
Smoothing Voronoi-based Obstacle-avoiding Path by Length-minimizing
Composite Bezier Curve

Yi-Ju Ho and Jing-Sin Liu, Member, IEEE

Abstract— In this paper, we present an obstacle avoiding path
planning method based on Voronoi diagram and composite
Bezier curve algorithm which obtains the shortest path length.
In our algorithm, a Voronoi diagram is constructed according
to the global environment. The piecewise linear rough path
in the Voronoi diagram which keeps away from the obstacles
is obtained by performing Dijkstra’s shortest path algorithm.
Dynamic programming is employed to subdivide the nodes on
the piecewise linear path into control point subsequences to
generate a collision free composite Bezier curve with shortest
curve length. In the experimental results, the path length
obtained by our algorithm is up to 8.83% shorter than the
piecewise linear rough path along the Voronoi diagram.

Index Terms— path planning, Voronoi diagram, shortest
path, Bezier curve, dynamic programming

I. INTRODUCTION

Path planning plays an important role in robotic and
automation fields for both static and dynamic environments
and many researchers have worked on it since 80’s. Many
techniques have been researched to utilize multiple path
schemes for different applications [1], [2], [3], [4], [6], [7],
[9], [10], [11], [13], [15]. These applicaions have been dealt
within two strategies: one strategy is to use a pre-known
global environment information and robot characteristics,
while another builds up local environment with sensor in-
formation and using robot characteristics.

Voronoi diagram for partitioning a map is used in many
researches to build up a collision free path in both global [1]
and local environments [7], [10]. The resulting path is either
a piecewise linear path or a path smoothed with splines. If
the path is a piecewise linear path, the robots following the
path have to stop and restart frequently. This causes extra
waste of robot power and wear. In order to obtain a smooth
path, many curves have been introduced as path primitives.
The smooth path is constructed by connecting pieces of
the primitive curves. [3], [4], [11] construct the path by
connecting the way points with splines, and the work in [2],
[7], [9], [15] construct the path by Bezier curves. In [4], the
authors propose a path planning algorithm with path length
by spline, but the method has large time complexity.

Among these different curves, Bezier curve is more in-
tuitive due to its space property which we will express
particularly in next section. [2] uses a set of reference points

The research was partially supported by National Science Council under
contract NSC 96-2221-E-001-018-MY2.

Yi-Ju Ho and Jing-Sin Liu are with the Institute of
Information Science, Academia Sinica, Nangang, Taipei,
Taiwan 115, ROC. u882524@alumni.nthu.edu.tw,
liu@iis.sinica.edu.tw

as control points for one Bezier curves instead of using the
reference points as way points. We notice that for a set of
reference points, to connect them by taking each point as
a way point causes longer path length with comparing to
connect them by taking each point as a control point of
Bezier curves. If we take the reference points as control
points instead of way points, the curve path does not need
to pass all the reference points but only the end points of
the Bezier curves. This greatly reduces the path length and
retains the curve property. However, there may not exist such
a single Bezier curve of the reference points in complicated
environments filled with obstacles. In order to overcome this
problem, we use a composite Bezier curve instead of a single
Bezier curve.

In this paper, we propose an obstacle avoiding path
planning algorithm for omnidirectional mobile robot. Our
algorithm is a three step method. We first utilize the Voronoi
diagram and the Dijkstra’s shortest path algorithm to build
up a collision free rough path. We then contruct a smooth
curve path along the rough path. The Bezier curve is used
as our curve primitive. We take the nodes on the rough path
as control points of the composite Bezier curve such that the
resulting curve path will closely follow the rough path. In the
second step, the control points are divided into subsequences
for each Bezier curve such that the convex hull of each subse-
quence does not collide with any obstacle. We use dynamic
programming algorithm to generate these subsequences of
control points ensuring that the corresponding composite
Bezeir curve will have shortest curve length. The last step is
to remove crowded control points to further reduce the curve
length and to construct the Bezier curves for each control
point subsequence meeting kinematic constraints.

Our experimental results show that the length of the
composite Bezier curve constructed by our algorithm is
8.83% shorter than the path length of the piecewise linear
rough path along the Voronoi diagram. With any given set of
control points, our algorithm can obtain a composite Bezier
curve as the collision free path with shortest curve length.

The rest of this paper is organized as below. Section II
introduces the preliminary for Voronoi diagram and Bezier
curve. Section III describes our algorithms: The Voronoi
diagram construction for irregular environment, the dynamic
programming algorithm to obtain the control point sub-
sequences, the crowded control point removal and Bezier
curve construction methods are described in the section. The
experimental results are presented in section IV and section
V concludes this paper.

II. PRELIMINARY

In this section, we briefly introduce the definitions and
properties of the Bezier curve [12] and the Voronoi diagram
[14] .

A. Bezier Curve

A Bezier curve of degree n is represented by n+1 control
points P0, ..., Pn:

P (λ) =
n∑

i=0

Bn
i (λ)Pi, λ ∈ [0, 1], (1)

Bn
i (λ) =

(
n
i

)
(1− λ)n−iλi, i ∈ {0, 1, ..., n}. (2)

The curve segment starts at P0, ends at Pn and lies entirely
within the convex hull of the control points. We can use
these properties to construct composite Bezier curve to avoid
obstacles. In fig.1, the convex hull of the control points
P0, P1, P2, P3 and P4 does not collide with obstacles. This
guarantees that the Bezier curve constructed by the control
points also does not collide with the obstacles. We will
use this property in our dynamic programming algorithm in
section III.

Fig. 1. convex hull of control points to avoid collision

Considering the Bezier curve of control points
{P0, P1, P2, ..., Pn}, the tangent at P0 must be given
by P1 − P0 and the tangent at Pn by Pn − Pn−1. The
second derivative at P0 must be determined by P0, P1 and
P2 and the one at Pn must be determined by Pn−2, Pn−1

and Pn. This property can be generalized for higher order
derivatives at the curve’s endpoints. In general, the rth
derivatives at the endpoint must be determined by its r
neighboring control points. This property is used to ensure
r degree continuity at the joins of the connections of Bezier
curves.

Because the Bezier curve starts at the first control point
and ends at the last control point, either one of the end points
of two Bezier curves must have the same position to make
these two curves connected. If we consider C1 continuity in
connecting two Bezier curves, the last two control points of
the first curve and the first two control points of the second
curve must be collinear and the distances of the two control
points in each curve are the same. Take fig.2 for example.
The last control point of the Bezier curve Bi (Pn) and the
first control point of the Bezier curve Bi+1 (Q0) have the
same position to make the two Bezier curves connected. The

last two control points Pn−1, Pn of Bi and the first two
control points Q0, Q1 of Bi+1 are collinear and Pn − Pn−1

equals Q1 − Q0 to make the composite Bezier curve C1
continuity.

Fig. 2. C1 Continuity for Bezier Curves

B. Voronoi Diagram

Let P = {p0, p2, ..., pn} be a set of points in the two-
dimensional Euclidean plane. These are called the sites.
Partitioning the plane by assigning every point in the plane
to its nearest site forms the Voronoi region V (pi). V (pi)
consists of all the points at least as close to pi as to any
other site:

V (pi) = {x : |pi − x| ≤ |pj − x|∀ j 6= i}
The set of all points that have more than one nearest neighbor
form the Voronoi diagram V (P) for the set of sites. That any
point in the Voronoi region is closest to the site is an useful
property for obstacle avoiding path planning problem. Many
algorithms have been proposed for constructing the Voronoi
diagram and many researches study the application of it [14].
In this paper, we adopt Fortune’s algorithm [8] to construct
the Voronoi diagram because of its outstanding performance
with worst case O(nlog(n)) time complexity.

III. PROPOSED ALGORITHM

Our algorithm is a three step method. The first step is
to generate a continuous piecewise linear path by piecewise
straight lines. The nodes on the piecewise linear path are used
as control points for the composite Bezier curve. The second
step is to subdivide the control points into subsequences such
that each convex hull of the subsequences does not collide
with the obstacles and the curve length of the composite
Bezier curve will approaches the shortest. The last step is to
further remove the crowded control points and to generate
the composite Bezier curve by adding extra control points
into the subsequences to meet the kinematic constraints.

A. Initialization: Piecewise Linear Path along Voronoi Dia-
gram

For irregular obstacles, we divide the boundaries of each
obstacle into segments and the end points of each segment
are the sites of Voronoi diagram. Then we construct a
Voronoi diagram basing on the sites, as shown in fig.3(a).
Consequently, as shown in fig.3(b), all edges of the Voronoi
diagram colliding with the obstacles are removed from the
diagram. We connect the source and destination to the
corners of the remaining Voronoi regions in which the source

and destination node are located and the newly created edges
can not collide with the obstacles. We then use Dijkstra’s
shortest path algorithm to obtain the shortest path in the
remaining diagram. The resulting path is the piecewise linear
path that has better clearance to surrounding obstacles. The
nodes on the path are the control points for piecewise Bezier
curves.

Fig. 3. (a). Voronoi diagram with sites on the boundaries of the obstacles
(b). Voronoi diagram without edges colliding with the obstacles

B. Control Point Subdivision

We sample a number of nodes on the piecewise linear
path as the control points for Bezier curves. The second
step is to subdivide the control points into subsequences
and each subsequence contains ordered control points for a
Bezier curve. As the characteristic of Bezier curve, the curve
segment will fall entirely in the convex hull of the control
points. In order to obtain a collision free composite Beizer
curve, we have to subdivide the control points into ordered
subsequences such that the convex hull of each subsequence
does not collide with the obstacles. There are many solutions
to subdivide the control points to satisfy the collision free
constraint. Take fig.4 for example, we want to design a
path travelling from P0 to P6 with P0, P1, ...P6 as control
points. In order to avoid collision, we have to make sure the
convex hull of the control points for each subsequence does
not collide with the obstacles. In fig.4(a), we subdivide the
control points into two ordered subsequences, {P0, P1, P2}
and {P2, P3, P4, P5, P6}, while in fig.4(b), we subdivide the
control points into three ordered subsequences, {P0, P1, P2},
{P2, P3, P4}, and {P4, P5, P6}. The composite Bezier curves
formed by the two different subdivisions are both collision
free. However, the path length of fig.4(a) is shorter than the
one of fig.4(b). In this paper, we utilize dynamic program-
ming to subdivide the control points into an ordered set of
subsequences and the corresponding composite Bezier curve
will have shortest curve length.

The problem we want to solve is then modeled as below:
Let P0, P1, ...Pn be an ordered control point sequence. We
want to subdivide the control points into ordered subse-
quences S1, S2, ..., Sm, and the last node in Si−1 is the
first node in Si to make the resulting curves connected. The
convex hull of each subsequence can not collide with the
obstacles. We want to choose one subsequence division with
shortest curve length.

Fig. 4. (a). Subdivide the control points into S1 = {P0, P1, P2}, S2 =
{P2, P3, P4, P5, P6} for two Bezier curves (b). Subdivide the control
points into S1 = {P0, P1, P2}, S2 = {P2, P3, P4}, S3 = {P4, P5, P6}
for three Bezier curves

Let collide(i, j) denotes whether the convex hull of the
control points {Pi, Pi+1, ...Pj} collides with the obstacles.

collide(i, j) =





true, if collide(i, j − 1) = true or
edge PkPj collides with obstacles
∃k, i ≤ k < j

false, otherwise
(3)

If the convex hull collides with the obstacles, the value
of collide(i, j) is true, otherwise the value of collide(i, j)
is false. With the collide(i, j) value, we can determine
whether a solution is feasible. By observation, we know
that the convex hull of {Pi, Pi+1, ..., Pj−1} is entirely in the
convex hull of {Pi, Pi+1, ..., Pj−1, Pj}. Thus, if the convex
hull of {Pi, Pi+1, ..., Pj−1} collides with the obstacles, the
convex hull of {Pi, Pi+1, ..., Pj} also collides with the
obstacles.

For simplification, we use a (n + 1) × (n + 1) array to
store the collide(i, j) values for n + 1 control points. The
algorithm calcCollide, as shown in fig.5, is used to calculate
the collide(i, j) values for all (i, j), 0 ≤ i, j ≤ n.

Because the Bezier curve has no close form solution for
the curve length, we have to divide the curve into small
enough pieces and sum up their straight line distance as
the curve length. The calculation of curve length takes a
lot of time. In order to improve the performance, we use
the straight line distance between two end points of a Bezier
curve as its curve length.

Let Pix denote the x position and Piy denote the y position
of the control point Pi. We define F (i, j) as the shortest
curve length among all subdivision solutions from point Pi

to Pj ,i.e.

F (i, j) = min{|Pi − Pj |, F (i, k) + F (k, j) ∀i < k < j}
(4)

where

|Pi − Pj | =




√
(Pix − Pjx)2 + (Piy − Pjy)2)

if collide(i, j) = false
inf, otherwise

(5)

We use a two dimensional array with size n + 1 by n + 1
to store the solutions for n + 1 control points. The control

Algorithm : calcCollide
Input : Control Point Sequence {P0, P1, ...Pn}
Output : collide(i, j) array, ∀0 ≤ i, j ≤ n
// Calculate the collide(i, j)
1. Initialize collide(i, j) equals false ∀0 ≤ i, j ≤ n
2. for i = 0 to n begin
3. for j = i to n begin
4. if (collide(i, j − 1) = false) begin
5. for k = i to j − 1 begin
6. if (PkPj collides with an obstacle) begin
7. collide(i, j) = true;
8. break;
9. end if
10. end for
11. end if
12. else begin
13. collide(i, j) = true;
14. end
15. end for
16. end for

Fig. 5. collide(i,j) Calculation Algorithm

point subdivision algorithm is shown in fig.6. We use e(i, j)
to denote the entry in the array with index (i, j). Each e(i, j)
is a five tuple entry with value (val, r1, c1, r2, c2). val is the
F (i, j) value of the entry, (r1, c1) and (r2, c2) denote the
indexs of the entries by which we use to obtain the F (i, j).
If F (i, j) is calculated by |Pi − Pj |, then (r1, c1) equals to
the current entry’s index (i, j). We calculate the entry’s value
from (0, 1), (1, 2), ..., to (n, n) diagonally. After all entries’
values are calculated, the entry (0, n) represents the best so-
lution how we subdivide the control points. We backtrace the
solutions from (0, n) to obtain the subsequences of control
points. At backtrace step, we trace back recursively toward
the entries (e(i, j).r1, e(i, j).c1) and (e(i, j).r2, e(i, j).c2).
The backtrace step stops when (e(i, j).r1, e(i, j).c1) equals
(i, j) and then Pi, Pi+1, ...Pj form a subsequence. Then the
piecewise Bezier curves can be constructed according to the
ordered control point subsequences.

C. Shortening and Smoothing by Control Point Removal and
Addition and Bezier Curve Construction

Let S1, S2, ...Sm denote the resulting ordered subse-
quences obtained by control point subdivision algorithm (see
fig.6) and each Si contains the control points used for a
Bezier curve. The last step in our algorithm is to construct
Bezier curves according to the control point subsequences.
By observation, we notice that the crowded control points
often result in longer curve length. As shown in fig.7(a),
the crowded control points Pk, Pk+1, Pk+2 attract the Bezier
curve closer to them and result in longer curve length. If
we remove the crowded control points carefully, we can
reduce the curve length and retain the curve shape, as
shown in fig.7(b). Before constructing the Bezier curves, we
first reduce the crowded control points in each subsequence
without significantly changing the curve shapes. We note

Algorithm : Control Point Subdivision
Input : Control Point Sequence {P0, P1, ...Pn}
Output : Control Point Subsequences {S1, S2, ...Sm}
1. calcCollide(); //calculate the collide(i, j)
2. for k = 1 to n begin
3. for i = 0 to n− k begin
4. j = i + k
5. e(i, j).val = inf
6. if (!collide(i, j)) begin
7. e(i, j).val =

p
(Pix − Pjx)2 + (Piy − Pjy)2

8. (e(i, j).r1, e(i, j).c1) = (i, j)
9. end if
10. for l = i + 1 to j − 1 begin
11. if (e(i, l).val + e(l, j).val < e(i, j).val) begin
12. e(i, j).val = e(i, l).val + e(l, j).val;
13. (e(i, j).r1, e(i, j).c1) = (i, l);
14. (e(i, j).r2, e(i, j).c2) = (l, j);
15. end if
16. end for
17. end for
18. end for
19. Backtrace the best solution from e(0, n) to
20. obtain the subsequences S1, S2..., Sm

Fig. 6. Control Point Subdivision Algorithm

that the convex hull of a subset of the control points in
subsequence Si is entirely in the convex hull of the control
points in the subsequence Si and therefore the Bezier curve
of the new control point subsequence does not collide with
the obstacles. For each subsequence Si, the first control point
and the last control point are non-removable since they’re
required for connection with other Bezier curves. For other
control points in a subsequence, we determine whether there
are nearby control points which can be removed from the
subsequence. Take fig.7(a) for example, if Pk is the base
control point being processed, we remove the consequent
control points Pk+1, Pk+2 which are all close to Pk within
a threshold ε and fig.7(b) shows the resulting subsequence
after removal. The crowded control point removal algorithm
is shown in fig.8.

Fig. 7. (a). Bezier curve with crowded control points. (b). Shorter Bezier
curve with crowded control points removed

To be generalized to high order continuity, Si,extra =
{Pextra1, Pextra2, ...} depending on the connection continu-
ity requirements are imposed on the composite Bezier curve.

Algorithm : Crowded Control Point Removal
Input : Control Point Subsequence Si = {Pk, Pk+1, ...Pl}

Distance Threshold ε
1. Pbase = Pk

2. for Pt = Pbase+1 to Pl−1 begin
2. if (

p
(Ptx − Pbasex)2 + (Pty − Pbasey)2 ≤ ε) begin

3. remove Pt from Si;
4. end if
5. else begin
6. Pbase = Pt;
7. Goto line 2;
8. end
9. end for

Fig. 8. Crowded Control Point Removal Algorithm

In this paper, we only consider the C1 continuity even though
the C2 and curvature continuity are easy to adapt. For the
set of ordered subsequences {S1, ...Sm}, suppose the Bezier
curve of Si is connected to the Bezier curves of Si−1 at Plast.
In order to make the composite Bezier curves C1 continuous,
it is required that an extra control point Pextra1 to Si is
added so as to make Pextra1 − Plast equals the tangent of
Si−1 at Plast, i.e. Plast − Plast−1. Fig.9 demonstrates the
basic concept. After the extra control points are added in
each subsequence, we construct the Bezier curve for each
subsequence as the composite Bezier path. It has been proved
that the curve length of a Bezier curve is upper bounded by
the length of the piecewise linear path which connects the
control points [8]. Our algorithm always obtains a shorter
smoothing path than the piecewise linear path along the
Voronoi diagram.

Fig. 9. Extra control point addition in sequence Si

IV. EXPERIMENTAL RESULT

Instead of building our algorithm into real robots, we use
software simulation to test our algorithm. We use the C++
programming language in Linux operating system with 2.4
GHz cpu and 1G Byte memory. We test several maps which
contain different number of obstacles.

We test several maps for our algorithm and the maps are
shown in fig.10,11,12 and 13. For each map, we construct
four kind of paths. The first path is the globally shortest
piecewise linear path in visibility graph[4], called VS-Path
(shown as the straight line in Map1 to Map4). The second
one is the piecewise linear path along the Voronoi diagram

(R-Path), the third and fourth paths are the composite Bezier
curve without/with crowded control point removal, called
CB-Path/CBR-Path, shown as the blue and yellow Bezier
curves in the maps respectively. We compare the path length
and execution time of the VS-Path, R-Path, CB-Path and
CBR-Path. The experimental results for the maps are listed
in Table.I and Table.II. We note that in more complicated
environments, the execution time for VS-Path is much longer
than the CBR-Path while the CBR-Path length is over 10%
longer than the VS-Path. This is due to that the time
complexity of the VS-Path is O(n2) which is larger than
the time complexity O(nlog(n)) of CBR-Path. Oppositely,
our algorithm can obtain shorter length while comparing to
R-Path. In map4, the CBR-Path obtained by our algorithm
is 8.83% shorter than the R-Path.

Fig. 10. Map1 : size 934x843, 12 obstacles

Fig. 11. Map2 : size 934x843, 16 obstacles

V. CONCLUSION AND FUTURE WORK

We develop an obstacle avoiding path planning algorithm
based on Voronoi diagram and composite Bezier curve. Our
algorithm can obtain a path with near shortest curve length
while taking the Voronoi diagram as reference skeleton.
In our experimental results, our algorithm can obtain a
composite Bezier curve with curve length 8.83% shorter than
the piecewise linear rough path on Voronoi diagram.

Our future work will focus on two topics. The first topic
is to adopt our algorithm into real world applications, such
as ball passing problem in Robot Soccer Game or grand

Map Name VS-Path CB-Path CBR-Path (ε = 20)
length time (s) length inc.% time (s) red.(s) length inc.% time (s) red.(s)

map1 1036.5399 0.04 1221.8672 17.88% 2.85 -2.81 1188.4306 14.65% 2.85 -2.81
map2 931.4670 0.43 1089.3447 16.94% 1.45 -1.02 1059.6355 13.75% 1.42 -1.02
map3 1486.4561 21.73 1754.7962 18.05% 9.97 11.76 1699.6347 14.34% 9.97 11.76
map4 1328.3000 137.41 1471.6198 10.78% 18.01 119.4 1425.8437 7.36% 18.01 119.4

TABLE I
PATH COMPARISION : VS-PATH, CB-PATH AND CBR-PATH

Map Name R-Path CB-Path CBR-Path (ε = 20)
length time (s) length red.% time (s) inc.(s) length red.% time (s) inc.(s)

map1 1272.9252 1.15 1221.8672 4.01% 2.85 1.70 1188.4306 6.63% 2.85 1.70
map2 1156.5316 0.5 1089.3447 5.80% 1.45 0.95 1059.6355 8.37% 1.42 0.95
map3 1826.9459 4.94 1754.7962 3.94% 9.97 5.03 1699.6347 6.96% 9.97 5.03
map4 1563.9850 11.72 1471.6198 5.90% 18.01 6.29 1425.8437 8.83% 18.01 6.29

TABLE II
PATH COMPARISION : R-PATH, CB-PATH AND CBR-PATH

Fig. 12. Map3 : size 1329x928, 52 obstacles

Fig. 13. Map4 : size 1408x917, 95 obstacles

challenge problem. The second one is to further improve
our algorithm. Although our algorithm can achieve the short
path length when the control points are determined, the
control point generation method greatly affects the path
planning result. Our next topic will focus on the control point
refinement to obtain even shorter path length.

REFERENCES

[1] Priyadarshi Bhattacharya and Marina L. Grvrilova, ”Voronoi diagram
in optimal path planning”, in 4th IEEE International Symposium on

Voronoi Diagrams in Science and Engineering, 2007, pp.38-47.
[2] Ji-wung Choi, Renwick E. Curry and Gabriel Hugh Elkaim, ”Obstacle

Avoiding Real-Time Trajectory Generation and Control of Omnidirec-
tional Vehicles”, in American Control Conference, 2009.

[3] Trajano Alencar de Araujo Costa, Armando Morado Ferreira and
Max Suell Dutra, ”PARAMETRIC TRAJECTORY GENERATION
FOR MOBILE ROBOTS”, ABCM Symposium Series in Mechatronics,
Vol.3, 2008, pp.300-307.

[4] Halit Eren, Chun Che Fung and Jeromy Evans, ”Implementation of
the Spline Method for Mobile Robot Path Control”, in 16th IEEE In-
strumentation and Measurement Technology Conference, Vol.2, 1999,
pp.739-744.

[5] S. Fortune, ”A sweepline algorithm for Voronoi diagrams”, Proceed-
ings of the second annual symposium on Computational geometry,
1986, pp.313-322

[6] Shilpa Gulati and Benjamin Kuipers, ”High Performance Control for
Graceful Motion of an Intelligent Wheelchair”, in IEEE International
Conference on Robotics and Automation, 2008, pp.3932-3938.

[7] El-Hadi Guechi, Jimmy Lauber and Michel Dambrine, ”On-line
moving-obstacle avoidance using piecewise Bezier curves with un-
known obstacle trajectory”, in 16th Mediterranean Conference on
Control and Automation, 2008, pp.505-510.

[8] Ron Goldman, ”PYRAMID ALGORITHMS: A Dynamic Program-
ming Approach to Curves and Surfaces for Geometric Modeling”,
Morgan Kaufmann, 2003, p254.

[9] Jung-Hoon Hwang, Ronald C. Arkin and Dong-Soo Kwon, ”Mobile
robots at your fingertip: Bezier curve on-line trajectory generation for
supervisory control”, in IEEE International Conference on Intelligent
Robots and Systems, Vol.2, 2003, pp.1444-1449.

[10] Shahin Mohammadi and Nima Hazar, ”A Voronoi-Based Reactive
Approach for Mobile Robot Navigation”, Advances in Computer
Science and Engineering, Springer Berlin Heidelberg, Vol.6, 2009,
pp.901-904.

[11] Evgeni Magid, Daniel Keren, Ehud Rivlin and Irad Yavneh, ”Spline-
Based Robot Navigation”, in International Conference on Intelilgent
Robots and Systems, 2006, pp.2296-2301.

[12] M.E. Mortenson, ”Geometric modeling”, 2nd edition, John Wi-
ley&Sons, 1997.

[13] K. Nagatani, Y. Iwai and Y. Tanaka, ”Sensor Based Navigation for
car-like mobile robots using Generalized Voronoi Graph”, in IEEE
International Conference on Intelligent Robots and Systems, Vol.2,
2001, pp.1017-1022.

[14] A. Okabe, B. Boots and K. Sugihara, ”Spatial Tessellations: Con-
cepts and Applications of Voronoi Diagrams”, 2nd edition, John
Wiley&Sons, 2000.

[15] Igor Škrjanc and Gregor Klančar, ”Cooperative Collision Avoidance
between Multiple Robots Based on Bézier Curves”, in 29th In-
ternational Conference on Information Technology Interfaces, 2007,
pp.451-456.

