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Abstract 
The problem of minimum-area enclosing 
rectangle of a convex polygon was first 
studied in [1] in 1975. We revisit this 
problem by providing a new complete proof 
via the elementary calculus and the method 
of rotating calipers [4], [5], [7] with 
transparent existence condition not revealed 
explicitly in [1] mainly based on geometric 
reasoning. The existence of minimum-area 
enclosing rectangle is mathematically due to 
monotonicy of area of enclosing rectangle 
with respect to the rotation angle defining its 
configuration relative to an initial enclosing 
rectangle. 

 
 
I. Introduction 
Using simpler shapes such as rectangle or 
circle in 2D, box or sphere in 3D to 
encapsulate an object of complex geometry 
is a widely- used idea in many applications.  
In [3], with additional cost (of computation 
and memory) associated with determining 
the bounding volumes, collision detection 
using bounding volumes for fast overlap of  

 
 
two geometric objects, rejection tests is 
much computational cheaper than that for 
complex geometry. Axis-aligned Bounding 
Box (AABB) with the axis parallel to the 
axis of the coordinate frame is an example 
of bounding volumes, which can be 
optimized to obtain a minimum AABB. This 
optimization requires an immediate step of 
obtaining a minimum axis-aligned rectangle. 
In [2], the algorithm on scan trajectory based 
on square lattice for laser rapid prototyping 
needs to implement a minimum-area 
bounding rectangle (circumscribed 
rectangle). In 2D, a classical reference for 
determining such a tight fitting rectangle is 
[1]. This paper explains a proper 
re-statement of the theorem of the minimum 
bounding rectangle in [1] via a new proof 
grounded on the elementary calculus and the 
method of rotating calipers [4], [5], [7] with 

implementation detailed in [6]. 
 
II. A New Complete Proof of Theorem 
of the Minimum Bounding Rectangle  
II.1 Motivation [1]  
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In [1], the following was proved based 
mainly on geometric reasoning. Let 𝑃𝑃 、𝑄𝑄  
be two statements. 

𝑃𝑃 = There is no edge of the bounding 
rectangle contains more than one of the 
specified points on the convex polygon. 

𝑄𝑄 =  The bounding rectangle is not a 
minimum bounding rectangle. 
Reference [1] proved the following two 
theorems regarding the minimum- area 
rectangle enclosing a convex polygon. The 
proof was refined more analytically in [7]. 

Theorem 1:𝑃𝑃 ⇒𝑄𝑄 . 
Given a rectangle with four points arbitrarily 
chosen such that no edge contains more than 
one point, there exists another rectangle 
such that each edge of the rectangle is less 
than that of the given rectangle. 

Theorem 2: ~𝑄𝑄 ⇒ ~𝑃𝑃  
The rectangle of minimum- area enclosing a 
convex polygon has a side collinear with 
one of the edges of the polygon. 

Theorem 1 means that  𝑃𝑃 ⇒ 𝑄𝑄 ; Theorem 
2 is a corollary of Theorem 1 according to 

the logical relation "𝑃𝑃 ⇒ 𝑄𝑄 ≡ ~𝑄𝑄 ⇒ ~𝑃𝑃" . 
However the existence of the minimum 
bounding rectangle is omitted, and hence 
Theorem 2 can't conclude that there must 
exist one such that it has an edge collinear 
with the edges of enclosed convex polygon 
and its area is the minimum.  

II.2 A new proof 
The above theorem shown in [1] did not 
reveal the existence of minimum-area 
enclosing rectangle for a convex polygon. 
Now we present a re-statement of the 

minimum-area enclosing rectangle theorem 
for a convex polygon with a new complete 
proof based on the arguments using rotating 
calipers proposed in [7] and calculus. 

Theorem 3: Given a convex polygon, there 
exists a minimum-area bounding rectangle. 
The minimum bounding rectangle has at 
least one edge in coincidence with the edges 
of the convex polygon. 

Proof. The proof applies the concept of 
rotating calipers method [4], [5], [7]. This 
method bounds the convex polygon by four 
lines of support through distinct extreme 
points (supporting vertices) of the convex 
polygon, as depicted in Fig. 1. Let 

(𝑥𝑥𝑢𝑢,𝑦𝑦𝑢𝑢 ),  (𝑥𝑥𝑙𝑙 ,𝑦𝑦𝑙𝑙 ), (𝑥𝑥𝑑𝑑 ,𝑦𝑦𝑑𝑑 ) and (𝑥𝑥𝑟𝑟,𝑦𝑦𝑟𝑟 ) 
denote four supporting vertices of the 
convex polygon that are extreme points in 
the given x and y directions, i.e. the pairs of 

 (𝑥𝑥𝑢𝑢 ,𝑦𝑦𝑢𝑢 ), (𝑥𝑥𝑑𝑑 ,𝑦𝑦𝑑𝑑 ) vertices and  (𝑥𝑥𝑙𝑙 ,𝑦𝑦𝑙𝑙 ), 
(𝑥𝑥𝑟𝑟,𝑦𝑦𝑟𝑟) vertices are farthest apart in the two 
orthogonal directions, respectively. These 
four extreme vertices form a rectangle (a 
minimum bounding rectangle aligned with 
coordinate axes). First choose an initial 
reference enclosing rectangle (such as a 
coordinate-axis aligned bounding rectangle). 
Then one candidate enclosing rectangle edge 
directions are represented, respectively, by 

the unit vector 𝒖𝒖� = (cos𝛼𝛼 , sin𝛼𝛼) and its 
perpendicular whose rotation direction could 

be the same as or the opposite to 𝒖𝒖� [7] as 
𝒗𝒗� = ±(−sin(𝛼𝛼) , cos(𝛼𝛼)), parametrized by 

𝛼𝛼 ∈ [𝛼𝛼𝑙𝑙𝑙𝑙 ,𝛼𝛼𝑢𝑢𝑙𝑙 ]⊆ �−𝜋𝜋
2

,𝜋𝜋
2
�  with respect to 

the +x axis at the supporting vertex (𝑥𝑥𝑢𝑢 ,𝑦𝑦𝑢𝑢 ), 
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where ± denotes a counterclockwise (+) or 
clockwise( −).of rotation. The angle limits 
𝛼𝛼𝑙𝑙𝑙𝑙 ,𝛼𝛼𝑢𝑢𝑙𝑙  are the angles of rotation that the 
rectangle edge coincides with one edge of 

the polygon. The directions 𝒖𝒖�, 𝒗𝒗�  define a 
collection of four edge directions of the 
candidate enclosing rectangle, denoted by 
𝐿𝐿∗  where   ∗= 𝑢𝑢、𝑙𝑙、𝑑𝑑、𝑟𝑟  of the 
candidate rectangle, where the subscript 𝑢𝑢、
𝑙𝑙 、 𝑑𝑑 、 𝑟𝑟  denote up-most, left-most, 
down-most and right-most, respectively.  

Then the edge vectors 𝒖𝒖(𝛼𝛼), 𝒗𝒗(𝛼𝛼) of the 
candidate rectangle are obtained as the 
projection of the line segments 

connecting (𝑥𝑥𝑢𝑢 ,𝑦𝑦𝑢𝑢 ), (𝑥𝑥𝑑𝑑,𝑦𝑦𝑑𝑑 ) and connecting 
(𝑥𝑥𝑙𝑙,𝑦𝑦𝑙𝑙), (𝑥𝑥𝑟𝑟 ,𝑦𝑦𝑟𝑟 )  onto 𝒖𝒖�, 𝒗𝒗� ,  respectively, 
as 

𝒖𝒖 = ((𝑥𝑥𝑟𝑟 − 𝑥𝑥𝑙𝑙)cos𝛼𝛼 + (𝑦𝑦𝑟𝑟 − 𝑦𝑦𝑙𝑙) sin𝛼𝛼)𝒖𝒖�,  
𝒗𝒗 = ±(−(𝑥𝑥𝑢𝑢 − 𝑥𝑥𝑑𝑑)sin(𝛼𝛼) + (𝑦𝑦𝑢𝑢 −
𝑦𝑦𝑑𝑑) cos(𝛼𝛼))𝒗𝒗� . 
We have the area of the rectangle with 

edges  𝒖𝒖,𝒗𝒗  given by 
  arearectangle  (𝛼𝛼) = |det(𝒖𝒖(𝛼𝛼) ×

𝒗𝒗(𝛼𝛼))|. 
This area is independent of the coordinate 

system chosen. Note that 𝛼𝛼 = 0 
corresponds to the enclosing rectangle with 
four lines of support as the edge axes. 
Without loss of generality, we assume 

that det(𝒖𝒖 × 𝒗𝒗) > 0, 𝛼𝛼 ∈ �0,𝜋𝜋
2
� ≥ 0 in Fig. 

1 so that 
arearectangle  (𝛼𝛼)=± 

 ((𝑥𝑥𝑟𝑟 − 𝑥𝑥𝑙𝑙)cos𝛼𝛼 + (𝑦𝑦𝑟𝑟 −
𝑦𝑦𝑙𝑙) sin𝛼𝛼)(−(𝑥𝑥𝑢𝑢 − 𝑥𝑥𝑑𝑑)sin(𝛼𝛼) +

(𝑦𝑦𝑢𝑢 −
𝑦𝑦𝑑𝑑) cos(𝛼𝛼) )                                                        (1)                               
From 
𝜕𝜕𝛼𝛼arearectangle  (𝛼𝛼) = (−(𝑥𝑥𝑟𝑟 − 𝑥𝑥𝑙𝑙)sin𝛼𝛼 +
(𝑦𝑦𝑟𝑟 − 𝑦𝑦𝑙𝑙) cos𝛼𝛼) ∙ {∓(−(𝑥𝑥𝑢𝑢 − 𝑥𝑥𝑑𝑑)cos(𝛼𝛼)−

(𝑦𝑦𝑢𝑢 − 𝑦𝑦𝑑𝑑) sin(𝛼𝛼))}                                        (2)                                                 

where 𝜕𝜕𝛼𝛼 ≔
𝑑𝑑
𝑑𝑑𝛼𝛼

,  we obtain 

𝜕𝜕𝛼𝛼𝜕𝜕𝛼𝛼 arearectangle  (𝛼𝛼) 

=
(−(𝑥𝑥𝑟𝑟 − 𝑥𝑥𝑙𝑙) cos𝛼𝛼−
(𝑦𝑦𝑟𝑟 − 𝑦𝑦𝑙𝑙) sin𝛼𝛼){((𝑥𝑥𝑢𝑢 −  𝑥𝑥𝑑𝑑)sin(𝛼𝛼) −
(𝑦𝑦𝑢𝑢 − 𝑦𝑦𝑑𝑑) cos(𝛼𝛼))} 
= arearectangle  (𝛼𝛼) >0, 
 
the global minimum exists 

for  arearectangle  (𝛼𝛼) over �0,𝜋𝜋
2
�. Moreover,  

𝛼𝛼 = 0  corresponds to a maximum-area 
enclosed rectangle with fixed 
(𝑥𝑥𝑢𝑢,𝑦𝑦𝑢𝑢), (𝑥𝑥𝑙𝑙 ,𝑦𝑦𝑙𝑙), (𝑥𝑥𝑑𝑑 ,𝑦𝑦𝑑𝑑) and (𝑥𝑥𝑟𝑟 ,𝑦𝑦𝑟𝑟). 
In (2), the term  

(𝑥𝑥𝑟𝑟 − 𝑥𝑥𝑙𝑙) sin(−𝛼𝛼) + (𝑦𝑦𝑟𝑟 − 𝑦𝑦𝑙𝑙) cos(−𝛼𝛼)  
is the projection of the line segment 

connecting vertices (𝑥𝑥𝑙𝑙,𝑦𝑦𝑙𝑙 ),(𝑥𝑥𝑟𝑟,𝑦𝑦𝑟𝑟) onto 𝒗𝒗� , 
and the term 
(𝑥𝑥𝑢𝑢 − 𝑥𝑥𝑑𝑑) cos(𝛼𝛼) + (𝑦𝑦𝑢𝑢 − 𝑦𝑦𝑑𝑑) sin(𝛼𝛼)  
is the projection of the line segment 

connecting  (𝑥𝑥𝑢𝑢 ,𝑦𝑦𝑢𝑢 ),  (𝑥𝑥𝑑𝑑,𝑦𝑦𝑑𝑑 ) onto 𝒖𝒖�.  Both 
terms are either (i) of the same sign or (ii) of 
opposite sign for typical configuration in 

Fig.1 with fixed extreme vertices.  Thus, in 
any case it is guaranteed that 
 𝜕𝜕𝛼𝛼 arearectangle  (𝛼𝛼) < 0 
by rotating the lines of support 
counterclockwise or clockwise (by choosing 
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appropriate sign of 𝒗𝒗� ). Therefore, 
arearectangle (𝛼𝛼) is a monotone decreasing 

smooth function over the interval �0, 𝜋𝜋
2
� (or 

over �−𝜋𝜋
2

, 0� ). The monotonicy of  the 

arearectangle (𝛼𝛼) implies that its minimum is 

at  𝛼𝛼∗ = min  (|𝛼𝛼𝑙𝑙𝑙𝑙 |,|𝛼𝛼𝑢𝑢𝑙𝑙 |) .  .    By a 
rotation 𝛼𝛼∗of both of the reference enclosing 
rectangle edge axes, the edge 𝒖𝒖(𝛼𝛼∗) or its 
perpendicular 𝒗𝒗(𝛼𝛼∗)  of the new enclosing 
rectangle is in coincidence with an edge of 
the convex polygon at the supporting vertex. 
Thus the theorem has been proved.                      
Q.E.D. 
Note that it may happen that the line 
direction coincides with a polygon edge so 
that the extreme vertex can be chosen as one 
of the vertex of the coincident polygon edge. 
Or it may happen that a polygon vertex is a 
corner of the rectangle, so that the four 
extreme points may degenerate to three or 
two distinct extreme points with one or two 
duplicate extreme points [6]. These special 
configurations, though complicated the 
geometry reasoning proof in [1], do not 
affect the rectangle area computation.  
The area computation for each candidate 
enclosing rectangle could be done 
sequentially in counterclockwise order of 
vertices, starting from selecting an edge of 
the convex polygon as one edge direction 

𝒖𝒖� of the rectangle. For the selected rectangle 
edge axis direction 𝒖𝒖� and its orthogonal 
direction  𝒗𝒗�, a bounding rectangle with one 
edge and three supporting vertices from the 

convex polygon is formed as depicted in 
typical configuration of Fig. 1. This 
x-direction can eb set as a bottom edge of 
the rectangle in coincidence with the 
polygon edge. Then project all the polygon 
vertices onto the two directions and compute 
the rectangle area. This process is iterated 
for each edge of the convex polygon during 

the rotation of the rectangle edge lines  𝒖𝒖,�  
(or equivalently 𝒗𝒗� ), the succeeding polygon 
edge selected is the one that makes the 
smallest angle with rectangle edges. The 
edge (and its orthogonal direction) of the 
rectangle that achieves the smallest area 
among the candidate rectangles is the edge 
direction of the minimum-area rectangle. 

This O( 2n ) algorithm is implemented in [3] 
p111, where n is the number of vertices of 
the convex polygon. On the other hand, 
starting from a candidate rectangle of the 
smallest enclosing rectangle with one edge 
(e.g. the bottom edge of the rectangle [6]) 
coincident with a polygon edge (e.g. the 
longest edge of polygon [8] from an easy 

implementation point of view), an O( 2n ) 
algorithm for computing the minimum-area 
enclosing rectangle was developed in [9]. 
Furthermore, applying the method of 
rotating calipers, the determination of 
minimum-area enclosing rectangle requires 
only O( n ) time complexity [5], [7], since 
the candidate rectangle with one edge 
direction coincident with one edge of 
polygon can be generated at constant-time 
complexity and the (at most) three extreme 
vertices are found by a linear scan of all the 
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vertices. Note that if the convex polygon has 
pairs of parallel edge, then the number of 
candidate rectangles is reduced.  
There are other special configurations noted 
in [6] that require special handling in 
algorithm implementation. However, the 
area computation (1) is the same for any 
configuration of rectangle and convex 

polygon. In addition, the angles 𝛼𝛼∗  that 
make (2) zero also show that the calipers 
(supporting lines) should rotate 

simultaneously by an angle 𝛼𝛼∗ so that a 
rectangle edge 𝒖𝒖(𝛼𝛼∗) or its perpendicular 
𝒗𝒗(𝛼𝛼∗) coincides with at least one polygon 
edge. The minimum angle can be computed 
by Newton’s method for zeros of nonlinear 
function (2). The minimum of the (at most 
four) angles of the polygon edge with 
respect to the rectangle edge at the support 

vertex is the required rotated angle 𝛼𝛼∗ for 
the current configuration defined by the four 
extreme vertices or edge directions of 
rectangle.  
 
III. Conclusion 
This paper gives a new informative and 
complete proof of the minimum-area 
rectangle enclosing a convex polygon 
initially shown in [1]. The comparison of 
proof method is summarized in Table 1. 
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                                                                                    𝐿𝐿𝑢𝑢 
                                                    (𝑥𝑥𝑢𝑢 ,𝑦𝑦𝑢𝑢 )    𝒖𝒖�           𝛼𝛼 
                   𝐿𝐿𝑙𝑙  
 
 
                                                                                                       (𝑥𝑥𝑟𝑟 ,𝑦𝑦𝑟𝑟) 
                     (𝑥𝑥𝑙𝑙 ,𝑦𝑦𝑙𝑙) 
 
 
 
                                                                     (𝑥𝑥𝑑𝑑 ,𝑦𝑦𝑑𝑑  ) 
         𝑦𝑦                            𝐿𝐿𝑑𝑑 
         𝑂𝑂            𝑥𝑥                                                                                                 𝐿𝐿𝑟𝑟  
Fig. 1 A typical configurat ion for enclosing rectangle area computation of a convex polygon parametrized 

by 𝛼𝛼, the rotation angle with respect to an initial reference enclosing rectangle with supporting 

vertices (𝑥𝑥𝑢𝑢 ,𝑦𝑦𝑢𝑢), (𝑥𝑥𝑑𝑑,𝑦𝑦𝑑𝑑 ) , (𝑥𝑥𝑙𝑙 ,𝑦𝑦𝑙𝑙 ), (𝑥𝑥𝑟𝑟 ,𝑦𝑦𝑟𝑟 ).  The four supporting lines 𝐿𝐿𝑢𝑢 , 𝐿𝐿𝑙𝑙 , 𝐿𝐿𝑑𝑑  , 𝐿𝐿𝑟𝑟  bounding the 

convex polygon form a new enclosing rectangle. The red lines with double arrows are rectangle edge 

directions, the black lines with corner vert ices are polygon edges. 

 

Table 1 Comparison of our rev isit with [1]. n is the number of vert ices/edges of a given convex polygon 

 H. Freeman and R. Shapira [1] This paper 

Proof method Geometric reasoning Calculus  

Existence of minimum Not included explicitly Included 

Simplicity Separate into two (but not complete) cases 

with fixed supporting vertices  

(𝛼𝛼 > 0,𝛼𝛼 < 0) [7] 

One complete case via method of rotating 

calipers with two orthogonal supporting lines  

Intuition Calculate the area difference between the 

initial enclosing rectangle and its rotated 

rectangle that passing through four points 

with one point on each edge. 

Calculate the area arearectangle (𝛼𝛼)  of 

enclosing rectangle parametrized by the 

rotation angle 𝛼𝛼  with respect to the initial 

enclosing rectangle directly. 

Informative There is (at least) one edge of the convex 

polygon in common with the 

minimum-area rectangle. 

arearectangle (𝛼𝛼) is monotonic.  

At least one edge of minimum-area rectangle 

is in coincidence with a polygon edge. 

Implementation O( 2n ) O( n ) 
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