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1. Introduction

Recently, knowledge discovery in databases (KDD) and its kernel daiagrtiave received more and
more attention for practical applications. While the mainstream researchafdaing concentrates
on the design of efEcient algorithms for extracting knowledge from da¢sb#se question to close the
semantic gap between structured data and human-comprehensible chiasapeen a lasting challenge
for the research community [25]. This is called the interpretability problemtefligent data analysis
in [25]. Since the discovered knowledge is useful for a human userwh&n he can understand its
meaning, the knowledge representation formalism will play an important rolesimtifization of the
induced rules.

Many different forms of knowledge have been considered by the K&archers, notably, the asso-
ciation rules and sequential patterns [1, 2]. However, it is in genedulifto integrate the discovered
patterns and traditional Al systems. The main reason is that the inferegitee @i Al systems usually
employ a logic-based knowledge representation, which is quite differemt the specialized patterns
discovered by a £xed data mining algorithm. Therefore, a uniform intebfatveeen the discovery and
utilization of knowledge is urgently needed. The interface will transforndibeovered patterns into the
knowledge based on the logical formalism employed by the Al system(Figure 1

KDD System Al System
KDD Process Iﬂfel_’ence
Engine

The Interface

Problem
Solver

Figure 1. An interface is needed between the KDD and Al system

The advantages of the logic-based representation for data mining haveeals observed in the past
[15].

... a coherent formalism, capable of dealing uniformly with induced knowleahge
background, or domain, knowledge, would represent a breakgtrdn the design and de-
velopment of decision support systems, in diverse application donmEesadvantages of
such an integrated formalism are, in principle:

¢ a high degree of expressiveness in specifying expert rules, or sgsules;

e the ability to formalize the overall KDD process, thus tailoring a methodology to a
specifc class of applications;
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e the separation of concerns between the speci£cation level and the mappirgun-
derlying databases and data mining tools.

The rough set theory proposed by Pawlak provides an effectivddpektracting knowledge from
data tables [47]. In fact, many powerful data mining algorithms have begroped based on the rough
set theory(for example, see papers in [55, 56, 49] for some recegtgss). To represent and reason
about the extracted knowledge, a decision logic (DL) is also proposddjnThe semantics of the logic
is de£ned in a Tarskian style through the notions of models and satisfaction.

Due to the following two reasons, DL is a good candidate to serve as theslyatg/een the KDD
and Al systems: On the one hand, the data mining algorithms based on raulgacsyg usually extract
rules which can be easily represented in the syntactical form of DL lg@sgu@n the other hand, the
semantic similarity between DL and Classical logic makes it easier to integrate thd remts into
knowledge-based systems.

While DL can be considered as an instance of classical logic in the coritdatatables, different
generalizations of DL corresponding to some non-classical logics avedakirable from the knowl-
edge representation viewpoint. For example, to deal with uncertain or inetaripformation, some
generalized decision logics have been proposed in [10, 31, 32, b3, 64

These generalized decision logics, however, mostly focus on the espation of knowledge from
a single data table. Though in principle, all data can be put into a single taidesametimes more
natural to represent them by a collection of data tables. For example, intarpese database, the
business transaction records may be stored as a collection of data talebesdirny dates. To extract
knowledge from such structured data tables, we need richer repagsarianguages than the decision
logic. Among the traditional logical tools, modal logic would be one of the mostaiate candidates
that can meet the requirement since it is a logic for reasoning about ralatiaroad sense [4], whereas
the knowledge extracted from multiple data tables is usually concerned witbl#t®nship of objects
across different tables. The objective of this paper is to presentsfimmulation of modal decision
logics based on multiple data tables.

In the next section, we £rst review the decision logic proposed by Pa#lgkneral modal decision
logic(MDL) is presented in section 3, which is followed by three case studliesy are respectively the
uncertain, epistemic, and temporal decision logic. In each case, the symdasemantics of the logics
are presented and some illustrative examples are given. In section Btithe of fuzzy decision logic is
reviewed and combined with the modal decision logic. Itis shown that the cechbanmalism provides
a natural representation of fuzzy sequential patterns. Finally, the synisngiven in the concluding
section and some further research directions are also pointed out.

2. Review of Decision Logic

In data mining tasks, a data table(DT) is taken as a regular approach fetothge of data. A formal
de£nition of data table is given in [47].

Defnition 1. A data tablé is a triplet

T=(UA{ar|acA})

!Also called knowledge representation system, information system, otétiialue system
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where
e [ is a nonempty £nite set, called the universe,
e Ais a nonempty £nite set of primitive attributes, and

e foreacha € A, ar : U — V, is a total function, wher&’, is the domain of values far. Usually,
we will simply write « instead ofar for the functions.

Given a data tablg’, we will denote its universé&/ and attribute sefd by Uni(7T") and Att(T)
respectively.

In [47], a decision logic(DL) is proposed for the representation of th@itedge discovered from
data tables. The logic is called decision logic because it is particularly useduspecial kind of data
table, calleddecision table. A decision table is a data tabfe= (U, C U D, {ar | a € C U D}), where
Att(T) can be partitioned into two sets and D, called condition attributes and decision attributes
respectively. By data analysis, decision rules relating the condition andettision attributes can be
derived from the table. A rule is then represented as an implication betwemlas of the logic.
Nevertheless, for a general data table, the acronym DL can also diatatiogic.

The basic alphabet of a DL consists of a £nite set of attribute syrobalsd fora € A, a £nite set
of value symbolg/,. The syntax of DL is then de£ned as follows:

De£nition 2.
1. An atomic formula of DL is a descriptdt, v), wherea € A andv € V.

2. The well-formed formulas (wff) of DL is the smallest set containing the atdonimulas and
closed under the Boolean connectives\, andv.

A data tablel’ = (U, A, {ar | a € A}) is an interpretation for a given DL if there is a bijection
[+ A — Asuchthat for every. € A, V() = V,. Thus, by somewhat abusing the notation, we will
usually denote an atomic formula és v), wherea € A andv € V,, if the data tables are clear from
the context. Intuitively, each element in the universe of a data table pomds to a data record and an
atomic formula, which is in fact an attribute-value pair, describes the valgero€ attribute in a data
record. Thus the atomic formulas (and so the wifs) can be verifed or fdlisifedata record. This gives
rise to a satisfaction relation between the universe and the set of wffs.

De£nition 3. Given a DL and an interpretatidh = (U, A, {ar | a € A}) for it, the satisfaction relation
= betweenr € U and wffs of DL is de£ned inductively as follows:

1. (T,z) = (a,v) iff a(x) =v
2. (Ty2) [ g it (T,2) I ¢
3. (T,z) Epenyiff (T,z) =pand(T,z) =

4. (T,2) = oV wift (T,2) F gor (T,a)
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If ¢ is a DL wff, the setnr(¢) deEned by

is called the meaning of the formujain 7'. If T" is understood, we simply write:(y).

A formula ¢ is said to be valid in a data table, writtenT" |= ¢ or |= ¢ for short when! is clear
from the context, if and only ifn(p) = U. That is,¢ is satisEed by all individuals in the universe.

A DL wff talks about the properties of individuals in the universe, so itags€ed by some indi-
viduals but falsifed by the others. However, the mined knowledge is usegi#yding the aggregated
or statistical information of all individuals. Obviously, the wffs valid in a dataléarepresent a kind
of knowledge that can be induced from the table since they hold for allithdils. However, not all
kinds of useful information are in the form of valid wifs. Sometimes, evebabilistic rules are very
useful from the viewpoint of knowledge discovery. To quantify thefuisess of the mined rules, some
measures have been proposed in [63, 65].

In contrast with DL, where extra meta-level measures must be attachedwdfshéhese measures
can also be internalized to the language by the so-called generalized quefitiEe26]. This is the
approach adopted by the monadic observational predicate calculus§MO@PL6]. A wff in DL corre-
sponds to the open formula of MOPC, however, there is no countegudhief closed formulas of MOPC
in DL as yet. To de£ne the corresponding extension in DL, let us call thesadb@Ened DL wifs indi-
vidual formulas and £x a set of unary and binary quantifers in advareettibaggregate formulagor
a data tablg" are de£ned by the following formation rules:

1. if p is anindividual formula and is an unary quantifer, thep)y is an aggregate formula,

2. if ¢ and are individual formulas and is a binary quantifer, thefy)(y,v) is an aggregate
formula,

3. if ¢ andy are aggregate formulas, so a@, ¢ A v, andy V ¥
Sometimes, we will use the infx notatigryy instead of(q)(¢, ) for a binary quantifer;. Each
quantiferg is interpreted by its truth functioir, according to [16]. For each unary quantigefr, :
N? — {0,1} is a 2-place function from natural numbers{ta 1} and for the binary onel'r, : N* —

{0,1} is a four-place function. Then the satisfaction of an aggregate formulaegtect to a data table
T is de£ned as follows:

L T = (@¢iff Try(Im(e)l, Im(=p)]) =1,
2. T |= (q)(p, ) it Try(Im(e A, [mle A=), [m(=e A )], [m(—p A =)]) = 1,
3. TE—p,TE eNyp,andT |= ¢V are deEned inductively as in the case of individual formulas.

Note that the classical quantifersand3 are de£ned with truth functiorisry(ni,ne) = 1iff ng =0
andT'r3(nq,ne) = 1iff ny > 0.
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3. General Modal Decision Logic

Just like the models of DL are data tables, those for modal decision logic jMiiLbe structured sets
of data tables.

Defnition 4. Let I andJ be two £xed sets of indices, then a structured set of data tables (SSDT) is a
pair

S=({Tiliel}{R;|je J}),
where eaclT; is a data table and ead?y is a binary relation ove{T; | i € I}.

In this paper, we will consider only the SSIS = ({7; | i € I},{R; | j € J}) satisfying the
following assumptions:

e £xed attribute assumption:
Vi, j € I, Att(T;) = Att(Ty),

namely, we assume the data tables in an SSDT are homogeneous.
e constant domain assumption:
Vi,j € I,Uni(T;) = Uni(Tj).
In other words, we assume the set of individuals stays unchangeddretifferent data tables.

e E£nite table assumptiont is £nite. This is a practical assumption since we will consider only a
£nite amount of data in the knowledge discovery process.

It seems that these assumptions are restrictive. However, the £rst wopgmss can be relaxed.
We will discuss them further in the concluding section.
The syntax of MDL is an extension of DL with the following rule:

e if pisan individual (resp. aggregate) formula, so @ie and(j)y foranyj € J.

Givenan SSD® = ({T; | i € I},{R; | j € J}), the satisfaction of individual formulas are de£ned
by

1. (T;,z) =s [jleiffforall T such tha(T;,T) € R, (T, z) =s ¢
2. (T, z) =s (j) iff there existsT” such tha(T;,T') € R; and(T, z) |=s ¢
3. the satisfaction of classical formulas is de£ned as in the case of DL.

The satisfaction of aggregate formulas can be analogously defned aedoted byl s ¢. An
aggregate formula is said to be valid in an SSDJ, denoted by=s ¢, if T' =5 ¢ for each data table
inS.



T.F. Fan, C.J. Liau, Y.Y. Yao/On modal and fuzzy decision logics 329

4. Case Studies

In MDL, there is a set of modal operatdy$ which are interpreted semantically by the binary relatiBns
over the data tables of an SSDT, however, it remains unspeci£ed how #ng kEtations are constructed.
In the following sections, we will study some cases in which the binary relatietvgeen data tables arise
naturally from the application problems.

4.1. Uncertain decision logic

We consider the application of MDL to the problem regarding uncertain dakastaThe approach we
adopt here is somewhat related to that given in [45, 46].

DeEnition 5. An uncertain data table is a triplet
T=(UA{ar|ac A})
where
e U andA are de£ned as in the standard data tables and

e foreacha € A, ar : U — (2 — {0}) is a set-valued function, whefé, is the domain of values
for a.

For eachx € U, ar(x) denotes the set of possible values for its attributeSincear(x) may
contain more than one values, this means that we do not have the exatt#gevabout what the value
is. In particular, ifar(z) = V,, then we have null information for the particularon its attributea.
Given an uncertain data tabfe = (U, A, {ar | a € A}), apossible realizatiorof 7' is a data table
T" = (U,A,{a7 | a € A}) such that forany € U anda € A, ap/(x) € ar(z). LetE(T) denote the
set of all possible realizations @f, then the SSDT foll" is de£ned as

S = (E(T), Ru)

whereR, is the universal relation, i.e., for ea@handT; € Z(T), (1;,1}) € R,.
Thus the language of uncertain modal logic(UDL) contains only two modalitiesnd (u) and we
will denote them by the ordinary alethic modalitigésand< respectively.

Example 1. The following table is simplifed from one example in [27] used in the evaluatioe-of r
searchers for a leadership in a computer science grant. (We omit onatataiid replace the null value
by the corresponding domain of values.)

Researcher Talent Grade d
1 {math, c3 {B, MSc, Ph.} | good
2 {cs} {Ph.D} excel.
3 {math} {MSc} good
4 {math, phil} | {B, MSc, Ph.y | good
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In this table, d denotes the decision attribute. There are in total 36 possibimtions for the uncertain
data table. Among them is the following one:

Researcher| Talent | Grade d
1 math Ph.D good
2 cs Ph.D | excel.
3 math MSc good
4 math Ph.D good

Thus according to the semantics of UDL, the following aggregate formulbeaari£ed in each possible
realization:
OV((Talent, math) O (d, good)).

4.2. Epistemic decision logic

The epistemic decision logic arises naturally in the reasoning about daté\sétithe KDD process.
The main challenge is to protect personal sensitive information in the redéasierodata set, i.e. a set
of records containing information on individuals. To achieve this, the eatification of individuals
must be avoided. In other words, it is necessary to prevent the possdfilitgducing which record
corresponds to a particular individual even if the explicit identi£er of theviiddal is not contained in
the released information. This problem has previously been studied in [@dpt2, 53, 54, 57].

Since useful knowledge can be induced from the data tables, it is dedinalbthey can be released
to the public. To protect the privacy of the individuals whose persoffatrimation is contained in a data
table, the attributes of the table can be divided into three sets. The Erstigists@f thekey attributes
which can be used to identify whom a data record belongs to. Therdfmgare always masked off
before the table is released. Since the key attributes uniquely determineithéuats, we can assume
that they are associated with elements in the univErsed omit them hence forth. Second, we have a
set ofpublic attributes the values of which are known to the public. For example, in [57], it is pdinte
out that some attributes like birth-date, gender, ethnicity, etc., are includgedia public databases such
as census data or voter registration lists. These attributes, if not ajgebpgeneralized, may be used
to re-identify an individual’s record in a medical data table, and this will eguivacy leakage. The last
kind of attribute is thecon£dential oneghe values of which we have to protect. It is often the case that
there is an asymmetry between the values of a conEdential attribute. For exdriiy@eattribute is the
HIV test result, then the revelation of a” value may cause serious privacy invasion, whereas it does
not matter to know that an individual has-a’'value.

To formally state the data security problem, Tt = (U;, A,{ar, | a € A}) be a data table and
Ty = (Ua, AUC,{ap, | a € AU C}) be an uncertain data table such that for eaehC andz € Us,
c(x) is a singleton. Then for ani3 C A, T} andT, are said to be3-linkable if there exists a bijection
o : Uy — Us such thatur, (z) € ap,(o(z)) foranyx € U; anda € B. Note that if7) and7» are
B-linkable, then they are alsB’-linkable for anyB’ C B.

Given anA-linkable pair(71,72) and B C A, then each bijectiom mentioned above defnes a
B-linked con£guration which is a data talffle = (U1, AU C,{ar, | a € AU C}) such that for each
z el
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1. ifa € A, thenar, (x) = ar, (x) and
2. ifce C,thencr, (z) = ep,(o(x)).

In this formulation, tabld? is assumed to be publicly available to everybody, so a user can know the
A-values of each individual ity;. On the other hand, tablg is the one to be (partially) released to the
public. However, because the identity of each individual has been whagké is assumed thdt, only
contains some record serial numbers with which we can by no means idestibyviier of the record.
However, by linking theB-values between the two tables, it is possible to partially determine the owners
of the records. AB-linked con£guration is such a linked mapping betwégrand Us when only the
sub-table ofl; consisting of the columnB U C' is released.

Example 2. Let us consider the following two tablés, and T, for medical records, wher&; =
{a,b,c,d,e}, Us ={1,2,3,4,5}, A = {Sex, Agg, andC = {HIV }:

Sex | Age Sex Age HIV
a| M 20 1| {M} | [20,30] +
b M 25 2 | {M} | [20,30] -
c F 30 3| {F} [25,35] +
d F 35 4 | {F} | [30,40] -
e F 40 5| {F} | [30,40] +

If B = Aor B = {Sex}, then all possiblé3-linked confgurations are characterized by the HIV values
of {a, b, c,d, e} in the following table, so in total there are sB¢linked confgurations. Each column of
the table corresponds to exacthBalinked con£guration:

a| + |+ |+ | - - -
b | - - - |+ +
c + | - |+ -
d - + | -
e| - |+ |+ ] -]+

This means that if tabl&; or its sub-table consisting of the Sex and HIV columns only are released, the
there are only six possible linked mappings between the individuals andtténesgards.

On the other hand, iB = {Age}, then in total there are eighkAge}-linked con£gurations charac-
terized by the following table.

o|lalo|oc|w
+

1

1

+ |+ |+
1

1
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The effect of releasing only part of the uncertain data table is equivedemaking all values of the
unreleased attributes null. In fact, the eigAge}-linked con£gurations are the same as{tex, Agg-
linked con£gurations for the two tabl&s andT?, whereT? is as follows:

Sex Age HIV
{M,F} | [20,30] +
{M,F} | [20,30] -
{M,F} | [25,35] +
{M,F} | [30,40] -
{M,F} | [30,40] +

G| W|IN|F

|
Given anA-linkable pair(7y,T») as above, we can de£ne its epistemic SSDT as

S(Th,Tz) = (T.,{Rp | B C A})

where7 is the set of allB-linked conf£gurations for ang C A and for eachR z and any two tables
T;,T; € T, (T3, T;) € Rp iff T; andT} are bothB-linked con£gurations. According to the semantics of
general modal decision logi¢B]¢ means thap can be known by data table linkage provided that the
sub-table containing only the attributé&sU C is released. In general, we can stipulate some sensitive
formulas which we would like to prevent the end user from knowing. THu3]y is true for some
sensitivep, then the release of such sub-table is unsafe.

Example 3. Continuing example 2, if the sensitive formula(i§ 1V, +), then, since in any-linked
conf£gurationd’, (T, x) f=s [A|(HIV,+) for all z € Uy, the release of the whole data table is safe.
However, if we consider another sensitive formyle: (Sex, F') =05 (HIV+) where= 5 is a binary
quantifer defned byr . ;(n1,n2, ng,na) = 1iff 2L— > 0.5, thenT =g [A]yp for any A-linked

con£gurationd’, so the release of the whole table is unsafe for the sensitive formula. afargee the
safety, we can only release the sub-table consisting of the attributes Ad¢'dril

4.3. Temporal decision logic

Perhaps the most useful instance of modal decision logics is the temperalTtrere may be many
variants of temporal decision logic. Here, we £rst formulate the most simpléasel on linear time
structure. The linear time structure can be mapped to an initial segment oftthmalmaumbers and the
main relations between time points are the “next” and “earlier-than” relationsthérmore, we also
need the universal relation for the formulation of sequential patterngandiaing.

De£nition 6. A (linear-time) temporal SSDT is of the form
S=({Ti|0<i<n—1},{Rs,Rc,Ry})
where

e eachT; is a data table,
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o (T;,Tj) € Ry iff j=i+1,
o (1;,T;) € R<iff i < j,and
o (I;,T;) € R, forall0 <i,j <n—1.

The modalitieg+] and [<] corresponds to the “next” and “future” operators in ordinary temporal
logic and will be denoted by) andT respectively. The dual operator @fi.e. (<)) is denoted by as
usual. Furthermore, we abbreviate a sequeneerabdal operatorg) by (O". Also recall thatfu| and
(uy are denoted by and< as in uncertain decision logic.

The temporal decision logic may be applied to the mining of sequential pattgrnad@ording to
their de£nition, the sequential pattern mining problem is as follows:

Given a set of sequences, where each sequence consists of a lghehts and each
element consists of a set of items, and given a user-speci£ed min stpesihold, sequen-
tial pattern mining is to £nd all of the frequent subsequences, i.e., the sudrsees whose
occurrence frequency in the set of sequences is no less than minrsuppo

For example, in the analysis of customer purchase behavior, eacinsegadhe purchase history of
a customer and each element of the sequence consists of all items pdreirasi#aneously by the
customer at some time.

Example 4. To formulate the customer purchase behavior analysis, we can corstamaporal SSDT
on the following way: The universe consists of all customers and the ddslare the items. Each
attribute is bi-valued. Each data table contains the transaction recordaeatigte. Thus if customer
purchased items, c, e at times, then, in tablel}, b(z) = c¢(z) = e(x) = 1 anda(xz) = 0 for all other
attributesa. A sequential pattern is in general represented as an individual foimtdenporal decision
logic:

(oA S (1A S (p2-++))) )

where eacly; is a conjunction of atomic formulas. To ensure the mining of frequent pajt@ssaming
the minimum support is € [0, 1], we can use the aggregate formigy wherey is an individual

formula denoting a sequential pattern arid a unary quanti€er de£ned By, (m, n) = 1iff 2 > r.
|

Recently, sequential pattern mining was also used in the construction ofiantrdistection rules
[28, 29]. According to [29]:

The main techniques for intrusion detection are misuse detection and andetaly
tion. For the former, the “signatures” of known attacks, i.e., the patterratiaick behavior
and effects are used to identify a matched activity as an attack instance,astibeclatter
uses established normal profles, i.e., the expected behavior, to identiiynacgeptable
deviation as possibly the result of an attack.

In [29], the data mining technique is applied to a set of audit records. @deok data they considered
is the BSM data developed and distributed by MIT Lincoln Lab for the 199RPA evaluation of
intrusion detection systems. The data contains audit records séradimailsessions during a period of
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time. Each audit record corresponds to a UNIX system call madsebgimail The attributes of each
record include the system call name, the user and group IDs, the narbgof accessed by the system
call, arguments, etc. The expected patterns to be discovered is of théidrmn | so, - - - , s,—1) Which

is the probabilistic prediction of thg: + 1)-th system call given the previoussystem calls in a session.

Example5. To model the intrusion detection application, we consider the univéras the set of all
sessions during a period of time. For the purpose of simplifcation, we asdlusessions start at the
same time. The attributes of each data table are just those for the system calsuudihrecords. For

0 < i < n, the data tabld’; contains the system calls made at tifi®y each session. Then the expected
patterns to be mined will be expressed by the following formula:

(o AOp1 A= AO" Hon—1) = On 3)

where eachy; is an individual formula denoting the properties of system calls=ands a binary quan-
tifer deEned by'r . (n1,n2,n3,ng) = 1iff —2L— > r. 1A

n1+n2

4.3.1. Dynamic decision logic

A variant of temporal decision logic is the dynamic decision logic. Sometimes, wematerested in
the effects of some actions. For example, the promotion of some items may betiakteecustomers’
purchase behavior with respect to the particular and other related itemns.tr medical domain, some
medical treatment may have certain effects on the test results of the patieritsmulate this kind of
analysis, we need the dynamic decision logic.

Let Act be a set of actions, then the dynamic SSDT basedtis

S(Act) = ({T; | i € I}, {Ra | @ € Act})
where
e [ is a £nite set of time points arl contains the data collecting at timéor i €
e foreacha € Actandi,j € I, (1;,T;) € R, if ais carried out between timeand timej.

According to the semantics of MDL, a dynamic decision logic fornulge means thaty necessarily
holds after the actior is carried out.

Example 6. Let us consider again the customer purchase behavior analysis. ttibe@ denote “one-
week sale of itena at a discount”, then the induced patterns may be something like

(0.5)(a,1) D [a](0.8)(a, 1) 4)

or
(b, 1) =0.6 [a](a, 1). (5)

Recall that(0.5) and (0.8) are unary quantifers ang ¢ is a binary one. The formula at (4) means
that if at least 50% of customers are purchasing iterthen after the promotion action, at least 80%
of customers will be doing so. The formula at (5) means thatdhdb are two related items, then the

promotion of itermu also has an effect on buyers of itéimin other words, 60% of customers purchasing
b will be attracted by the price reduction @fthough they may still buy at the same timel
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5. Fuzzy Decision Logic and its Modal Extension

With the motivation of quantizing numerical attributes, a fuzzy decision logic isdluiced in [10]. There
are in general two kinds of attributes in a data table, the nominal ones andhteginal ones. The former
is usually with £nite domains. For example, the status of a switch may be on oreoffexhof a person
may be male or female, etc. On the other hand, numerical attributes often havenite domain of
values. Even though the domain is £nite, its cardinality may be very large. &onde, the temperature
may be a subset of real numbers.

Due to the continuity of the numerical domains, the objects which possessnatexvalues may
behave similarly at their decision attributes. For example, two persons wieopaximate ages may
have a similar shopping behavior. Since data tables are £nite, not all posslilpds of the attributes
appear in a table, so we should be able to extrapolate or interpolate thaezkimales to the values not
appearing in the table.

To solve the data interpolation problem, many quantization techniques havadegted [38]. The
most direct one is the crisp quantization approach. By this techniquen fattrébutea, we can partition
V, into n, mutually disjoint subset®,, D,, ..., D, , and in the decision table, for eaghe U, a(z) is
replaced byD; if a(x) € D; for somel < j < n,. Although the quantization process may reduce the
precision of the data, it also effectively hides irrelevant details of the dati is useful in summarizing
the data. However, since the intervals do not necessarily correspamatural language terms, the
extracted rules lack a colloquial reading when we try to explain them. To obtare meaningful
guantization, we may in advance stipulate some linguistic terms as the labels oftiftarreclasses
of the partition, and then the values in the domain are assigned to the respsatiges according to
the meaning of these linguistic terms. Thus semantics of natural language aytlyel quantization
process. However, even if some linguistic terms are given in advancesatigtimes still difEcult to
decide the membership of some values. This is due to the fuzziness of thase gerit is natural to
interpret these terms as fuzzy sets instead of crisp ones. This meangtheizhquantization approach
may be more appropriate for the problem. To represent the rules indyctd Buzzy quantization
approach, we need a fuzzy decision logic (FDL).

The basic alphabet of FDL also consists of a £nite set of attribute symbaigl fora € A, a £nite
set of linguistic termg, and the atomic formula of an FDL is now a descripterl,) wherea € A and
l, € L,. Then the formation rules of wffs for FDL are the same as those for DweNer, to interpret
the wffs of an FDL in a data table, we have to £x a context for the linguistic terms.

It is well-known that many natural language terms are highly context-aigpen For example, the
term “tall” may have quite different meanings for “a tall basketball played & tall child”. To model
the context-dependency, we associate a context with each FDL. Thextdetermines the domain of
values of each attribute and assigns an appropriate meaning to each linguiati¢-ormally, a context
associated with an FDL is a pdifV, }.c 4, ct), whereV, is a domain of values for eache A andct is
a function on the linguistic terms such thatl,) € P(V,) if I, € L4, whereP(V,) denote the class of
all fuzzy subsets of,,. Henceforth, we assume a £xed context is given. By the £xed contexg tab&e
T = (U,A,{ar | a € A}) is an interpretation for a given FDL if there is a bijection betwetand A
such that for every, € A, the linguistic terms irC, are all mapped to fuzzy subsets of the domain for
the corresponding attribute by the context.

Since each linguistic term is interpreted as a fuzzy subset of the attribuesyaldata record may
satisfy an individual formula in FDL to some degree. Thus the satisfactitmele® data records and
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individual formulas is no longer a qualitative relation.

De£nition 7. Let ® denote the set of individual formulas of an FDL and a data tébte (U, A, {ar |
a € A}) be an interpretation for the FDL, then the evaluation funcfign: U x & — [0, 1] is de£ned
as follows:

1. Br(z,(a,la)) = pey,)(alr)), wherep,,) is the membership function of the fuzzy sefl,)
Ep(z,~¢) =1— Ep(z,¢)
Er(z, o N) = Er(z, 9) ® Ep(z,9)

4. Erp(z,o V) = Er(z,¢) @ Er(z,9)

where® : [0,1]x [0, 1] — [0, 1] is at-nornt and@ is the t-conorm de£ned aypb = 1—(1—a)®@(1—b)

The meaning function of FDL can be de£ned as a mapping of an individumlfa to a fuzzy subset
of the universe. Letn denote the meaning function férand is an individual formula, then

P () () = ET(T, 0) (6)

for all x € Uni(T). The cardinality of a fuzzy subséf of the universd/ is deEned by the so-called

Y-count [23], i.e.

X[ =) px(). (7)

zeU

The semantics of aggregate formulas can now be def£ned analogously asaséof DL with the help
of fuzzy cardinality. However, the truth functions for unary and bingugntiEers are now respectively
Try: R2 — {0,1} andTr, : R* — {0,1}. Note that according to the semantics, the aggregate formulas
are still two-valued, whereas the individual formulas are many-valuefbrsan aggregate formula of
FDL and a data tabl#’, we can still writeT |=  for its satisfaction. Other possibilities for de£ning the
semantics of FDL aggregate formulas exist in [16], however, we onlg tieeabove de£nition for the
purpose of this paper.

5.1. Fuzzy modal decision logic and its applications

What differentiates FDL and DL is their semantics. The syntax of DL and Blthe same, so is the
syntax of MDL and fuzzy modal decision logic (FMDL). The evaluationdiion for individual formulas
of FDL is extended to the modal case as follows: 8et= ({T; | i € I},{R; | j € J}) be an SSDT,
then the evaluation functiofs : I x U x & — [0, 1] is de£ned by

1. Es(i,z,9) = Ex(x,¢) if pis an FDL individual formula andz, is the evaluation function as
de£ned above.

2. Bs(i,z,jlp) = Q{Es(k,z,¢) | k€ I,(T;, Tx) € R;}

3. Eg(i,:b’, <]>90) = EB{ES(]C,J},QD) | kel, (Ti7Tk’) S Rj}

2A binary operatior® is a t-norm iff it is associative, commutative, and increasing in both place ® ¢ = e and0®a = 0
foralla € [0,1].
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where® and@® are respectively the t-norm and t-conorm mentioned in de£nition 7. We usentren
and t-conorm in the semantics of modal formulas becdjisand (j) are respectively considered as
conjunctive and disjunctive on the set of tables. Analogously, we cardaine the meaning function
mqr, as a mapping from the individual formulas of FMDL to fuzzy subset& ai(T;) for each:i € 1.
Then the satisfaction of aggregate formulas can be de£ned by using #yechudinality for the non-
modal cases and the semantic de£nition of MDL for the modal cases.

A direct application of the FMDL is the representation of fuzzy sequentatems. In [18, 20],
fuzzy data mining algorithms are proposed to deal with the discovery of fagzociation rules from
quantitative data. While the conventional association rule mining algorithms igen&fsimultane-
ous occurrence of some events, the fuzzy association rule mining algositeradso concerned with
how many times the events occur. The last-mentioned algorithms are furthededt® £nding fuzzy
sequential patterns from multiple-items transactions in [19]. In this subseet®show that fuzzy se-
guential patterns can be easily represented as FMDL wffs. To facilitate representation, we need
only consider the temporal case. In fact, a fuzzy sequential pattermtacsically the same as the one
shown in (2). What is different is the computation of its support from thB S

Example 7. Let us consider the following sequences of transaction data t&bles

T a b ¢ d T5 a b ¢ d
1 3 8 0 O 110 2 6 O
2 0O 5 8 O 210 0 5 5
3 O 0 O O 3/4 0 9 O
4 |0 0 0 O 411 8 3 O
5 o 7 3 3 5|10 4 4 0

Ts a b c d Ty a b c d

1 0O 0 O 9 1|0 0 0O O

2 0O 0 ©oO 0 210 0 0O O

3 O 0O 2 10 3/0 12 0 O

4 |5 0 6 0 410 0 2 7

5 0O 0 O 0 510 0 5 3

and from [20], we borrow the membership function for three linguistic teromv”, “Middle”, and
“High” as in £gure 2. Now, the representation of the following fuzzy setjaépattern: “purchasing
high volume of itermb followed by purchase of middle amountdf in the FMDL is:

¢ = O((b, High)A S (¢, Middle)).

Assume that the minimum support is 0.3, so we would like to know whether thegatgrformuld0.3)¢
holds in soméT;. In this example, we assume the t-norm and t-conorm are min and max resfyecti
Then, according to the semantics, fox 7 < 4,

Es(i,1,¢) = min(migh(8), fariddie(6)) = min(0.4,1) = 0.4
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4] 1 3 11 Mumber of items

Figure 2. The membership functions for the linguistic terms

Eg(i, 2, (p) = min(,uHigh(E)), MMiddle(E))) = min(O, 08) =0
Es(i,3,¢0) =0
Es(i,4,¢) = min(pign(8), max(fasiddie(6), faridae(2))) = min(0.4, max(1,0.2)) = 0.4

Es(i,5,¢) = max(min(umign(7), max(tariddie(4), tariadie(5))), min(perign(4), tariddie(5)))
= max(min(0.2, max(0.6,0.8)), min(0,0.8)) = 0.2

Thus the fuzzy cardinality of the meaning functipny, (¢)| = 0.4 + 0.4 + 0.2 = 1 and|mr, (—¢)| =
5 — 1 = 4. Consequently, the aggregate form((a), does not hold at any;, i.e.,

T; s (0.3)y,

sinceT'ro3(1,4) = 0 due tori; < 0.3. W

6. Conclusion

Just like DL is used in the knowledge representation for data mining of a slatgeable, the MDL pro-
vides a uniform framework for representing knowledge mined from aadie of multiple data tables.
The sets of data tables are structured in the sense that some relationdsipeivigen their elements.
We interpret the MDL formulas in such structured sets of data tables. ticylar, the modalities are
interpreted with respect to the relations between the data tables accordiedtiptke semantics. Three
instances of MDL are presented to illustrate the application potentials of the Mpiesentation for-
malism. Th combination of MDL and FDL is also proposed and its use in the e of fuzzy
sequential patterns is shown by an example.

6.1. Related works

Ortowska has been one of the £rst logicians proposing the modal logierss/&ie Pawlak’s information
systems [40, 39, 42, 41, 43, 44, 37]. Many excellent works on the htogia systems for rough set
theory and data tables have also been done by Deriiritdgh, Rasiowa and Skowron, Vakarelov, and
others[3,5,6,7,8,9, 24,51, 50, 52, 58, 60, 59,36$pme of these works, in particular those of Demri,

3The list is by no means exhaustive. For further references, sesdanples [30, 48].



T.F. Fan, C.J. Liau, Y.Y. Yao/On modal and fuzzy decision logics 339

have explored the computational properties of the logical systems, whileafdhrean provide complete
axiomatization of such logics. iihtsch has also developed some systems from both the algebraic and
logical aspects. All these works show the close connection between togdaind Pawlak’s informa-

tion systems. This paper can be seen as a followup work of these previoks. However, while these
works mainly deal with the logic for a single data table, we concentrate onthergie structure of mul-

tiple data tables. Therefore, the accessibility relations in the Kripke semaaitittsef previous systems

are usually de£ned between the individuals of a single data table, whermassimantic structures, the
accessibility relations are de£ned between different data tables.

There is some similarity between our notion of SSDT and the relational informsygiems(RIS)
proposed in [62]. An RIS is atripled, R, Ay), where A is a family of data tables (maybe with different
attributes and domains] is a set of relations between the domains of data table$, iand Ag is a
distinguished data table id. Both SSDT and RIS deal with the structures of multiple data tables. It can
be seen that the basic difference between SSDT and RIS is that the forposes the relations between
data tables, whereas the latter has its relations between the objects. In sieisteerbinary relations for
RIS are £ner than those for SSDT. A general adaptive scheme is ajsasprbfor the mining of rules
from RIS. However, no logical formalisms are developed for such tsires. Therefore, the works in
[62] should be complementary with ours.

It is also interesting to note the relationship between our work and the grasartgputing(GrC)
model proposed in [33, 34, 35, 36]. In the GrC model, a binary relatitwdsn two universe is con-
sidered as essential. From the viewpoint of SSDT, this is a binary relatiweée two data tables.
However, again, the relations of GrC models are imposed between objdetsimng tables and no logi-
cal formalisms have been proposed for such models.

6.2. Futureworks

For simpliEcation of semantics, we have imposed some restrictive assumptiotie f8SDT in the
development of MDL. Therefore, further investigation is needed to lifrésriction.

For the £xed attribute assumption, if we allow the unde£ned valf@ every attribute, the assump-
tion will not cause any loss of generality since we can assume that all déa vétually have the same
set of attributes. If an attribute really does not exist in one data table, thesvaf this specifc attribute
for individuals in that data table are all. In this way, we can force all data tables to have the same
set of attributes though some of them may be only virtually existing on some déta.tilevertheless,
to interpret the formulas in our logic, we must take thevalue into account and this will somewhat
complicate the semantics of the logic, so we adopt the assumption for the paifoEimpliEcation. An
analogous approach has been proposed in [12] for studying the togaaformulation of databases.

As for the constant domain assumption, this means that we do not allow thermirdreath of data
records in different data tables. The same assumption has been mantaémystems of modal predicate
logic [14], so the well-known Barcan formula

Viile 2 [i]ve

holds in MDL for any modality[j]. This assumption can be replaced by the more relaxed increasing
domain assumption. That is,

Vi,k € I,j€J if (T;,T}) € R; then Uni(T}) C Uni(Ty).
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This means that the birth of new records is allowed though the records wél isappear along the
direction of any binary relation. This assumption does not cause lossefaiy any more since, if one
record disappears in some data table, we can replace its attribute valuesibyahue.

Another important research problem is the development of data mining algsritased on the
proposed logics. Since we mainly concentrate on the representation fanmalishis paper, the algo-
rithmic or computational aspects of data mining have been largely ignoredevdoyit is indeed possible
to develop some data mining algorithms with results representable in MDL or FWIipd.adaptive clas-
sif£cation algorithm proposed in [62] provides a practical direction alorighwthe data mining tasks on
multiple data tables can be done.

Also, we are currently working on the data mining algorithms for temporal iecisgic. The basic
idea is to employ the rough set-based algorithms or GUHA methods[17] to distiow rules in each
single data table. The mined rules are represented by DL aggregate ferrhataV7 (T') denote the
set of mined rules from the single data talbleFor a data tabl&’, we can compute the set

= (] MIT).

iEI,(T,Ti)€R<

By the mined rules, we mean thate M7 (T) impliesT |=s ¢. Therefore, ifiy € T, thenT =55 v.
Now if ¢ is an aggregate formula, then the set

N

TEsy

contains all mined ruleg such thaty >0 1 is a mined rule for the whole SSDT.
This is only one of many possible forms of rules which can be discoveoed finultiple data tables,
so it remains to be seen what kinds of rules are interesting from a KDPégetige.
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