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Abstract. This paper presents the Attention to Attention (A2A) rea-
soning mechanism to address the challenging task of movie question an-
swering (MQA). By focusing on the various aspects of attention cues,
we establish the technique of attention propagation to uncover latent
but useful information to the underlying QA task. In addition, the pro-
posed A2A reasoning seamlessly leads to effective fusion of different rep-
resentation modalities about the data, and also can be conveniently con-
structed with popular neural network architectures. To tackle the out-
of-vocabulary issue caused by the diverse language usages in nowadays
movies, we adopt the GloVe mapping as a teacher model and establish
a new and flexible word embedding based on character n-grams learn-
ing. Our method is evaluated on the MovieQA benchmark dataset and
achieves the state-of-the-art accuracy for the “Video+Subtitles” entry.

1 Introduction

We aim to address a specific problem of Visual Question Answering (VQA) that
is coined as Movie Question Answering (MQA). For a model to deal with a
question answering (QA) task, it is expected to have the ability of analyzing
visual and textual contents and inferring the most plausible answer to a given
question. The MQA task is deemed to be challenging in that the correct answer-
ing requires a comprehensive understanding of not only the recognition sub-task
(who, where, and when) but also the reasoning sub-task (what, why, and how)
via associating the visual content with the textual and vice versa. So far, the
popular content analysis approaches mainly comprise word embedding [20, 24]
and image embedding [9,28], and the inferring approaches usually are based on
memory networks [16, 18, 21, 23, 25, 29, 31–33] and attention models [2, 6, 15, 19].
We instead design a new attention based model that is able to propagate atten-
tion across different segments in a movie sequence to address the MQA problem.

The MovieQA dataset provides online testing for benchmark evaluation of
VQA models. We compare our model with others on this collection. The dataset
contains 408 movies with standard subtitles, and 140 of them are accompanied
with video clips. To analyze and understand such long video sequences, previous
strategies commonly rely on adopting the per-frame visual content, successive-
frame temporal dependencies, and the subtitles. In contrast, the proposed model
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Fig. 1: An overview of the proposed network architecture for MQA. With the
provided video data V and subtitle data S, our model leverages the A2A rea-
soning mechanism, namely, “Attention Propagation” and “QA Attention” to
decide, from a set A of five candidate answers, the best answer to question q.

of attention-to-attention (A2A) reasoning focuses on exploring higher-level at-
tention information about the questions and answers for QA video analysis.

The proposed method aims to explore high-level and multimodality attention
mechanisms for addressing QA tasks of movie understanding. We illustrate the
overall network architecture of our method in Fig. 1 and characterize the main
contributions as follows.

– We propose the attention-to-attention (A2A) reasoning mechanism to distill
more attention information for answering questions. The implications are
twofold. First, it enables attention propagation to uncover neglected infor-
mation that may be useful for MQA. Second, the distilled attention aggre-
gates and associates the visual with the textual information from subtitles,
questions, and answers.

– We adopt the GloVe mapping [24] as the teacher model to design a new
word embedding approach for tackling the out-of-vocabulary issue in MQA.

– We establish a joint embedding approach that simplifies the association
learning between the visual and textual modalities.

– Our model achieves the state-of-the-art performance on the “Video+Subtitles”
entry of MovieQA benchmark.

2 Related Work

We start with an overview of several popular datasets for visual captioning and
question answering, and then briefly discuss the two main trends of solving QA
tasks, i.e., memory network and attention model.
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2.1 Visual Captioning and Question Datasets

A number of comprehensive datasets have been created for evaluating the ma-
chine learning methods that are designed to tackle integrated visual-textual tasks
such as visual captioning and visual question answering.

COCO [17] and LSMDC [27] are two widely used datasets for studying the
visual captioning problems. The COCO dataset provides up to 330K images with
five captions per image for image captioning tasks. For video description tasks,
the LSMDC dataset contains 200 movies with aligned description sentences for
exploring the way to generate descriptions for movies.

There exist several datasets for studying the question answering tasks con-
cerning text, image, or video. Regarding question answering tasks of pure text,
bAbI [32] contains various tasks for evaluating the performance of a question
answering system, and SQuAD [25] consists of hundred thousand QAs and 500
articles for studying the reading comprehension. For question answering tasks
conducted on images, CLEVR [14], VQA-v1.0 [1], and VQA-v2.0 [8] can be con-
sidered. The CLEVR dataset comprises many questions that are explicitly rela-
tional, and hence it requires rich relational reasoning to analyze the data. VQA-
v1.0 and VQA-v2.0 include images and their corresponding QAs from COCO
dataset. The VQA-v1.0 dataset provides evaluation in a multiple-choice setting
with additional candidate answers per question. VQA-v2.0 balances the answers
to each question for minimizing the effects of dataset-prior learning.

TGIF-QA [13] and MarioQA [22] are conducted for studying video question
answering tasks that require temporal reasoning to answer the questions. TGIF-
QA dataset provides question answering tasks concerning not only single-image
inputs but also spatio-temporal frames. The data are collected from animated
Tumblr GIFs. MarioQA dataset is built upon Super Mario video gameplays. The
dataset provides videos with multiple events and event-centric questions. There
is no extra information to reason answers while analyzing temporal relationship
between events in the MarioQA dataset.

This work focuses on another video question answering dataset, MovieQA [30],
which provides several data modalities such as video clips, questions, subtitles,
descriptive video service (DVS), plot synopsis, and scripts. The tasks in MovieQA
is challenging because several questions are about the story and it needs the abil-
ity of long-term temporal reasoning, natural language understanding, and scene
understanding. Table 1 illustrates a QA example from the MovieQA dataset.

2.2 Memory Network

Storing long sequential information is one key factor for dealing with the MQA
problem. Memory networks usually perform read-write operations on an inter-
nal representation. Instead of using the traditional recurrent neural networks
(RNNs) [10] that store and update the given information into fixed-size hidden
units, another solution is to leverage an external memory network [21, 29, 33]
that directly “memorizes” much earlier temporal information. Several state-of-
the-art approaches, such as bAbI [32], SQuAD [25], and GMemN2N [18] have
adopted memory networks to address pure-text question answering tasks.



4 Chao-Ning Liu, Ding-Jie Chen, Hwann-Tzong Chen, and Tyng-Luh Liu

You can see here the Death
Star....

the Death Star does have a
strong defense mechanism.

The shield must be
deactivated...

q: How is the Death Star protected from attack?
a1: By an army of soldiers.
a2: By nuclear weapons.
a3: By an energy shield.
a4: By starfighters.
a5: By Emperor Palpatine’s army.

Cq: a Boolean vector in-
dicating the video frames
(subtitles) that are relevant
to the task of question an-
swering w.r.t q.

Table 1: Example of MovieQA benchmark. The answer marked in green is the
ground truth. The first row presents example images from the movie, the second
row shows the corresponding subtitles, and the third row lists the corresponding
question, candidate answers, and the answer-required frame barcode Cq.

The approaches LMN [31], DEMN [16], RWMN [23], and SC-MemN2N [4]
show the state-of-the-art accuracy on the task of video question answering, LMN
proposes static word memory and dynamic subtitle memory. The static word
memory stores visual word with static size, and the dynamic subtitle memory use
static word memory to generate clips-level representation with subtitle. They also
use multiple computational steps (hops) mechanism [29] to refine the memory.
DEMN uses a long-term memory component to embed both visual and textual
features for storing, and query the features with respect to the question and the
answers sequentially. RWMN adopts a convolution based read-write network
for allowing highly-capable and flexible read-write operations to construct the
long-term memory. Its visual features come from the last average pooling layer
of ResNet-152 [9]. SC-MemN2N includes an end-to-end memory network that
leverages visual, textual, and acoustic modalities with several grammatical and
acoustic constraints in a unified optimization framework.

Notice that, the dynamic subtitle update rule of LMN [31] is similar to the
attention mechanism of our approach. The difference is that we use both ques-
tion and answer for guiding the attention of subtitle, while LMN uses clip-level
semantic representation to do the refinement.

2.3 Attention Model

When global features are used to represent the visual contents, irrelevant or
noisy information may affect the reasoning. It is possible to use an attention
model to address this issue by assigning different importance weights to local
features corresponding to partial contents.

Attention models are widely adopted in the task of image question answer-
ing [2,6,15,19]. Lu et al . [19] design a co-attention model to reason the attention
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of image and question jointly. The co-attention model hierarchically reasons
the important part of both image and question via a one-dimensional convo-
lutional neural network. Fukui et al . [6] propose to use multimodal compact
bilinear (MCB) pooling to combine multimodal features. For visual question an-
swering, the MCB module is adopted twice, one for predicting attention over
spatial features and the other for combining the question representation with
attended representation. Kazemi et al . [15] embed image via a ResNet and em-
bed tokenized question via a multi-layer LSTM. The embedded image features
and question are then concatenated to predict multiple attention distributions
over image features. Anderson et al . [2] propose a mechanism that combines
bottom-up and top-down attention for calculating object-level attention and
salient-region attention. The bottom-up mechanism extracts image regions with
associated feature vectors, and the top-down decides the feature weightings.

Attention mechanisms can be used to identify where to notice before further
reasoning to answer questions in VQA task. The proposed A2A reasoning mech-
anism guides our question answering model to notice not only inter-segment
relations in the spatial-temporal domain but also the association between ques-
tions and answers in sentence domain.

3 Our Method

This study considers the MovieQA dataset [30], comprising a set of movies, for
evaluating the QA performance. Since for each particular movie the analysis of
our method to perform question answering is the same, it is sufficient to restrict
the discussion of the proposed formulation and notations for an arbitrary movie,
unless explicitly stated otherwise. To begin, the following notations are used to
express the various aspects about the data. We decompose a given movie into
a set of video clips, V = {v1, v2, . . . , v|V |} where the collection of corresponding
subtitle sets is denoted as S = {s1, s2, . . . , s|S|} and |S| = |V |. For a presented
question q about the movie, the QA task is to choose the best answer from a
set of five candidates, denoted as A = {a1,a2, . . . ,a5}. In addition, a Boolean
mask Cq is provided to indicate those video clips (and hence the corresponding
subtitle sets) that are relevant to carry out the task of question answering with
respect to the specific question q.

3.1 Visual and Linguistic Embedding

We represent visual information of each frame with its B most “salient” objects.
To do so, we use Faster-RCNN [26] with the ResNet-101 [9] pre-trained model
from TensorFlow object detection API [12] to select those object bounding boxes
with the B highest scores among all detected candidates, and extract a feature
vector of dimension dv = 2048 for each bounding box from the last average
pooling layer in the second stage of Faster-RCNN. The derivation yields V ∈
Rdv×N×B whereN is the total number of frames (also subtitles) over all the video
clips of a particular movie, and our current implementation assumes B = 6.
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To model the linguistic input, we leverage the technique of word embedding
to achieve the intended mapping. However, in tackling question answering with
movies, out-of-vocabulary (OOV) could be a legitimate concern as the provided
subtitles may contain slangs, special names and terms. We resolve the OOV
issue by learning a more flexible word embedding based on character n-grams,
using GloVe [24] as a teacher model. Denote the collection of words in GloVe as
Ω. For each word w ∈ Ω, the resulting set of character n-grams is denoted as
Gw = G1

w∪G3
w∪G6

w, where 1-gram, 3-gram, and 6-gram tokens are considered in
our formulation. Notice that in constructing G3

w and G6
w, w is first augmented

by adding the special token “<” at the beginning and “>” at the end. Thus
assuming w is of length `, we have |G3

w| = ` and |G6
w| = `− 3.

Now let the proposed word embedding be φ and the one by GloVe be φ̃.
Using the latter as a teacher model, we train a multi-layer perceptron to realize
φ by minimizing the following loss function:

L(φ) =
∑

w∈Ω
D
(
φ̃(w), φ(w)

)
(1)

=
∑

w∈Ω
D
(
φ̃(w),

∑
g∈Gw

φ(g)
)

(2)

where D is defined to be the cosine distance function,i.e., D(x,y) = 1−cos(x,y)
and g ∈ Gw is any of the n-gram tokens yielded by w. From (1) and (2), we see
that the new embedding φ(w) is obtained by summing over the embeddings of
all n-gram tokens of w. For w ∈ Ω, the proposed word embedding φ behaves like
the GloVe embedding φ̃. More importantly, it alleviates the OOV problem by
integrating the embeddings of n-gram tokens via (2). To achieve sentence embed-
ding, we simply divide each sentence in all provided S,q, A from the MovieQA
dataset to words, and apply φ to each of those words. We can then employ
Smooth Inverse Frequency Weighting scheme [3] to obtain sentence embeddings.
With the embedding (linguistic) dimension d` set to 300, we have S ∈ Rd`×N ,
q ∈ Rd`×1, A ∈ Rd`×5, and Cq ∈ {0, 1}N×1, where Cq is a mask indicating those
frames of the video clips relevant to q.

3.2 Joint Embedding

Once we have respectively obtained the visual and linguistic representations, it
is useful to investigate the association between the two modalities for more effec-
tively solving the QA task. To this end, we reduce exploring the two embeddings
to learning the relatedness of the representations in a common space, where a
similar idea can be found in addressing image captioning [34] or VQA [11]. Us-
ing the notation “dnormal2” to represent taking “L2-normalization” and then
“dropout,” we design the following normalized affine transform J : Rd1 → Rd2
such that

J (x; d1, d2) = dnormal2((δ(d1, d2)I +Wx) · x + bx) (3)

where x ∈ Rd1×1,bx ∈ Rd2×1,Wx ∈ Rd2×d1 and δ(d1, d2) is the Kronecker
delta, namely, δ(d1, d2) = 1 when d1 = d2 and 0, otherwise. We implement the
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Fig. 2: Normalized affine transform J : The dropout layer is performed after
the L2-normalization in the “dnormal2” block. We denote the normalized affine
mapping by x

J7−→ xJ and therefore X
J−→ XJ .

transform J as a single fully-connected layer. In particular, when d1 = d2, J
does not alter the feature dimension so we can add a short-cut connection in
the network to boost the performance. Also note that in (3), dropout and L2-
normalization are used to regularize the transform J . Fig. 2 shows the network
architecture of the affine transform J .

With J in (3), the joint embedding of visual and linguistic representations
can be achieved by transforming the visual dimension from dv = 2048 to d` =
300. We first apply J to each visual feature v of the visual tensor V and obtain
the transformed visual tensor as

vJ = J (v; dv, d`)⇒ VJ = J (V ; dv, d`) ∈ Rd`×N×B (4)

where the parameters of J to be learned are Wv and bv. On the other hand,
the transform J (now with a short-cut connection) can be applied to the lin-
guistic data S, q and A, respectively. That is, we consider in turn the three
types of linguistic data. For each x ∈ {s (subtitle),q (question),a (answer)}, the
transformed linguistic tensors are derived as follows:

xJ = J (x; d`, d`)⇒ XJ = J (X; d`, d`). (5)

The above mappings would yield SJ ∈ Rd`×N , qJ ∈ Rd`×1, and AJ ∈ Rd`×5.
Analogously, for transforming the linguistic representations with (3), the param-
eters to be learned in each case are Wx and bx, for x ∈ {s,q,a}.

The transformed visual tensor VJ ∈ Rd`×N×B accounts for B objects in each
image frame. To obtain the final visual representation, denoted as UJ ∈ Rd`×N ,
we compute the attention cue αoq for each detected object o by

αoq[j, k] = drelu(q>J · VJ [j, k]), for 1 ≤ j ≤ N, 1 ≤ k ≤ B (6)

where we use the notation “drelu” to denote the application of two consecutive
operations, namely, first taking “relu” and then “dropout”. Then, by weighted
summing the B object features in each frame according to the resulting attention
αoq, we have

UJ [i, j] =
∑B

k=1
VJ [i, j, k]×αoq[j, k]. (7)

We now give an interpretation of (7). The attention matrix αoq[j, k] reflects the
relatedness of the detected object ok in image frame j to the given question q.
Thus, the final visual representation UJ [i, j] highlights the association between
feature i and frame j concerning q.
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Fig. 3: A2A scheme: Attention propagation is applied to uncover latent but use-
ful information from the data to help answer question q. “Filter” means the
operation to select the subset of the input indicating by mask Cq. X ∈ {V, S}

3.3 Attention Propagation

For each question q pertaining to a specific movie in the MovieQA dataset,
the provided mask Cq ∈ {0, 1}N×1 indicates those image frames relevant to
answering the question q. We observed that Cq might not always yield sufficient
information to answer the question. It is constructive to augment the provided
clues by including other useful information from those neglected by Cq. We
thus propose an effective A2A scheme called attention propagation to augment
Cq. Without loss of generality, the following discussion focuses on the subtitle
information in that the steps for dealing with visual information are similar.

Attention propagation for the linguistic information takes as input a specific
transformed question qJ , the transformed subtitles SJ , and the clue mask Cq to
uncover the propagated subtitle mask PSq . The propagation process starts by in-
corporating qJ into SJ . The affine transform J in (3) is then repeatedly applied
to the question-augmented subtitle tensor so that a more flexible representation
can be learned, which will be used to compute PSq . We illustrate the mechanism
of attention propagation in Fig. 3, and summarize the steps as follows.

1. Initialize and iterate the question-augmented subtitle tensor with

Ŝ1
q = SJ + qJ · 11×N and Ŝkq = J (Ŝk−1q ; d`, d`), k = 2, . . . ,K.

To simplify the notation, the resulting ŜKq will be written as Ŝq, while the
iteration parameter K will be discussed in the experiments.

2. Let Nq be the number of relevant subtitles (frames) filtered by Cq, and
S+
q ∈ Rd`×Nq be the collection of relevant subtitles. We define the relatedness

Fq ∈ RN×Nq of each subtitle to the relevant ones by Fq = drelu(Ŝ>q · S+
q ).

3. The propagated mask PSq ∈ RN×1 can now be computed by

PSq [i] = min

{
1 , Cq[i] +

1

Nq

∑Nq

j=1
Fq[i, j]

}
for 1 ≤ i ≤ N. (8)

The propagated visual mask PVq ∈ RN×1 for the given q and Cq can be
obtained analogously. With the two propagated masks we are now ready to
complete our method based on the augmented visual and linguistic information.
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Fig. 4: A2A scheme: QA attention can be obtained via fusing multimodality at-
tention and exploring the augmented mask PXq yielded by attention propagation.

3.4 QA Attention

With the visual tensor UJ , we can evaluate its question attention αVq ∈ RN×1

and the answer attention αVA ∈ RN×5. Similarly, we could also compute the
question attention αSq and the answer attention αSA for the subtitle tensor SJ .
Specifically, we have

αVq = drelu(U>J · qJ ), αVA = drelu(U>J ·AJ ), (9)

αSq = drelu(S>J · qJ ), αSA = drelu(S>J ·AJ ). (10)

We add up the tiled question attention and the answer attention, scaled by
the sigmoid output of a learnable variable, and then element-wise multiply the
aggregated attention by the respective propagated mask Pq. Thus, we can obtain
the visual attention αV ∈ RN×5 and subtitle attention αS ∈ RN×5 by

αV = (αVq · 11×5 + σ(βV ) ·αVA)� (PVq · 11×5) (11)

αS = (αSq · 11×5 + σ(βS) ·αSA)� (PSq · 11×5) (12)

where � is the element-wise multiplication operator for tensors, βV and βS
are two learnable variables, and σ(·) is the sigmoid function. (See Fig. 4 for
illustration of the architecture.) Finally, we can derive the attention-weighted
visual representation Vattn and subtitle representation Sattn by

Vattn = UJ ·αV ∈ Rd`×5, (13)

Sattn = SJ ·αS ∈ Rd`×5. (14)

3.5 Optimal Answer Response

By fusing the two modalities of visual and linguistic information, we obtain the
overall movie representation Mq ∈ Rd`×5 with respect to a specific question q.
(Also see Fig. 5 for the network architecture.) We then use “dnormal2” specified
in formulating (3) to compute Mq as follows.

Mq = dnormal2(σ(γ1) · Sattn + (1− σ(γ1)) · qJ · 11×5 + σ(γ2) · Vattn) (15)
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Fig. 5: Illustration of the network architecture to output the MQA responses.

where γ1 and γ2 are both learnable variables. Finally, the answer aj∗ ∈ A to the
question q by our method is given by finding the highest response R[j∗], where

j∗ = arg max
1≤j≤5

R[j] =
∑d`

i=1
Mq[i, j]×AJ [i, j]. (16)

4 Experiments and Discussions

All our experiments are carried out on the MovieQA benchmark dataset [30].
The evaluation of our method contains four parts, including key components ab-
lation, leader board comparison, model selection, and question types comparison.
Visualization examples of question answering are also included in the results.

Dataset Specification The MovieQA dataset contains 14,944 multi-choice ques-
tions related to 408 movies. Each question has five candidate answers of which
only one is correct. We focus on the task of “Video+Subtitels,” which contains
6,462 QAs. These QAs are further split into 4,318, 886, and 1,258 for training,
validation, and testing, respectively. All the results are measured in accuracy.

Implementation Details To train our model, we use softmax cross entropy as
our loss function between response R and one-hot vector agt. For general hyper-
parameter setting, we set the dropout keep rate to 0.9 and the scale of L2-
regularizer to 0.01. We use “powersign-ld” [5] as our neural optimizer with 128
decay epochs and a batch size of 1. All model parameters are initialized with
Glorot normal initialization [7] and the learning rate is 10−3 with linear cosine
decay [5]. In validating and testing our method, we use the same ensemble strat-
egy as RWMN [23], which independently trains multiple models for answering,
to mitigate the potential overfitting issue on MovieQA due to relatively small
dataset size and highly difficult task. To report our results, we average the best
accuracy of 10 models with different random initializations on the validation set.
As for the test set, we use majority voting by 20 models with different random
initializations as an ensemble model, and submit our result to the official test
server1. Both validation and test set are held out from training.

1 http://movieqa.cs.toronto.edu/new submission/

http://movieqa.cs.toronto.edu/new_submission/
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Method Validation (%)

A2A-noJE 26.44 ± 0.78

A2A-noProp 40.58 ± 0.30

A2A-noQAattn 33.71 ± 0.31

A2A-noVis 41.22 ± 0.14

A2A-noSubt 28.53 ± 0.28

A2A-noL2norm 20.00

Method Validation (%) Test (%)

A2A-noDropout 41.19 ± 0.40 -

A2A-noSacle 40.01 ± 0.52 -

A2A-noSubtProp 40.28 ± 0.41 -

A2A-noVisProp 41.05 ± 0.69 41.65

A2A 41.66 ± 0.25 41.97

Table 2: Ablation comparison for key components of our A2A method on the
validation and test sets of MovieQA benchmark. For validation set, we report ac-
curacy results within the 95% confidence interval. A variant that is not evaluated
is marked by (-). Details of the model abbreviations are described in section 4.1.

4.1 Ablation Study on Key Components

We perform an in-depth ablation study on the key components in our method,
and report the results in Table 2. The experiment includes 11 variants of A2A.

(i) (A2A-noJE) model: replacing normalized affine transformation with identity
transformation in joint embedding.

(ii) (A2A-noProp) model: replacing propagated attention with mask Cq.
(iii) (A2A-noQAattn) model: skipping the use of QA attention.
(iv) (A2A-noVisual) model: skipping the visual input.
(v) (A2A-noSubtitle) model: skipping the subtitle input.
(vi) (A2A-noL2norm) model: skipping L2-normalization after each layer.

(vii) (A2A-noDropout) model: skipping dropout after L2-normalization.
(viii) (A2A-noScale) model: skipping the use of sigmoid scaling.

(ix) (A2A-noSubtProp) model: attention propagation using only visual input.
(x) (A2A-noVisProp) model: attention propagation using only subtitle input.
(xi) (A2A) model: using all components described in our method.

In Table 2, we find that the full A2A model achieves the best performance
on both the validation and test sets among all the other variants. It implies that
all of our model components are essential. For instance, A2A-noJE has a per-
formance gap in comparison with A2A model. A reasonable explanation is that
the normalized affine transform J plays a key role in jointly embedding differ-
ent modalities to the same semantic space, and enables the subsequent model
components to explore correlations among inputs. Further, A2A-noQAattn also
has a large gap in performance which indicates the QA attention mechanism is
crucial to the localization of the most relevant content in video context.

We further investigate the outcome of source ablation. While A2A-noVis
is the second best among all variants, we notice that it is better than A2A-
noVisProp and A2a-noSubtProp. A possible reason is that the propagated at-
tention of single modality of either the visual or subtitle input may impinge on
the QA attention due to the connection between the two is left out.
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Methods Validation Test

A2A (ours) 41.66 % 41.97 %

A2A-noVisProp 41.05 % 41.65 %

LMN [31] 42.50 % 39.03 %

SC-MemN2N [4] − 38.16 %

Methods Validation Test

RWMN [23] 38.67 % 36.25 %

DEMN [16] 44.70 % 29.97 %

SSCB [30] 21.90 % −
MemN2N [30] 34.20 % −

Table 3: Performance comparison among the proposed A2A method, others from
MovieQA leader board, and the two baselines, SSCB and MemN2N, in the orig-
inal MovieQA paper [30]. “−” means the method is not evaluated.

Variants Validation

A2A-GloVe 41.12 ± 0.594 %

A2A-U+SAttn 41.06 ± 0.318 %

A2A-SoftmaxAttn 28.32 ± 0.087 %

A2A-FeatRelu 31.92 ± 0.410 %

A2A 41.66 ± 0.406 %

Table 4: Comparison with 4 imple-
mentation variants of A2A.

Fig. 6: Performance comparison on dif-
ferent question types.

Last but not least, we observe from the performance of A2A-noL2norm that
L2-normalization on features is critical to training our method for solving the
MQA task. Without using L2-normalization, the training would eventually fail.
The phenomenon is caused by gradient vanishing due to small output values. On
the other hand, A2A-noDropout and A2A-noScale are slightly inferior to A2A
model, which suggests dropout operation and sigmoid scaling are needed.

4.2 Leader board Comparison

In Table 3, we compare the A2A models with those from the MovieQA leader
board2 and the baselines used in Tapaswi et al . [30]. Our method achieves the
best performance on the test set among all others. Compared with LMN [31],
A2A-noVisProp improves by 2.62% in accuracy and A2A improves by 2.94%.
The results also indicate that our visual attention propagation is effective.

4.3 Model Selection

To search the best combination for MovieQA benchmark, we experiment on
different parameter settings and implementation variants. Due to the limited

2 http://movieqa.cs.toronto.edu/leaderboard/

http://movieqa.cs.toronto.edu/leaderboard/
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space allowed, we omit the detailed experimental results and discuss our findings.
The model selection is examined by varying different combinations of the number
of layers in the normalized affine transform, visual propagated attention layers,
and subtitle propagated attention layers. First, we observe that increasing the
number of normalized affine transform layers in joint embedding does not yield
performance gain, and indeed one layer is sufficient to achieve relatively good
performance. Second, increasing the numbers of subtitle and visual propagated
attention layers is beneficial to the performance. However, it becomes worse when
the number of layers is over three/five for visual/subtitle propagated attention.
The reason might be due to model overfitting while increasing the parameters.
We next compare four implementation variants of A2A as reported in Table 4.

(i) (A2A-GloVe) model: using GloVe [24] for word embedding. Each unknows
token is mapped to the average vector of whole GloVe embedding.

(ii) (A2A-U+SAttn) model: constructing Vattn and Sattn with the summation
of visual αV attention, and subtitle αS attention.

(iii) (A2A-SoftmaxAttn) model: replacing relu with softmax to yield attention.
(iv) (A2A-FeatRelu) model: adding relu function to every fully-connected layer.

From Table 4, we find A2A-GloVe is slightly worse than the full A2A model. It
suggests that the advantage of using our new word embedding is noticible but
subtle. Presumably, the main reason might be that only a small proportion of
movies (e.g. fiction movies which usually have characters with unusual names.)
incurs the OOV problem. For A2A-U+SAttn, it performs a bit worse than A2A.
It is because the summation of both attention cues may cause the final repre-
sentation Mq to get some irrelevant information from visual and subtitle rep-
resentations. Moreover, A2A-softmaxAttn and A2A-FeatRelu models degrade
drastically, due to the use of softmax to account for attention fusion.

4.4 Question Types Comparison

In MovieQA benchmark [30], questions can be classified into six different ques-
tion types: Who, Where, When, What, Why, and How. Usually, answering Where,
When, What questions (e.g ., “Where does Bruce go after revealing himself to
Vicki as batman?, When does Forrest discover that he can run really fast for
the first time?, What does Gandalf retrieve from Saruman?”) requires localizing
relevant information in context, and answering Why and How questions (e.g .,
“Why does Gollum ask Frodo to leave Sam behind?, How does Bruce survive the
Joker’s bullets?”) requires abridging the context and relational reasoning. As for
Who questions(e.g ., “Who attacks Zachry, Adam, and Zachry’s nephew?”), it
needs name entity matching.

Figure 6 compares the accuracy of A2A, RWMN [23], and MeMN2N [30] on
different question types. We find that A2A outperforms all the other methods
on every question type. For Who questions, A2A works slightly better than the
others. The performance improvement of A2A on every question type except
Who is over 4.5%. It indicates that our method is quite capable of summarizing
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q: Why does Forrest undertake a
three-year marathon?

a1: He wants to find Jenny.
a2: Upset that Jenny left he decides to

go for a run one morning and just
keeps running.

a3: He wants to get back in shape.
a4: He wants to raise awareness for

cancer.
a5: He wants to travel the country but

doesn’t want to drive.

q: How does Annie react when Rhodes
suggests that she opens up a new
bakery?

a1: She asks him for help.
a2: She refuses.
a3: She slaps him.
a4: She ignores him.
a5: She agrees.

q: What does Don find, when he
returns home from the trip?

a1: Another anonymous pink letter.
a2: A letter from Lolita.
a3: Sherry waiting for him.
a4: A pink letter from Sherry.
a5: A young man waiting to see him.

q: What kind of relationship do Harry
and Umbridge have?

a1: A friendly one.
a2: A mentor-student type of

relationship.
a3: A mother-son type of relationship.
a4: None; they do not get along at all.
a5: A romantic one.

Table 5: The examples of our results. The answer with green color is the ground
truth, and one with Italic style is the predicted answer.

and reasoning in How and Why questions. Furthermore, our method can extract
the key part of context in Where, When, and What questions.

5 Conclusions

We have shown that the proposed Attention to Attention (A2A) reasoning effec-
tively addresses the problem of movie question answering. With the A2A reason-
ing mechanism, our method distills attention cues to aggregate and to associate
the different representation modalities for answering questions. Besides, we es-
tablish a flexible n-grams word embedding for tackling the out-of-vocabulary
issue. The experimental results show the state-of-the-art performance on the
“Video+Subtitles” entry of MovieQA benchmark dataset.
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