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Abstract—Software-Defined Networking and Network Func-
tion Virtualisation (SDN/NFV) can provide flexible resource
allocation to support innovative security solutions in a central
manner. To mitigate HTTP DDoS attacks, shuffling-based moving
target defense has been regarded as one of the most effective
ways by redirecting user traffic among a group of virtualized
service functions. However, previous work did not notice that
frequent changes of user traffic will significantly intensify the
control overhead of SDN. In this paper, therefore, we first
model the effectiveness and cost for shuffling in SDN/NFV
networking with Multi-Objective Markov Decision Processes to
find the optimal tradeoff between the effectiveness and cost. We
then propose a cost-effective approximation algorithm with a
guarantee performance bound to solve the problem. Simulation
and implementation on an experimental SDN/NFV network
manifest that, given 100 attackers among 1000 users and 50
virtualized functions of a web service, our algorithm achieves
the approximation ratio of 0.68 and imposes only 2.4s rule
modification latency for each shuffle.

I. INTRODUCTION

HTTP(s) DDoS attacks have been regarded as one of the
most serious attacks on web services, whereas 43% of the three
biggest cyber attacks are HTTP(s) attacks, and 27% of orga-
nizations face daily or weekly HTTP(s) attacks in 2015 [23].
Various tactics have been facilitated to realize HTTP(s) attacks
for consuming and occupying the computational resources of
the web servers. Compared with other kinds of DDoS attacks,
defending HTTP DDoS attacks are more challenging due to
the following reasons. First, the attackers must generate the
traffic with non-spoofed IP addresses, and it is thereby harder
to filter the traffic based on the spoofed source IP addresses
during the attack. Second, HTTP attacks require a much
smaller attack size to exhaust the computational resources of
the web services, especially when the web services are very
computation-intensive nowadays. For example, a small VPN
on a cloud can properly handle the SYNC flood with the
size as 200,000 packets per second but is usually unable to
withstand under the attack of 500 HTTP requests per second
[24].

For traditional networks, the previous solutions to HTTP
DDoS attacks either operate in the sole server side [9][16] or
require the cooperation with the clients [8][13]. The existing
schemes [9][16] detect the attackers by building legitimate
client behavior profiles based on statistics model and Hidden
Semi-Markov Model, respectively, whereas [8] and [13] re-

quire the legitimate clients to identify themselves by passing
CAPTCHA and raising the traffic volume, respectively. The
former works require extra communication overheads to col-
lect the data if the service is deployed in multiple servers,
while the latter is inclined to bother the users.

Recently, network function virtualisation (NFV) [19] has
been widely applied for many application paradigms due
to its excellent elasticity and efficiency for allocating the
computational resource, and several approaches [5][6][12][14]
have been proposed to mitigate the DDoS attacks for NFV. Jia
et al. [5][6] proposed shuffling-based moving-target defense to
generate multiple replicas/proxies1 on the cloud for guiding
the users to the designated replicas through DNS routing.
The users connecting to crashed replicas are regrouped and
then redirected to the new proxies by repetitive shuffling.
Afterward, the attackers pretending as ordinary users are
gradually isolated to a fewer replicas, and the number of
replicas can be effectively reduced to lower the shuffling cost
[14]. However, the above shuffling approaches are inclined
to suffer from the proxy harvesting attack [12] because DNS
routing usually reveals the proxy addresses to the users, and
the attackers in this situation can probe the location and the
number of proxies in advance. To address the above issue,
a bind/split strategy [12] is designed to limit the number of
probing from attackers.

Although the above shuffling-based approaches have been
demonstrated very effective to mitigate HTTP attacks, addi-
tional admission control usually needs to be involved in tradi-
tional networks to ensure that user traffic indeed follows the
redirection instruction, because the user traffic is configured
by the sources (i.e., users). In this case, the admission control
server is inclined to become another target of DDoS attacks
[6]. Multiple points of admission control also increase the
network operation cost in Content-Centric Networking (CDN)
[14]. However, shuffling has not been explored for Software-
Defined Networking (SDN) in the literature.

For SDN [4], in contrast, the reconfiguration of routing
paths can be achieved on the fly by the SDN controller.2

Users in this cases are transparent to shuffling, and additional
admission control thereby is not required. More specifically,

1Replicas and proxies are interchangeable in this paper.
2Most of recent SDN-based DDoS defenses tend to handle network-layer

attacks [7][10].



when the user traffic is reconfigured to another replica, the
SDN controller only needs to install the new forwarding
rule in the new path to the replica, and the proxy harvest
attack in [12] will not occur here. However, additional route
reconfiguration cost is involved for shuffling in SDN because
the SDN controller needs to find the new routing path and
install the new forwarding rule to every switch in the new
path. Additional network latency is usually imposed because
the CPU of the SDN switches restricts the bandwidth of
the control channel to only 10 Mbit/sec [1]. Therefore, it is
very important to consider the overhead of shuffling in SDN,
especially when the number of users boosts.3

In this paper, therefore, we propose a new shuffling-based
defense system, named Software-Defined Shuffling System
(SDSS), for SDN/NFV networking. To explore the tradeoff
between the effectiveness of shuffling and the SDN recon-
figuration cost, we investigate a new Cost-effective Shuffling
Problem (CSP) and propose two algorithms, Baseline Shuf-
fling Algorithm (BSA) and Cost-effective Shuffling Algorithm
(CSA). The goal of CSP is to find the optimal strategy
for a sequence of shuffling decisions under the assumption
that the attackers and the legal users are indistinguishable.
To solve the problem, BSA is first proposed to maximize
the effectiveness but ignore the reconfiguration cost in SDN.
In contrast, CSA is an approximation algorithm to find the
best trade-off between the effectiveness and reconfiguration
in SDN. Simulation results manifest that CSA can effectively
shuffle and concentrate the attackers in fewer replicas with
limited reconfiguration cost in SDN.

The remainder of this paper is organized as follows. Section
II first presents the threat and defense models. Then, we
formalize CSP in SDN in Section III. Section IV models the
problem with Multi-Objective Markov Decision Processes, and
two new shuffling algorithms, BSA and CSA, are proposed
in Section V and Section VI, respectively. We derive the
approximation ratio and evaluate the proposed algorithms via
simulation in Section VII and Section VIII, respectively. Sec-
tion IX presents the prototype implementation in SDN/NFV.
Finally, we conclude the paper in Section X.

II. ATTACK MODEL AND DEFENSE MODEL

In this section, we first describe the behavior of HTTP
DDoS attacks and then present the defense model in
SDN/NFV.

A. Attack Model

The DDoS attack model [17][18] is defined as follows.
The attackers consist of a small group of m compromised
hosts among a large group of n users, and the HTTP traffic
originating from the attackers is indistinguishable from that
generated by legitimate users. HTTP DDoS attacks last a
period of time for exhausting the server resources, such as

3The overhead of path reconfiguration is not considered in [11] and the
work of [2] focuses on elastic scaling of defense with SDN/NFV rather than
a specific attack.

CPU, memory, and connection capacity by the following attack
types.
• Session Flooding Attacks: The attackers send a large

number of HTTP requests through overflowing sessions.
• Request Flooding Attacks: The attackers send a large

number of HTTP requests with only a few sessions.
• Asymmetric Attacks: To reduce the packet rate and main-

tain the high load in the server, the attackers send mostly
HTTP requests of heavy workload.

• Slow Request/Response Attacks: To hold and prolong
HTTP sessions, the attackers slowly sends the HTTP
requests/responses by delivering incomplete HTTP head-
ers, diminishing HTTP data rate, or fragmenting HTTP
packets.

B. Shuffling-Based Defense Model

When a service is under HTTP attacks, the SDN/NFV
network operator creates p VMs as replicas/proxies of the
service, and each VM is allocated with sufficient resources
for q legitimate users, where p × q ≥ n. Then, the SDN
controller evenly assigns n users to p VMs by installing the
corresponding forward rules in the routing paths.

After monitoring the resource consumptions of VMs for a
short period of time, the controller first identifies the set of
VMs under attacks. Then, it restarts the crashed VMs and
reassigns each user of a crashed VMs to another restarted
VMs by reconfiguring the routing. The system repeats the
above shuffling process to concentrate the attackers in fewer
VMs. The attackers will be gradually located in similar VMs
because the corrupted VMs may become sanitized by having
the attackers moved out and the legal users moved in, causing
more attackers to be distributed in the remain corrupted VMs.
Nevertheless, additional computation and signaling overheads
are incurred in SDN for finding the new routing paths and
reconfiguring the switches. Therefore, our goal is to balance
the defense effectiveness and the SDN overhead by maximiz-
ing the reduced number of crashed VMs and minimizing the
number of user reassignment.

III. PROBLEM FORMULATION

Specifically, the problem formulation is defined as follows.
Given: a set of n users with m attackers and a group of p

VMs of equal resources for q users, where p× q = n
Output: a sequence of matrices (A0, A1, A2, ..., AT ), where

At ∈ {0, 1}p×n, such that
n∑
j=1

atij = q i = 1, ..., p; (1a)

p∑
i=1

atij = 1 j = 1, ..., n; (1b)

The matrix A0 denotes the initial assignment, and the matrices
{At|t > 0} represent the shuffling decision at time t, where
binary variable atij indicates that whether the j-th user is
assigned to i-th VM. Hence, Equation 1a states that each VM



is only allowed to serve q users, and Equation 1b ensures that
each user is assigned to only one VM.

Let binary vector Ω = (ω1, ω2, ..., ωn) indicates whether

each user is an attacker, where
n∑
j=1

ωj = m. Let ζt denote

the number of the crashed VMs, and bti is a boolean value
that represents whether i-th VM is crashed in t-th time slot
(Equation 2b). Equation 2c states that a VM will not crash
if no attacker is assigned to the VM. Both ζt and bti are
available only after At is acquired. Since the goal of shuffling
is to concentrate the attackers in fewer VMs, we quantify
the effectiveness in t-th shuffle by the reduced number of
crashed VMs multiplied by a discount value γt, where the
discounted value ensures that the effectiveness is decayed over
time (Equation 2a). The objective function to maximize the
effectiveness of shuffling is as follows:

fE = maximize
T∑
t=1

γt(ζt−1 − ζt), where (2a)

ζt =

p∑
i=1

bti and (2b)

bti =

0 if
n∑
j=1

atij ∧ ωj = 0

1 otherwise
(2c)

Next, we define the SDN control overhead of T times
shuffling. Let ηt denote the number of moving users, and ctj
is a binary variable indicating whether j-th user is moving
to another VM in t-th shuffle (Equations 3b and 3c). If j-th
user remains in the same VM in t-th shuffle, ctj is set to 0;
otherwise, ctj is set to 1. The objective function to minimize
the cost of T times shuffling is as follows:

fC = minimize
T∑
t=1

ηt, where (3a)

ηt =

n∑
j=1

ctj and (3b)

ctj =

0 if
p∑
i=1

atij ⊕ a
t−1
ij = 0

1 otherwise
(3c)

In our problem, we consider both the effectiveness and cost
of shuffling with different weights w1 and w2 assigned by the
network operator. Our objective function finds the best tradeoff
as follows, where the variable of p−ζ0 represents the number
of the survived VMs after the initial assignment.

Objective:

maximize w1 × q × (p− ζ0 + fE)− w2 × fC (4)

In the next section, we first tackle our problem as a multi-
objective optimization problem.

IV. PROBLEM MODELING

In the following, we first exploit Multi-Objective Markov
Decision Processes (MOMDP) [3][15] to model our problem,

which is a multi-stage stochastic optimization problem with
multiple objectives. A MOMDP for two objectives in our case
is a tuple (S,X , π,Pπ,R), where:
• S represents a finite set of states, and let St be the random

variable of the state at time t.
• X denotes a finite set of decisions, and let Xt be the

random variable of the decision at time t.
• π : S → X is a policy function that maps each state to

a decision with the probability P[Xt = x|St = s], where
x ∈ X and s ∈ S.

• Pπ is a state transition probability matrix with the policy
π, where

pπij =
∑
x∈X

P[Xt = x|St = si]P[St+1 = sj |St = si, Xt = x].

• Rπ : S × X π → R` is a rewarding function that maps a
state and a decision to a rewarding vector of ` dimensions,
where the decision distribution is π.

A policy is an algorithm or a strategy that decides the
probability distribution of the solutions based on the number
of the crashed VMs at time t. To find the optimal policy,
we solve the following value function iteratively (i.e., value
iteration), where wk is the weighted value of k-th objective

that satisfies
∑̀
k=1

wk = 1, and γk ∈ [0, 1] is the discount value

of k-th objective.

V πt+1(s) = max
∑̀
k=1

wkV
π
t+1,k(s),where (5a)

V πt+1,k(s) = Rπk (s, x) + γkE[V πt,k(s′)|s, x] (5b)

By following the policy π after t stages, the above value
function of Equation 5b represents the expected cumulative
reward for objective k, and Equation 5a sums up the values of
all objectives with their weights. For our problem, the value of
each state in S represents the number of crashed VMs, where
S = {min(p,m),min(p,m) − 1,min(p,m) − 2, ..., dmq e}.
Each decision in X is a (0,1)-matrix with the constraints
the same as Equation 1. After finding the optimal policy,
the transition probability matrix with the policy Pπ can be
induced. Then, the rewarding values of two objectives can be
calculated based on Equation 2 and Equation 3.

However, the computation complexity to find the optimal
policy is O(T × m2 × n!), where T is the total number of
shuffling, m is the number of attackers, and n is the number
of users. It is envisaged that directly solving our problem is
computation intensive. In the following sections, therefore, we
first present a baseline algorithm and then design an efficient
approximation algorithm to solve the problem.

V. THE BASELINE SHUFFLING ALGORITHM

In the following, we first present a baseline shuffling algo-
rithm to consider the cost of rerouting in SDN. BSA consists of
two steps. The initial assignment step derives the initial state,
whereas the t-th shuffling step iteratively reduces the number
of the crashed VMs. The routing cost of each shuffle is the sum



of the users that need to change the serving VMs. Specifically,
in the initial assignment step (Algorithm 1), n users (including
m attackers) are randomly assigned to p VMs through random
permutation function ρ. The probability distribution of the
initial state is as follows:

Pr[S1 = s] =
(n−m)!

n!
× Cps

s−dmq e∑
k=0

(−1)kCss−kP
q(s−k)
m

Based on uniform permutation of the users in Algorithm
1, the permutation of m attackers that occupy s VMs is

Cps

s−dmq e∑
k=0

(−1)kCss−kP
q(s−k)
m while the permutation of the rest

users is (n−m)! among total n! decisions.

Algorithm 1 Initial Assignment

Input: a list of users U = {u1, u2, ..., un} and a list of VMs
M = {m1,m2, ...,mp} with size of q users

Output: A binary p× n-matirx A0

1: Compute ρ(U) = {uρ(1), uρ(2), ..., uρ(n)} with the random
permutation function ρ;

2: for each user uj do (the user index j is according to ρ)
3: k := dρ(j)/qe;
4: for each VM mi do
5: if i = k then a0

ij := 1
6: else a0

ij := 0
7: end if
8: end for
9: end for

10: return all a0
ij ∈ A0

Afterward, the shuffling step (Algorithm 2) at time t ran-
domly groups and reassigns the users in the crashed VMs
through the random permutation function, while the assign-
ment of the other users remains identical. The transition
probability matrix in the step is as follows:

pBSAij =


0 if si < sj

(qsi−m)!
qsi!

× Csisj
sj−dmq e∑
k=0

(−1)kC
sj
sj−kP

q(sj−k)
m else

The rewarding values RBSA1 and RBSA2 of each state si
with policy BSA represents the effectiveness and cost of a
shuffle as follows.

RBSA1 (si) =

|S|∑
j=1

pBSAij (si − sj) (6a)

RBSA2 (si) = n− qsi(1− 1/si) (6b)

Regarding shuffling effectiveness, the rewarding function in
Equation 6a includes the expected reduced number of VMs
in a shuffle in state si. Hence, si and sj are equivalent to ζt
and ζt+1 in Equation 2b if St = si and St+1 = sj . In terms
of traffic redirection cost in SDN, the rewarding function in
Equation 6b represents the number of stationary users, where
qsi(1− 1/si) is the number of the moving users in state si.

In BSA, all users in the crashed VMs are redirected with
the probability 1 − 1/si, and RBSA2 (si) is equivalent to the
value of n−ηt in Equation 3b if St = si. The value functions
of each state with the policy BSA is as follows:

V BSAt+1,k(si) = RBSAk (si) + γk

|S|∑
j=1

pBSAij V BSAt,k (sj), (7)

where V BSA1,k = RBSAk , γk is a discount value with γ1 := γ
defined in Equation 2a and γ2 := 1.

Algorithm 2 Baseline Shuffling Algorithm (BSA): t-th Shuf-
fling

Input: A binary p × n-matrix At−1, a list of users U , a list
of crashed VMsMt = {mx1

,mx2
, ...,mxr}, and a list of

users in crashed VMs Ut = {uy1 , uy2 , ..., uyqr}
Output: A binary p× n-matrix At

1: Compute ρ(Ut) = {uyρ(1) , uyρ(2) , ..., uyρ(qr)}with the ran-
dom permutation function ρ;

2: for each uyj do (the index j is according to ρ)
3: k := ρ(j)/q;
4: for each crashed VM mxi do
5: if i = k then atxiyj := 1
6: else atxiyj := 0
7: end if
8: end for
9: for each VM mi ∈M−Mt do

10: atiyj := 0
11: end for
12: end for
13: for each uj ∈ U − Ut do
14: atij := at−1

ij ∀i = 1 to p
15: end for
16: return all atij ∈ At

VI. THE COST-EFFECTIVE SHUFFLING ALGORITHM

BSA relocates almost every user in the crashed VMs and
thereby tends to incur redundant movement, especially when
the attackers are more sparse in the crashed VMs at the
beginning of shuffling. In this section, therefore, we propose a
cost-effective shuffling algorithm (CSA) to significantly reduce
the number of rule installations in SDN. CSA (Algorithm
3) is executed in each time t after the initial assignment in
Algorithm 1. Different from BSA, here the VMs are first
randomly paired. Afterward, for each pair of VMs, one VM
randomly selects half of the users and moves them to the other
VM, whereas the other half stays in the same VMs. The goal
of CSP is to generate more distinct groups than the current
ones from a random pair. We relocate only half users because
moving more/less than half users leads to similar groups and
tends to reduce the effectiveness. The transition probability
of CSA is represented as the function δij , where the value is



correlated to (m,n, p, q).

pCSAij =

{
δij(n,m, p, q) if i+ bsi/2c ≥ j ≥ i
0 Else

The rewarding values RCSA1 and RCSA2 of each state si
with policy CSA represent the effectiveness and cost of each
shuffle in state si as follows.

RCSA1 (si) =

|S|∑
j=1

pCSAij (si − sj) (8a)

RCSA2 (si) = n− 1

2
qsi (8b)

Equation 8b indicates that the moving probability of each user
in the crashed VMs is 1/2. Given the transition probability and
the rewarding function, the cumulation of effectiveness and
cost with the policy CSA after t+ 1 shuffles is as follows:

V CSAt+1,k(si) = RCSAk (si) + γk

|S|∑
j=1

pCSAij V CSAt,k (sj), (9)

where V CSA1,k = RCSAk , γk is a discount value with γ1 = γ
defined in Equation 2a and γ2 = 1.

Algorithm 3 Cost-Effective Shuffling Algorithm (CSA): t-th
Shuffling

Input: A binary p × n-matrix At−1, a list of users U and a
list of crashed VMs Mt = {mx1

,mx2
, ...,mxr}

Output: A binary p× n-matrix At
1: for each pair of (mxρ(i−1)

,mxρ(i)), where ρ(i) mod 2 =
0, where users U0

t = {uy1 , uy2 , ..., uyq} in mxρ(i−1)
and

U1
t = {uz1 , uz2 , ..., uzq} in mxρ(i) do //random pairing

2: Randomly choose {uy′1 , uy′2 , ..., uy′dq/2e} ⊂ U
0
t and

{uz′1 , uz′2 , ..., uz′dq/2e} ⊂ U
1
t

3: Set atxρ(i−1),z
′
j

:= 1 and atxρ(i),y′j := 1

4: Set ati,z′j := 0 for all i 6= xρ(i−1)

5: Set ati,y′j := 0 for all i 6= xρ(i)
6: end for
7: for each uj ∈ U − (∀{uy′1 , uy′2 , ..., uy′dq/2e} +

∀{uz′1 , uz′2 , ..., uz′dq/2e}) do
8: atij := at−1

ij

9: end for
10: return all atij ∈ At

VII. ANALYSIS

In the following, we derive the approximation ratio of the
proposed algorithm. Specifically, we first evaluate the speed of
the released users. Let V πt,1 denote the speed of the diminishing
crashed VMs after t shuffles with the solution π. Hence, the
expected speed of the released users, denoted by E[V̄ πt,1] can

be derived as follows,

E[V̄ πt,1] = q

|S|∑
i=1

Pr[S1 = si](V
π
t,1(si) + (p− si))

where (p− si) is the diminished number of the initial assign-
ment. V̄effect denotes the upper bound of the effectiveness
with only one shuffle after the initial assignment.

V̄effect = q

|S|∑
i=1

Pr[S1 = si](γ1(si − s|S|) + (p− si))

To analyze the cost, we derive the expected number of
stationary users after t shuffles, denoted E[V̄ πt,2] as follows.

E[V̄ πt,2] =

|S|∑
i=1

Pr[S1 = si](V
π
t,2(si))

V̄cost denotes the upper bound of total stationary users with
only the attackers and m legal users moved in the first shuffle.

V̄cost = n− 2γ2m

Based on the above evaluation, we derive the approximation
ratio of the proposed algorithm as follows.

Theorem 1: Given the weighted values of the objec-
tives (w1, w2) and t-time shuffling operations, the solu-
tion π guarantees that E[V̄ πt ] ≥ απE[V̄ optt ], where απ =
w1E[V̄ πt,1]+w2E[V̄ πt,2]

w1·V̄effect+w2·V̄cost
and opt is the optimal solution.

Proof: Since

E[V̄ πt ] = w1E[V̄ πt,1] + w2E[V̄ πt,2]

and
E[V̄ optt ] ≤ w1 · V̄effect + w2 · V̄cost,

E[V̄ πt ] ≥
w1E[V̄ πt,1] + w2E[V̄ πt,2]

w1 · V̄effect + w2 · V̄cost
E[V̄ optt ] holds.

Theorem 1 finds the approximation ratio of the speed for
the shuffling solutions. Later in the next section, we show that
αBSA and αCSA are both close to 1 for different numbers of
the attackers and VMs.

VIII. SIMULATION

In the following, we compare the proposed algorithms
with J-Algo [5] to evaluate the effectiveness and cost of
shuffling. To find the transition probability matrix of CSA,
pCSAij , we first implement Algorithm 3 and execute it 10000
times with pre-defined parameters (n,m, p, q). We also find
the induced transition probability matrix of BSA, pBSAij and
the distribution of the initial state Pr[S1 = s], similarly.
Afterward, we compare the expected value functions of CSA
with that of BSA and J-Algo in terms of effectiveness, cost,
and total utilities (i.e., weighted sum of effectiveness and cost).
Note that J-Algo [5] is to decide the size of the VMs in order
to optimize the expectation of saving users in a single shuffle.
Hence, in the simulation, the parameter q is not fixed and
depends on the output of J-Algo.



(a) Sum of effectiveness and cost, w1 = 0.8
and w2 = 0.2

(b) Effectiveness for the speed of the saving
users, γ1 = 0.9

(c) Cost for the No. of stationary users, γ2 =
1

Fig. 1: Comparison of BSA, CSA, and J-Algo [5] with different No. of attackers, n = 1000, p = 50, q = 20, and t = 10

(a) Sum of effectiveness and cost, w1 = 0.8
and w2 = 0.2

(b) Effectiveness for the speed of the saving
users, γ1 = 0.9

(c) Cost for the No. of stationary users, γ2 =
1

Fig. 2: Comparison of BSA, CSA, and J-Algo [5] with different No. of VMs, n = 1000, m = 100, and t = 10

Fig. 1 and Fig. 2 first compare different algorithms with
varied number of attackers and VMs, respectively. In Fig.
1, 1000 users are involved in the shuffling scheme, and the
system is able to allocate at most 50 VMs for shuffling
(except J-Algo). In Fig. 2, there are 100 attackers among 1000
users. Fig. 1 demonstrates that the advantage of the shuffling
approach linearly decreases when the number of the attackers
grows, whereas Fig. 2 manifests that the shuffling approach
performs better when the number of VMs increases. For the
effectiveness of shuffling, Fig. 1b and Fig. 2b present the
speed of the saved users, (i.e., E[V̄ πt=10,1]) with the discount
value set to 0.9. For the cost of shuffling, Fig. 1c and Fig. 2c
show the number of stationary users, (i.e., E[V̄ πt=10,2]), with
no discount value (i.e., 1). The simulation results in Fig. 1a
and Fig. 2a demonstrate that the total utility (i.e., E[V̄ πt=10])
of CSA significantly outperforms those of BSA and J-Algo,
where the weights of effectiveness and cost are set to 0.8 and
0.2 here.

The result of J-Algo in Fig. 1 does not climb when the
number of attackers is smaller than 50, because when the
attackers are fewer than the VMs, J-Algo will generate a large
q (i.e.,q > 20) and lead to a few empty VMs. The effectiveness
of shuffling in BSA slightly outperforms the the one in
CSA due to the following two reasons. First, the transition
probability of CSA decreases to 0 when j > i+si/2, because
withbsi/2c, more crashed VMs in a shuffle can be sanitized at
best. Second, BSA improves when the attackers are dense in
the VMs. For the shuffling cost, Fig. 1c and Fig. 2c indicate
that more users remain stationary in 10 shuffles for CSA, and
the rule modification cost of CSA is thereby much smaller
than that of BSA. To consider both the effectiveness and cost,

No. of Attackers 20 40 60 80 100
BSA 0.84 0.69 0.55 0.42 0.32
CSA 0.91 0.84 0.79 0.73 0.68

(a) Comparison with different No. of attackers
No. of VMs 39 46 56 72 91
BSA 0.20 0.27 0.37 0.48 0.55
CSA 0.58 0.66 0.73 0.77 0.81

(b) Comparison with different No. of VMs

TABLE I: The approximation ratios (αBSA, αCSA) of the
baseline and the cost-effective solutions, w1 = 0.8 and
w2 = 0.2

our proposed algorithm still outperforms BSA, respectively in
Fig. 1a and Fig. 2a. Table. I also presents the corresponding
approximation ratios derived from Theorem 1, and the ratios
are lose to 1 for CSA in most cases.

IX. IMPLEMENTATION

We implement the shuffling scheme in an experimental
SDN/NFV network. The network is composed of 5 HP
DL320e Gen8 servers and an HP 5406zl OpenFlow switch.
One server is employed to construct the control platform,
and the others are installed with the hosts connected to the
OpenFlow switch. For the virtual network deployment, we
utilize Docker [21] as the VM generator and Open vSwitch
[22] to bridge the docker VMs in the physical hosts. We also
exploit Ryu [20] and the remote API of Docker to build the
control platform of the SDN/NFV network.

In the implementation, we start 50 VMs and assign the
memory and CPU resources to each VM for 20 users. The
VMs are equally allocated to four servers. Then, we arrange
100 attackers with different IP and TCP ports, where the



Fig. 3: Time consumption in each shuffle of CSA, n = 1000,
m = 100, p = 50, q = 20

Fig. 4: Time consumption of rule modification in each shuffle
of BSA and CSA, n = 1000, m = 100, p = 50, q = 20

attackers overload the VMs through the HTTP attack tool.
Once a shuffle is performed, some of the users are relocated
through rule modification. If a user is assigned to a VM that
shares the same server with the previous VM, only two rules
(i.e., ingress and egress flows) in the open vSwitch need to
be modified. Otherwise, two more rules in the HP OpenFlow
switch are required to be reconfigured.

After implementing BSA and CSA in Python and executing
the program as an application on the SDN/NFV control
platform, Fig. 3 and Fig. 4 present the latency of our approach
caused by rule modification and VM restart in each shuffle
of different algorithms. The results indicate that restarting
a crashed VM takes 0.25s with parallel programming, and
modifying 1000 rules takes 0.5s in Open vSwitch and 3.6s
in the HP switch. In Fig. 3, our approach requires 4.5-5s in
each shuffle, including VM restart and rule modification. In
Fig. 4, our approach improves the rule modification latency
around 1.5-2.5s in each shuffle, because CSP is more inclined
to meet the chance that random pairs of the VMs are colocated.
In this case, very little rule modification latency is imposed. In
total, CSA outperforms BSA around 18.8s in rule modification
latency after all shuffles.

X. CONCLUSION

In this paper, we explore user traffic redirection in the
shuffling-based moving target defense scheme against HTTP
DDoS attacks in SDN/NFV. We model the defense effective-
ness and rule modification cost with Multi-Objective Markov
Decision Processes and design an approximation algorithm to
solve it. Simulation results indicate that our proposed CSA
effectively balances the tradeoff between the two objectives,
and implementation results manifest that our approach imposes
much smaller rule modification latency, and each shuffle only

takes around 4.5s for redirecting the traffic of 1000 users to
50 VMs.
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