost for each selected recovery node (i.e., ρv = 1)
will be incorporated. However, the above objective function
is not linear because both ρv and κv are decision variables.
To address this issue, we introduce a new decision variable
χv to represent the recovery cost of each recovery node
v, χv ≥ 0, while χv of every non-recovery node v will
be enforced to 0 explained later in this section. Now the
objective function of the MILP formulation for the RST
problem is

min
∑

eu,v∈E

cu,vεu,v + α

[

∑

d∈D

κd +
∑

v∈C−D

χv

]

.

If the tree T contains any cycle, T is not optimal since
we are able to remove at least one edge from the cycle to
reduce the objective value, and T thereby ensures that there
still exists only one path from s to every destination node
d in D. To find εu,v from πd,u,v , together with ρv , κv, χv ,
our MILP formulation includes the following constraints.

∑

v∈Ns

πd,s,v −
∑

v∈Ns

πd,v,s = 1, ∀d ∈ D, (1)
∑

u∈Nd

πd,u,d −
∑

u∈Nd

πd,d,u = 1, ∀d ∈ D, (2)
∑

v∈Nu

πd,v,u =
∑

v∈Nu

πd,u,v ,

∀d ∈ D, ∀u ∈ V, u 6= d, u 6= s, (3)
πd,u,v ≤ εu,v , ∀d ∈ D, ∀eu,v ∈ E, (4)

∑

v∈V−{s}

ρu ≤ r, (5)

cu,vεu,v − (2− εu,v − ρu)L ≤ κv , ∀eu,v ∈ E, (6)
κu + cu,vεu,v − (1− εu,v + ρu)L ≤ κv , ∀eu,v ∈ E, (7)

κu − (1− ρu)L ≤ χu, ∀u ∈ V, (8)
ρu = 0, ∀u ∈ V − C − {s}. (9)

Path and Tree Routing Constraints. The first three
constraints, i.e., (1), (2), and (3), are the flow-continuity
constraints to find the path from s to every destination
node d in D. More specifically, s is the flow source, i.e.,
the source of the path to every destination node d, and
constraint (1) states that the net outgoing flow from s is
one, implying that at least one edge es,v from s to any
neighbor node v needs to be selected with πd,s,v = 1.
Note that decision variables πd,s,v and πd,v,s are two
different variables because the flow is directed. On the other
hand, every destination node d is the flow destination, and
constraint (2) ensures that the net incoming flow to d is one,
implying that at least one edge eu,d from any neighbor node

u to d must be selected with πd,u,d = 1. For every other
node u, constraint (3) guarantees that u is either located in
the path or not. If u is located in the path, both the incoming
flow and outgoing flow for u are at least one, indicating that
at least one binary variable πd,v,u is 1 for the incoming flow,
and at least one binary variable πd,u,v is 1 for the outgoing
flow. Otherwise, both πd,v,u and πd,u,v are 0. Note that the
objective function will ensure that πd,v,u = 1 for at most
one neighbor node v to achieve the minimum cost.

Constraint (4) is formulated to find the routing of the
tree i.e., εu,v . It states that εu,v must be 1 if edge eu,v
is included in the path from s to at least one d, i.e.,
πd,u,v = 1. The tree T is the union of the paths from s
to all destinations.

Recovery Allocation Constraints. Constraint (5) states
that at most r recovery nodes are selected. The last three
constraints are the most crucial ones in order to linearize
the objective function and construct the MILP formulation,
which enables us to find the optimal solution of the RST
problem. More specifically, we let L = c(G) as the total
cost of all edges in the network G. For each recovery node
u (with ρu = 1) and each incident tree edge eu,v of u in T
(with εu,v = 1), constraint (6) now becomes cu,vεu,v ≤ κv ,
enforcing that the recovery cost of each child node v of
the recovery node u is at least cu,vεu,v . Note that for any
incident edge eu,v of a node u not in T (i.e., εu,v = 0), the
left-hand-side (LHS) of constraint (6) will become smaller
than 0 and thus lead to no restriction on κv in the right-
hand-side (RHS). Similarly, if u is not a recovery node,
LHS of constraint (6) will also become smaller than 0. In
other words, constraint (6) is specifically designed for each
recovery node u and its incident edge eu,v in T .

By contrast, for any other non-recovery node u in T
(with ρu = 0) and its incident edge eu,v of u in T (with
εu,v = 1), constraint (7) becomes κu + cu,vεu,v ≤ κv ,
which ensures that the recovery cost κv for the child node
v of u is at least κu + cu,vεu,v , and constraint (7) will not
impose any restriction on κv for any other cases, similar
to constraint (6). Since there is only one path in T from
its recovery node to each destination node d, the hop-by-
hop enforcement from κu to κv for each edge eu,v in T
guarantees that recovery cost κd of d is at least the total
cost of its recovery path. Constraint (8) states that χu is
at least κu for each recovery node u. The final constraint
ensures that only s and the nodes in C are capable to act
as the recovery nodes.

IV. ALGORITHM DESIGN

In the follows, we propose a k-approximation algo-
rithm, called Recover Aware Edge Reduction Algorithm
(RAERA), to find the routing of multicast tree and select
the local recovery nodes for jointly minimizing the tree
cost and recovery cost. Theorem 1 proves that no (k1−ǫ)-
approximation algorithm for any ǫ > 0 for the RST prob-
lem, RAERA achieves the best approximation ratio. Due
to space constraint, the pseudocode and online rerouting
to support the dynamic join and leave of destinations are
presented in [26].

RAERA includes two phases: 1) Tree Routing Phase
and 2) Recovery Selection Phase. The first phase starts from
the shortest-path tree with root s and iteratively improves
the tree to reduce the tree cost. More specifically, let M

denote the cost of the longest shortest path from s to any
destination d in D in the tree. RAERA iteratively re-routes a
destination node on the solution tree T (VT , ET) to reduce
the tree cost. We calculate the shortest path from all the
other nodes on the tree to a destination d, and pick up
a re-routing path that leads to the maximal reduction of
the tree cost. Therefore, the re-routing path can connect
to a nearby end-to-end path from s to another destination
to aggregate the two paths. We restrict a destination from
re-routing to the end-to-end paths that it has connected to
in earlier iterations. More importantly, the re-routing path
needs to include at least one candidate recovery node in C
to facilitate local loss recovery. In addition, the cost of the
end-to-end path from s to d in the new tree cannot exceed
M , to avoid generating a path longer than the depth of the
original shortest-path tree. The re-routing process continues
until the tree cost cannot be further reduced.

Afterwards, Recovery Selection Phase is a dynamic
programming algorithm to select the recovery nodes from
C for minimizing the recovery cost. For each node v ∈ VT ,
let Tv be the subtree of T rooted at v. Let Rv be a recovery
set on Tv , and the recovery cost of Tv with respect to
Rv is denoted by w(Tv, Rv). The dynamic programming
algorithm finds the optimal recovery sets for two cases: v
is selected in Rv. If v is not selected in Rv , the algorithm
will assign some ancestor nodes in T as the parent recovery
node of v later. We call a recovery set Rv on Tv is type
I if v /∈ R. By contrast, Rv belongs to type II if v ∈ Rv.
Given the recovery set Rv, a node u (u 6= v) in D ∪ Rv

is dominated by any node v if there is no other recovery
node in Rv located in the path from v to u in Tv. For a
non-negative integer x ≤ r and a positive integer k ≤ |D|,
let σx,k(Tv) denote the minimum recovery cost on Tv over
all type I recovery set Rv (v is not in Rv) with |Rv| ≤ x,
such that v exactly dominates k nodes in Rv ∪ D on Tv .
Similarly, let τx(Tv) denote the minimum recovery cost on
Tv over all type II recovery set Rv with |Rv| ≤ x.

It is worth noting that τx(Tv) does not need to include
a subscript k because the parent recovery node par(v) of
v only needs to serve one node (i.e., v) in Tv . By contrast,
it is necessary to associate k with σx,k(Tv) to represent
the case that the parent recovery node serves k nodes in
Tv , while different k is examined in the algorithm to find
the optimal set of recovery nodes after the whole tree T is
processed. In addition, since the recovery costs σx,k(Tv)
and τx(Tv) sum up only the costs of the edges on Tv ,
τx(Tv) = min

1≤k≤|D|
σx−1,k(Tv) holds for x ≥ 1 when v ∈ C.

Specifically, suppose v has child nodes u1, . . . , uδv ,
where δv is the number of child nodes of v in T . Let L
denote the set of leaf nodes in T , L ⊆ D. We let σx,k(Tv)
and τx(Tv) as ∞ initially for every v ∈ VT − L, x, and
k. Let T i

v be the subtree of Tv that contains v and the
nodes on Tui

. The following lemmas first find σx,k(T
i
v)

and then derive σx,k(Tv) from σx,k(T
i
v), while τx(Tv) can

be calculated from σx−1,k(Tv) accordingly.

Lemma 1: For each node v /∈ L and its child nodes
u1, . . . , uδv in T , the following equations hold, 0 ≤ x ≤ r,
1 ≤ k ≤ |D|, and 1 ≤ i ≤ δv .

(i) If ui ∈ D, then σx,k(T
i
v) =

{

cvui
if k = 1 and ui ∈ L,

τx(Tui
) + cvui

if k = 1, ui ∈ C, and ui /∈ L,
σx,k−1(Tui

) + k ∗ cvui
if k > 1,

when τx(Tui
) and σx,k−1(Tui

) are not ∞.

(ii) If ui /∈ D, then σx,k(T
i
v) =

{

min{σx,1(Tui
) + cvui

, τx(Tui
) + cvui

} if k = 1,
σx,k(Tui

) + k ∗ cvui
if k > 1,

when σx,k(Tui
) and τx(Tui

) are not ∞.

Proof: We examine the first case with ui ∈ D. For
k = 1, if ui ∈ L, then σx,1(T

i
v) = cvui

holds since T i
v has

only one edge. By contrast, if ui ∈ C and ui /∈ L, ui needs
to act as a recovery node when k = 1 since ui ∈ D; if ui

does not act as a recovery node, there are at least two nodes
(i.e., ui and some downstream destination) dominated by ui

and thus contradict that k = 1. Therefore, w(Tui
, Rui

) =
τx(Tui

). Let Ri
v = Rui

be the recovery set on T i
v. When Ri

v

is a type I recovery set with v /∈ Ri
v , we have σx,1(T

i
v) =

τx(Tui
) + cvui

if τx(Tui
) 6= ∞.

When k > 1, ui cannot act as a recovery node. Let Rui

be a type I recovery set on Tui
with |Rui

| ≤ x, and ui

dominates k − 1 nodes since v dominates k nodes (i.e., ui

is a destination). Therefore, w(Tui
, Rui

) = σx,k−1(Tui
) in

this case. Let Ri
v = Rui

be a recovery set on T i
v, and Ri

v

is a type I recovery set with v /∈ Ri
v. Node v dominates

ui ∈ D and k − 1 other nodes downstream two ui, and
w(T i

v, R
i
v) = w(Tui

, Rui
)+k∗cvui

= σx,k−1(Tui
)+k∗cvui

holds. Therefore, we have σx,k(T
i
v) = σx,k−1(Tui

)+k∗cvui

if σx,k−1(Tui
) 6= ∞.

The second case with ui /∈ D is simpler than the first
one. When k = 1, it is only necessary to pick up the smaller
one of σx,1(Tui

) and τx(Tui
) for deriving σx,k(T

i
v) since v

has only one child node ui in T i
v . When k > 1, ui cannot act

as a recovery node, and thus we derive σx,k(T
i
v) according

to σx,k(Tui
). The lemma follows.

Lemma 2: Suppose u1, . . . , uδv are the child nodes of
v ∈ VT . For 2 ≤ j ≤ δv , the following equality holds.

σx,k(

j
⋃

i=1

T i
v) = min

x′∈[0,x]
k′∈[1,k]

{σx−x′,k−k′(

j−1
⋃

i=1

T i
v) +

σx′,k′(T j
v)}.

Proof: Given x′ ∈ [0, x] and k′ ∈ [1, k], let R1 (R2)

be a type I recovery set on
⋃j−1

i=1 T i
v (T j

v) such that |R1| ≤
x−x′ (|R2| ≤ x′), and v dominates k−k′ (k′) nodes, respec-

tively. Since v is the unique common node of
⋃j−1

i=1 T i
v and

T j
v , v dominates (k−k′)+k′ = k nodes in

⋃j
i=1 T

i
v . Hence

R1∪R2 is a type I recovery set on
⋃j

i=1 T
i
v with |R1∪R2| ≤

x and v dominating k nodes. Then w(
⋃j−1

i=1 T i
v, R1) +

w(T j
v , R2) = w(

⋃j
i=1 T

i
v, R1 ∪ R2) = σx,k(

⋃j
i=1 T

i
v).

Because all possible x′ and k′ are fully examined, we have

σx,k(

j
⋃

i=1

T i
v) = min

x′∈[0,x]
k′∈[1,k]

{σx−x′,k−k′(

j−1
⋃

i=1

T i
v) + σx′,k′(T j

v)}.

Based on Lemma 1 and Lemma 2, the dynamic pro-
gramming algorithm in the second phase of RAERA mini-
mizes the recovery cost in a bottom-up manner from the leaf
nodes, and the following theorem proves that the minimum
recovery cost can be obtained when s is reached.

Theorem 2: Given the routing of the tree T , the mini-
mum recovery cost is min1≤k≤|D| σr,k(Ts).

Proof: We prove the theorem by contradiction. Assume
that the solution, i.e., min1≤k≤|D| σr,k(Ts), is not optimal.
There must exist ks such that σr,ks

(Ts) is not an optimal
solution. According to Lemma 2, there exists i ∈ [1, δs]
with xi and ki such that σxi,ki

(T i
s) is not optimal. Let v

be the i-th child node of s, then according to Lemma 1,
either σxi,k′

v
(Tv) or τxi

(Tv) is not optimal for some k′v .
Since τxi

(Tv) can be represented by σxi−1,k′′

v
(Tv), we can

find σxv,kv
(Tv) that is not optimal for some xv and kv .

After repeating above procedure, we can find a node u
such that the order of u is before v, and σxu,ku

(Tu) is not
optimal for some xu and ku. Finally, we can find a node t
whose child nodes are all in L and σxt,δt(Tt) is not optimal.
According to Lemma 1 (i), we have σxt,kt

(T i
t) = ctui

for 1 ≤ i ≤ δt. Then according to Lemma 2, we have
σxt,δt(Tt) =

∑

1≤i≤δt
ctui

. However, the minimum recov-

ery cost of tree Tt is exactly
∑

1≤i≤δt
ctui

= σxt,δt(Tt),
contradicting that σxt,δt(Tt) is not optimal. The theorem
follows.

Afterwards, the optimal recovery node can be selected
by backtracking the above procedure. More specifically,
let ks = argmin1≤k≤|D| σr,k(Ts), and we then insert
σr,ks

(Ts) as the LHS of Lemma 2 and derive (x∗, k∗) that
minimizes the RHS. If k∗ = 1 and uδs ∈ D−L for the last
child node of s, we add uδs to R according to Lemma 1.
Similarly, if k∗ = 1 but uδs /∈ D, we add uδs to R when
σx∗,k∗(T δs

s) = τx∗(Tuδs
) + cvuδs

. The above procedure is
repeated until all leaf nodes in L are processed.

Example. Consider the following example in Fig. 1(a).
Let G(V,E) be the network with the source node s, the
destination set D = {1, 2, . . . , 12}, the candidate recovery
set C = V − {1, 7, e, w, x}, and r = 3. The shortest-
path tree with root s is shown in Fig. 1(b). Then Fig. 1(c)
presents an example of Tree Routing Phase. If nodes 1 and 3
were re-routed to node w, then it could reduce the maximal
tree cost. However w is not a candidate recovery node, and
thus nodes 1 and 3 are re-routed to node u. Then node 4
is re-routed to node 5, and node 6 is re-routed to node v.
Afterwards, node 8 and 9 are re-routed to node 10. Finally,
node 7 is re-routed to node 8.

Afterwards, Recovery Selection Phase is a dynamic
programming algorithm to select recovery nodes from C
to minimize the recovery cost. We illustrate how Recovery
Selection Phase derives σx,k(T12), when 0 ≤ x ≤ 2 and
1 ≤ k ≤ 4. At the beginning, we find all σx,k(Tu).
According to Lemma 1 and 2, we have σ0,3(Tu) =
σ1,3(Tu) = σ2,3(Tu) = 9 and τ1(Tu) = τ2(Tu) = 9.
Then we compute σx,k(T

1
11). Since node u /∈ D, accord-

ing to Lemma 1 (ii), for 1 ≤ x ≤ 2, it follows that
σx,1(T

1
11) = min{σx,1(Tu) + 5, τx(Tu) + 5} = 14, and

σ0,3(T
1
11) = σ1,3(T

1
11) = σ2,3(T

1
11) = 9 + 3 ∗ 5 = 24.

Since σx,k(T11) = σx,k(T
1
11), we get all σx,k(T11) and

τ1(T11) = 24, and τ2(T11) = 14. Finally, we compute
σx,k(T12) = σx,k(T

1
12). Since node 11 is in D − L,

3

b

d

4

6

3

1

v

2

e

1

5

10
8

3
1

2 2

1

8

9

8

7

6

5

2

1
1

9

9

c

1

9

2

2

11

u

w

5

5

2

2

1

6

3

2

destination

non-destination

source

x

3

1
1

1

3

12

2 2

s

(a) Original network

2

1

81

2

8
6

5

2
2

1

2

u
5

1

6

1

2

3
5

3

s

11

12

8 2

4
9

3

5

10
6

7

w

b

v

d

c

e

(b) Shortest-path tree with root s

1

1

3

1

2

8
6

2

1 1

1

2

u
5

1

3

1

2

3
5

2

s

11

12

8 2

4
9

3

5

10
6

7

w

b

v

d

c

e

(c) Tree Routing Phase

Fig. 1. An example of RAERA.

according to Lemma 1 (i), σ1,1(T
1
12) = τ1(T11) + 5 = 29,

and σ2,1(T
1
12) = τ2(T11) + 5 = 19, and σ1,2(T

1
12) =

σ2,2(T
1
12) = 14 + 2 ∗ 5 = 24. σ0,4(T

1
12) = σ1,4(T

1
12) =

σ2,4(T
1
12) = 24 + 4 ∗ 5 = 44. Table I lists the detailed

results.

Since Theorem 1 proves that no (k1−ǫ)-approximation
algorithm for any ǫ > 0 for the RST problem, the following
theorem proves that RAERA achieves the best approxima-
tion ratio.

Theorem 3: RAERA is a k-approximation algorithm for
the RST problem.

Proof: Let T ∗ denote the optimal Tree, c(T ∗) denote
the tree cost of T ∗, and w(T ∗) denote the recovery cost of
T ∗. For each edge e in T , since e must be located in some
recovery path. Thus recovery cost w(T ∗) is at least c(T ∗),
and (α+ 1)c(T ∗) ≤ OPT.

On the other hand, let T and R be the tree and
recovery set output by RAERA. In Tree Routing Phase, by
construction of T , we know that for each destination node
x in D, the distance from s to x is at most M . Therefore,
the recovery cost w(T) of T is at most |D|M . Since M
is the distance from the source node s to some destination
node, say y, in the shortest-path tree, the distance from
s to y in T ∗ is at least M ≤ c(T ∗). Then we have
c(T) + αw(T) ≤ (α + 1)w(T) ≤ (α + 1)|D|M ≤
(α+1)|D|c(T ∗) ≤ |D|∗OPT , after the first phase ends, and
the tree T generated in the first phase is k-approximated.
Since the second phase further reduces the cost, the tree
T derived in the second phase is also k-approximated. The
theorem follows.

Time Complexity. We first find the shortest path
between any two nodes in G with Johnson’s algorithm in
O(|V ||E| + |V |2 log |V |)) time as a pre-processing pro-
cedure for quick lookup. The advantage is that the pre-
processing only needs to be performed once but can be
exploited during the construction of all RSTs. In each
iteration of Tree Routing Phase, RAERA compares the
distance from a destination node to all other nodes in

TABLE I. σx,k(T12), x ∈ [0, 2], k ∈ [1, 4]
x k = 1 k = 2 k = 3 k = 4
0 ∞ ∞ ∞ 44
1 29 24 ∞ 44
2 19 24 ∞ 44

O(|V |) time, and processing all d ∈ D requires O(|V ||D|)
time. Then we iteratively re-route each d to at most |D|
paths. The first phase takes O(|V ||D|2) time.

In Recovery Selection Phase, RAERA finds an optimal
recovery node set on the tree T from the first phase.
The algorithm contains O(|VT |) iterations. Each iteration
examines a node v to find σx,k(T

i
v) for every i, x, and

k in O(δvr|D|) time. Finding σx,k(
⋃j

i=1 T
i
v) for every j,

x, and k requires O(δvr
2|D|2) time. Therefore, finding

σx,k(
⋃j

i=1 T
i
v) for a node v needs O(δvr|D|+δvr

2|D|2) =
O(δvr

2|D|2) time, and thus processing all nodes takes
O(Σvδvr

2|D|2) time, where Σvδv = |VT | − 1. The sec-
ond phase requires O(|VT |r

2|D|2) time. The overall time
complexity is O(|V ||D|2 + |VT |r

2|D|2) time, which is
O(|V |r2|D|2) time.

V. PERFORMANCE EVALUATION

We evaluate RAERA in both real networks and large
synthetic networks in this section by simulation. In addition,
we also deploy our algorithm in a small experimental SDN
network to evaluate the performance with YouTube traffic.
The source code of RAERA and all our implementations
(i.e., loss recovery in recovery nodes and a YouTube proxy
for multicast) can be downloaded in [27].

A. Simulation Setup

We simulate our algorithm in a real network, called
Biznet [28], with 29 nodes and 33 links in the Estinet
network simulator [29], which has implemented OpenFlow.
Moreover, we also evaluate our algorithm in large synthetic
networks generated by Inet [30] with thousands of nodes
and links to test the scalability of the proposed algorithm.
The source, destinations, and candidate recovery nodes are
chosen randomly from each network.

We compare RAERA with the following algorithms:
1) the shortest-path tree algorithm (SPT), 2) the Steiner
tree (ST) algorithm [8], and 3) CPLEX [25], which finds
the optimal solution of RST problem by solving the MILP
formulation in Section III-C. The recovery nodes are chosen
randomly in SPT and ST. We change the network size |V |,
the number of destinations k, and the number of recovery
nodes r. The performance metrics contain 1) total cost
(including tree and recovery costs), 2) total retransmitted
bytes in networks, and 3) average latency (including re-
transmissions) of each packet observed by each destination.
Packet retransmissions delay the contents received by each
destination node and thus tend to deteriorate video quality of
experience (QoE) [31]. In our simulation, a link with higher
delay and higher loss rate (due to congestion) is assigned a
larger cost according to [24]. Based on statistic data shown
in Nguyen et al. [32] and Yu et al. [33], we set the packet
loss rate of each link from 1% to 10% and link delay from
10 ms to 100 ms. The retransmitted packets also traverse
some links and may suffer from packet loss and link delay,
too. We implement all algorithms in an HP DL580 server
with four Intel Xeon E7-4870 2.4 GHz CPUs and 128 GB
RAM. Each simulation result is averaged over 100 samples.

14

18

22

26

30

6 8 10 12

T
re

e
C

os
t

k

CPLEX
RAERA

ST
SPT

(a) Tree Cost for Biznet

20

30

40

50

6 8 10 12

R
ec

ov
er

y
C

os
t

k

CPLEX
RAERA

ST
SPT

(b) Recovery Cost for Biznet

 0

 1

 2

 3

 4

 5

 6

6 8 10 12

R
et

ra
ns

m
is

si
on

 (
M

B
yt

es
)

k

CPLEX
RAERA

ST
SPT

(c) Retransmission for Biznet

 50

 100

 150

 200

 250

 300

6 8 10 12
La

te
nc

y
(s

)
k

CPLEX
RAERA

ST
SPT

(d) Latency for Biznet

Fig. 2. Simulation results for real networks.

B. Small Real Networks

In this subsection, we compare the performance of
RAERA, SPT, ST, and the optimal solution generated by
CPLEX with different numbers of destination nodes k,
where the number of recovery nodes r is selected as 2,
and each node is a candidate recovery node in these small
networks. Since the RST problem is NP-Hard, CPLEX is
able to find the optimal solutions for only smaller instances,
and we thus only find an optimal solution for Biznet net-
work. As shown in Fig. 2(a), RAERA generates a solution
with the costs that are very close to the optimal solution.
The cost of SPT is much higher than others. Compared
with SPT, although ST has a smaller tree cost, the distance
between the source and a destination is usually higher since
the path needs to be deviated from the shortest one in
order to aggregate with another path. Therefore, ST tends
to incur a higher recovery cost if the recovery nodes are not
properly selected, as manifested in Fig. 2(b). In Fig. 2(c),
the retransmissions overhead generated by RAERA is still
closer to optimal case. In Fig. 2(d), we calculate the average
latency of each packet observed by each destination. Since
the recovery nodes are closer to the destinations, and the
tree depth (i.e., the cost of the longest path in the tree) is
restricted by M , which is the cost of the longest path from s
to any destination d in SPT, RAERA provides much shorter
latency than SPT and ST, and the latency is close to the
optimal solution.

C. Large Synthetic Networks

We also evaluate RAERA, ST, and SPT in larger syn-
thetic networks generated by Inet, where k varies from 100
to 500 , |V | ranges from 4000 to 10000, and r spans from
15 to 55. Compared with smaller networks, the advantage
of RAERA is more significant in larger networks. As shown
in Fig. 3(a)(b), the total cost increases with k but remains
almost the same with |V |. For a larger network, the source
and any destination are inclined to be located with more
hops away, but there is also a higher chance to find a new
path with a lower cost. In average, RAERA limits the total
cost by 22% compared to ST and SPT. Fig. 3(e) manifests
that all algorithms can effectively lower the recovery cost
as r increases, especially RAERA. With a smaller tree and
the better selection of recovery nodes, RAERA generates
10% less retransmissions overhead than ST and SPT in
Fig. 3(c). Fig. 3(d)(f) present the average latency observed
by an individual destination node, and the result shows that
RAERA provides 36% shorter latency than ST and SPT.

400

800

1200

1600

100 200 300 400 500

C
os

t
 (

T
re

e
+

R
ec

ov
er

y)

k

RAERA
ST

SPT

(a) Cost with different k (|V | =
10000, r = 35)

 700

 800

 900

 1000

 1100

 1200

4000 6000 8000 10000

C
os

t
 (T

re
e

+
R

ec
ov

er
y)

|V|

RAERA
ST

SPT

(b) Cost with different |V | (k = 300,
r = 35)

 0
 10
 20
 30
 40
 50
 60
 70

100 200 300 400 500

R
et

ra
ns

m
is

si
on

 (
M

B
yt

es
)

k

RAERA
ST

SPT

(c) Retransmission bytes with dif-
ferent k (|V | = 10000, r = 35)

40

80

120

160

100 200 300 400 500

La
te

nc
y

(s
)

k

RAERA
ST

SPT

(d) Latency with different k (|V | =
10000, r = 35)

800

900

1000

1100

1200

15 25 35 45 55

C
os

t
 (

T
re

e
+

R
ec

ov
er

y)

r

RAERA
ST

SPT

(e) Cost with different r (|V | =
10000, k = 300)

40

80

120

160

15 25 35 45 55

La
te

nc
y

(s
)

r

RAERA
ST

SPT

(f) Latency with different r (|V | =
10000, k = 300)

Fig. 3. Simulation results for synthetic networks.

TABLE II. THE RUNNING TIME OF RAERA (SECONDS)

|V | k = 100 k = 200 k = 300 k = 400 k = 500

4000 0.703 1.3694 2.8689 5.2892 9.5575
6000 1.4987 2.2322 3.902 6.9323 11.4766
8000 2.6102 3.3924 5.0937 7.9065 11.9951

10000 4.0797 4.9029 6.6019 10.1443 13.9863

2

1

8
1

2

8
6

5

2 2

1

1

1
3

7
2

8

6

5
1

4

9

12
10

13

14

11

1
7

1
1

3

2

9

Fig. 4. The topology for the experimental SDN network.

Table II summarizes the running time of RAERA with
different k and network sizes. With a smaller input, such
as 4000 nodes and 100 destinations, the running time for
RAREA is less than 1 second. As k and |V | increase, the
running time grows, but RAERA only spends around 14
seconds in the largest case. Note that according to our online
algorithm [26], it is not necessary to re-compute the whole
tree when a destination joins or leaves the tree after the tree
is initialized with RAERA. It is envisaged that our algorithm
is practical to be deployed in SDN networks.

D. Implementation

To evaluate RAERA in real environments, we imple-
ment it in our experimental SDN network including two
HP Procurve 3800 and three HP Procurve 5406zl, which
are Openflow-enabled switches. We use Floodlight as our
Openflow controller to install the traffic routing in SDN-
FEs. RAERA is running on the top of Floodlight. Because
the HP SDN-FEs have not supported local recovery, we
implement the recovery nodes in HP ProLiant servers on
the top of Click Software Router [34], which is widely
adopted in the literature. Since YouTube has not supported

TABLE III. EVALUATION IN THE EXPERIMENTAL SDN NETWORK

Algorithms Bandwidth Consumption Re-buffering

RAERA 13.18 MBytes 0.4 s
ST 16.39 MBytes 33.5 s

SPT 17.83 Mbytes 7.8 s

multicast, a YouTube proxy for multicast is implemented
(see the details in [26]).

Our SDN testbed includes 14 nodes and 20 links as
shown in Fig. 4, and we randomly choose 8 nodes as
destinations. We configure each HP switches as multiple
SDN-FEs by assigning each slice of the switch as a logical
node of the SDN network. Table III summarizes the result
on a YouTube video with 136 seconds and 1 MB, where the
buffer size of the player in each client is set as 1 second.
Table III manifests that the bandwidth consumption of ST
and SPT are 24% and 35% more than RAERA, respectively.
In addition, we also study the video re-buffering events.
We measure the time involved in re-buffering during the
whole video playback, and the result shows that RAERA
spends less than 1 second, while ST spends 33.5 seconds
and SPT spends 7.8 seconds. Therefore, RAERA can effec-
tively improve both the network performance and the user
experience.

VI. CONCLUSION

Current traffic engineering in SDN focuses on only
unicast. Compared with forwarding the traffic to each
individual destination via unicast, multicast can significantly
reduce the network resources consumption. Since many
applications (even YouTube) require reliable transmissions,
it is envisaged that reliable multicast is important for multi-
cast services in SDN networks. In this paper, therefore, we
propose Recover-aware Steiner Tree (RST) for SDN. The
RST problem jointly minimizes the tree and recovery costs.
We prove that this problem is NP-Hard and inapproximable
within k. To solve this problem, we develop an approx-
imation algorithm called Recover Aware Edge Reduction
Algorithm (RAERA). Our evaluation shows that RAERA
provides lower overall cost, less retransmissions, and lower
latency in both real networks and large synthetic networks.
In addition, we implement RAERA in a real experiment
SDN network, and the results show RST outperforms both
SPT and the traditional ST.

REFERENCES

[1] “Software-defined networking (SDN): the new norm for networks,”
ONF whilte paper.

[2] McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–
74, Mar. 2008.

[3] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in
software defined networks,” in IEEE INFOCOM’13, pp. 2211–2219.

[4] R. Malli, X. Zhang, and C. Qiao, “Benefit of multicasting in all-
optical networks,” vol. 3531, pp. 209–220, Nov. 1998.

[5] Aggarwal et al., “The effectiveness of intelligent scheduling for
multicast video-on-demand,” in ACM MM’09, pp. 421–430.

[6] H. Ma, G. K. Shin, and W. Wu, “Best-effort patching for multicast
true VoD service,” Multimedia Tools Appl., vol. 26, no. 1, pp. 101–
122, May 2005.

[7] Estrin et al., “Protocol independent multicast-sparse mode (PIM-
SM): Protocol specification,” IETF RFC 2362, May 1998.

[8] F. K. Hwang and D. S. Richards, “Steiner tree problems,” Networks,
vol. 22, no. 1, pp. 55–89, Oct. 1992.

[9] “Information technology – dynamic adaptive streaming over HTTP
(DASH),” ISO/IEC 23009-1, 2014.

[10] Floyd et al., “A reliable multicast framework for light-weight
sessions and application level framing,” IEEE/ACM Trans. on Net-
working, vol. 5, no. 6, pp. 784–803, Dec. 1997.

[11] B. Whetten and G. Taskale, “An overview of reliable multicast
transport protocol II,” IEEE Network, vol. 14, no. 1, pp. 37–47,
Jan. 2000.

[12] Speakman et al., “PGM reliable transport protocol specification,”
IETF RFC 3208, Dec. 2001.

[13] “Juniper technical documentation-pgm,” 2014. [Online].
Available: http://www.juniper.net/techpubs/en_US/junos13.2/topics/
reference/configuration-statement/pgm-edit-protocols.html

[14] “Cross-platform release notes for cisco IOS release 15.4,” 2014.
[Online]. Available: http://www.cisco.com/c/en/us/td/docs/ios/15_
4m_and_t/release/notes/15_4m_and_t.html

[15] G. Robins and A. Zelikovsky, “Improved steiner tree approximation
in graphs,” in ACM SODA’00, pp. 770–779.

[16] Sushant Jain et al., “B4: Experience with a globally-deployed
software defined WAN,” in ACM SIGCOMM’13, pp. 3–14.

[17] Qazi et al., “SIMPLE-fying middlebox policy enforcement using
SDN,” in ACM SIGCOMM’13, pp. 27–38.

[18] J. Mueller, A. Wierz, and T. Magedanz, “Scalable on-demand net-
work management module for software defined telecommunication
networks,” in SDN4FNS’13, pp. 1–6.

[19] J. Moy, “OSPF version 2,” IETF RFC 2328, Oct. 1998.

[20] D.-N. Yang and W. Liao, “On bandwidth-efficient overlay multi-
cast,” IEEE Trans. on Parallel and Distributed Systems, vol. 18,
no. 11, pp. 1503–1515, Nov. 2007.

[21] E. Aharoni and R. Cohen, “Restricted dynamic steiner trees for
scalable multicast in datagram networks,” IEEE/ACM Trans. on
Networking, vol. 6, no. 3, pp. 286–297, Jun. 1998.

[22] S.-H. Shen and A. Akella, “An information-aware QoE-centric
mobile video cache,” in ACM MobiCom’13, pp. 401–412.

[23] B. e. a. Adamson, “NACK-oriented reliable multicast (NORM)
transport protocol,” IETF RFC 5740, Nov. 2009.

[24] B. Fortz and M. Thorup, “Optimizing ospf/is-is weights in a
changing world,” Selected Areas in Communications, IEEE Journal
on, vol. 20, no. 4, pp. 756–767, Sep. 2006.

[25] “IBM ILOG CPLEX,” 2014. [Online]. Available: http://www-01.
ibm.com/software/commerce/optimization/cplex-optimizer/

[26] “Reliable multicast routing for software-defined networks.”
[Online]. Available: http://www.iis.sinica.edu.tw/~dnyang/SDN/
RAERA.pdf

[27] “The implementation for reliable multicast routing for software-
defined networks.” [Online]. Available: http://www.iis.sinica.edu.
tw/~dnyang/SDN/RAERA.tar.gz

[28] “The internet topology zoo,” 2014. [Online]. Available: http:
//www.topology-zoo.org/dataset.html

[29] “EstiNet 8.1 OpenFlow Network Simulator and Emulator,” 2014.
[Online]. Available: http://www.estinet.com/

[30] Tangmunarunkit et al., “Network topology generators: Degree-based
vs. structural,” in SIGCOMM ’02, pp. 147–159.

[31] Balachandran et al., “Developing a predictive model of quality of
experience for internet video,” in ACM SIGCOMM’13, pp. 339–350.

[32] H. X. Nguyen and M. Roughan, “Rigorous statistical analysis of
internet loss measurements,” IEEE/ACM Trans. on Networking,
vol. 21, no. 3, pp. 734–745, Jun. 2013.

[33] Y. Xu, C. Yu, J. Li, and Y. Liu, “Video telephony for end-consumers:
Measurement study of google+, iChat, and skype,” in ACM IMC’12,
pp. 371–384.

[34] “Click software router,” 2014. [Online]. Available: http://read.cs.
ucla.edu/click/click

