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Figure 1: Deblurring results on challenging low-light concert images. Left column shows the blurry image and right column
the respective deblurring result by our method.

ABSTRACT
Mobile devices such as smart phones are ubiquitously being used
to take photos and videos, thus increasing the importance of image
deblurring. This study introduces a novel deep learning approach
that can automatically and progressively achieve the task via ad-
versarial blurred region mining and refining (adversarial BRMR).
Starting with a collaborative mechanism of two coupled condi-
tional generative adversarial networks (CGANs), our method first
learns the image-scale CGAN, denoted as iGAN, to globally gener-
ate a deblurred image and locally uncover its still blurred regions
through an adversarial mining process. Then, we construct the
patch-scale CGAN, denoted as pGAN, to further improve sharp-
ness of the most blurred region in each iteration. Owing to such
complementary designs, the adversarial BRMR indeed functions
as a bridge between iGAN and pGAN, and yields the performance
synergy in better solving blind image deblurring. The overall for-
mulation is self-explanatory and effective to globally and locally
restore an underlying sharp image. Experimental results on bench-
mark datasets demonstrate that the proposed method outperforms
the current state-of-the-art technique for blind image deblurring
both quantitatively and qualitatively.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Com-
puter vision.
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1 INTRODUCTION
Blind image deblurring is a classical problem in image processing
and computer vision. It aims to estimate an unknown sharp image
given a blurrred version of the original. The increasing prevalence
of mobile devices raises the importance of this problem as more
photos and videos are taken with smart phones. For example, peo-
ple can now easily film a live concert, and create video clips of a
specific performance. However, as shown in Figure 1, these videos
(or images) frequently give rise to poor viewing experience because
they are blurred due to issues such as camera shake, out of focus
and fast object motion. As reproducing captured moments is gener-
ally difficult, to ensure pleasant viewing experience, it is of great
interest to enhance sharpness for a higher-quality image or video.

Let ⊗ denote the convolution operator. The formation of a blurred
image B can be conveniently expressed by

B = K ⊗ S + n, (1)

where K, S, and n correspond to an unknown blur kernel, latent
sharp image, and noise, respectively. As only B is available, blind
image deblurring methods aim to estimate the latent sharp image S
and blur kernel K simultaneously. This problem is ill-posed, since
different pairings of S and K may result in the same B. To make
blind image deblurring well-posed, early research relies on heuris-
tics, image statistics and assumptions on the sources of the blur,
and mainly focuses on removing uniform and spatially invariant

Session 2B: Adversarial Learning MM ’19, October 21–25, 2019, Nice, France

702

https://doi.org/10.1145/3343031.3351038
https://doi.org/10.1145/3343031.3351038


blur caused by simple translational or rotational camera motions,
called uniform blur [11, 18]. For uniform blur, K is the unknown
blur kernel that acts globally on S to generate a blurry image. In
view of the success of the iterative approach [5], most methods
improve the estimation of the blur kernel and latent sharp image
for each iteration by using either the parametric prior model or
the assumptions of local linearity of the blur function [2, 5, 21, 31].
However, run time, stop criteria and accuracy estimation remain
problems of these algorithms. Although some researchers started
to apply deep-net models, such as convolutional neural networks
(CNN), to improve the estimation of blur kernels and/or latent sharp
images, these models are mostly designed to handle uniform blurs
in early stages [3, 23]. Blurring artifacts are generally not uniformly
distributed in a captured image. The observation prompts recent
studies [11, 18, 22, 27] to explore the non-uniform blur problem,
and develop end-to-end deblurring approaches to deal with the
non-uniform blur effect caused by depth variation, camera shake
and object motion in dynamic scenes. For non-uniform blur, K typ-
ically represents a large sparse matrix where each row contains a
local unknown blur kernel acting on S to generate a corresponding
blurred image. It has been shown in [18, 27] that the blur kernel-
free end-to-end multi-scale deep-net models are capable of dealing
with non-uniform blind image deblurring. Kupyn et al. [11] and
Ramakrishnan et al. [22] further construct the conditional gener-
ative adversarial network-based (CGAN-based) approaches that
solve the non-uniform deblurring issue and achieve impressive per-
formance improvements. Although the introduction of adversarial
loss enables learning a deep-net model to generate a sharper image
distribution, it still has the difficulty in satisfactorily characterizing
local details of image distribution. Such insufficiency in modeling
will eventually lead to poor representations on challenging fore-
ground/background areas and degrade the final deblurring effect.
Therefore, a new and effective method, that can additionally refine
the local areas/details into a sharp image, is preferable.

To address the aforementioned issue, we propose a novel ad-
versarial Blurred Region Mining and Refining (adversarial BRMR)
approach that can drive CGANs to learn real sharp image distribu-
tion globally and locally for blind image deblurring. The proposed
adversarial BRMR approach can be viewed as establishing a couple
of collaborators, trying to challenge the full image-scale genera-
tor network to discover evidence of still blurred regions and use
the patch-scale generator network to refine such regions until no
supportable evidence is left. To be more specific, we first train an
image-scale CGAN, denoted as iGAN, and a patch-scale CGAN,
denoted as pGAN. The former learns from pairs of blurred images
and ground truth sharp images, while the latter learns from pairs
of blurred patches (i.e., mined from the discriminator of iGAN) and
sharp patches. For testing, the discriminator of iGAN is applied to
localize the most blurred region within a deblurred image gener-
ated by the generator for inferring the blur class. The localized
blur region is then refined by using the generator of pGAN to im-
prove the performance of the image-scale generator network. To
continuously enhance the local details, the discriminator of iGAN
is driven to discover another blurred region for better generating a
local patch. With such repetitive adversarial BRMR operations, our
network can mine and refine blur regions progressively until no
further improvement, i.e., using the discriminator of iGAN to check

whether the confidence score of the updated deblurred image is
increased in the sharp class. The process is illustrated in Figure 2,
in which a blue patch represents the localized most blurred region
within a deblurred image generated from the image-scale generator
network. After accepting the updated deblurred image with the
newly refined region (green patch) by using the patch-scale gener-
ator network and the discriminator of iGAN, another blur region
(refer to as the red patch) is mined. Repeating such adversarial
BRMR approach gradually improves the quality of the deblurred
image. We summarize our main contributions as follows:

• This study proposes a novel adversarial BRMR approach that
couples two complementary CGANs, enabling the progres-
sive mining and refining of the blurred regions to improve
image sharpness.
• We collect a new concert-related dataset and would make
it publicly available. The related research communities can
access the data and develop learning techniques for sharpen-
ing blurry images under different shot types defined in the
language of film [1, 17].
• Our method achieves state-of-the-art performance on both
the challenging low-light concert-related dataset and non-
uniform dynamic scene blurry benchmark [18].

2 RELATEDWORK
Image deblurring has been studied extensively in the literature
of image processing and computer vision, e.g., [5, 11, 18, 23]. The
following discussion covers blind image deblurring approaches
from uniform blur to non-uniform blur and recent deep learning
techniques.

Since blind image deblurring is an ill-posed problem, early meth-
ods require certain assumptions or prior knowledge to constrain
the solution space, and focus on dealing with uniform blur. For ex-
ample, Fergus et al. [5] showed that photographs of natural scenes
typically follow a heavy-tailed distribution of image gradients, and
used a mixture-of-Gaussians model to learn the statistical prior for
deblurring. Similarly, Shan et al. [24] adopted a parametric model
to approximate the heavy-tailed prior for natural images. Levin
et al. [13] pointed out the limitation of the maximum a posteriori
deblurring method with a sparse prior, and presented a variational
Bayesian approach to avoid such limitation. As the variational
Bayesian approach [13] is computationally expensive, an efficient
algorithm for approximation of marginal likelihood has been de-
veloped for image deblurring [14]. Pan et al. [19] developed a new
natural image prior based on the dark channel prior [6] for blur
kernel estimation. To restore images regularized by the dark chan-
nel prior, they developed an effective optimization algorithm based
on a half-quadratic splitting strategy and look-up tables. Following
the success of deep learning, researchers have adopted deep-net
models such as CNN to improve the accuracy of both blur kernel
and latent sharp image estimation over the past few years. Since no
pairs of real blurry image and ground truth sharp image are avail-
able for learning, they generally adopted blurry images generated
by convolving synthetic uniform blur kernels. For example, Schuler
et al. [23] incorporated a sharpening CNN into an iterative blind
deconvolution method to estimate a blur kernel. To obtain pairs
of sharp and blurry images for network training, they generate
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Figure 2: The proposed adversarial blurred region mining and refining (adversarial BRMR) functions as a bridge between the
two (collaborative) conditional GANs: iGAN and pGAN. Here t indexes the tth local patch refinement under the adversarial
BRMR iterative operation.

uniform blur kernels using a Gaussian process, and synthesize a
great deal of blurry images by convolving them to the sharp images
collected from the ImageNet dataset [4]. Through a similar data gen-
eration process, Chakrabarti [3] learned neural network to predict
complex Fourier coefficients of motion kernel for executing deblur-
ring in Fourier space. Note that all these methods require a blur
kernel estimation step to restoring the latent sharp image. However,
these blur kernel approximations may be inaccurate, i.e., blur is
far more complex than using the simplified assumptions/models
in blur kernel estimation, causing difficulties in constraining the
solution space.

For non-uniform blind image deblurring, the research trend has
recently shifted from the traditional iterative approach [19, 25] to a
kernel-free deblurring approach based on end-to-end trainable deep-
net models [11, 18, 22, 27]. For example, Nah et al. [18] proposed a
multi-scale CNN that restores latent sharp images from a coarse-
to-fine architecture in an end-to-end manner. Such multi-scale
CNN learns directly from paired sharp images and non-uniform
blurred images (i.e., generated by averaging sharp images in dy-
namic scenes) without collaborating any blur kernel estimation
steps. Tao et al. [27] proposed a scale-recurrent network based on
coarse-to-fine scheme, which gradually restores the latent sharp im-
age at different resolutions in an end-to-end manner. Ramakrishnan
et al. [22] used the CGAN architecture integrated with the global
skip connection and the densely connected CNN [7] to learn a
kernel-free deblurring network in an end-to-end manner. Similarly,
Kupyn et al. [11] proposed a DeblurGAN that combines adversarial
loss and content loss into the CGAN architecture to perform blind
image deblurring. Although multi-scale deep-net models [18, 27]

and CGAN-based approaches [11, 22] have performed well recently,
their deblurring frameworks still struggle to correctly match some
local details of the sharp image distribution, causing the local fore-
ground/background area to have poor quality.

3 ADVERSARIAL BRMR TO IMAGE
DEBLURRING

To address the insufficiency that current deblurring frameworks
lack the ability to satisfactorily recover local sharp image distribu-
tions, we propose an adversarial BRMR approach for automatically
and progressively localizing and sharpening the blurred regions.
The adversarial BRMR involves two processes, namely blur region
mining with the image-scale CGAN (iGAN), and blur region refine-
ment with the patch-scale CGAN (pGAN).

iGAN The iGANmodel for blur region mining mainly involves two
operations: generating a full-scale deblurred image, and localizing
the regions that are still blurred (as shown in Figure 3). Motivated
by pix2pix [8] and classification activation maps (CAM) [32], we
construct iGAN based on the pix2pix architecture with the follow-
ing modifications in the discriminator Di . Specifically, the CAM
concept is incorporated intoDi by considering the task as two-class
image classification for sharp and blur. Now let the feature maps
yielded at conv4 of Di be { fk } and the weights of the succeeding
fully-connected (FC) layer be ws = {ws

k } and wb = {wb
k }. Analo-

gous to [32], the global average pooling (GAP) is applied to each
conv4 feature map fk for resulting the representation Fk , where Fk
is
∑
x,y fk (x ,y), and (x ,y) indicates the spatial location of fk . Then,

through forward propagation, the representation {Fk } is passed
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Figure 3: Architecture of the coupledCGANswith the proposed adversarial BRMR.Wefirst train the image-scale CGAN (iGAN)
to generate a deblurred image and a couple of response heatmaps for blur and sharp, respectively. Applying the slidingwindow
(so-called patch) to the blur heatmap is used to detect the most blurred region. The patch-scale CGAN (pGAN) is then trained
to refine and replace the mined blur region. After refining, the discriminator of iGAN is driven to discover another blurred
region for enhancing sharpness progressively. The refined regions from such an iterative processes together constitute the
final deblurred image as output.

through the FC layer (ws ,wb ) to predict the confidence of the
sharp and blur classes by implementing a two-class classification.
Essentially,ws

k andwb
k indicate the importance of Fk for predicting

sharp and blur classes, respectively. Accordingly, by multiplying
the weightsws

k andwb
k back to the fk (x ,y), the activation at spatial

grid (x ,y) to sharp and blur classes can be revealed by the two
corresponding heatmaps H s (x ,y) and Hb (x ,y) where

H s (x ,y) =
∑

k
ws
k · fk (x ,y)

and Hb (x ,y) =
∑

k
wb
k · fk (x ,y).

(2)

By simply upsampling the heatmap to the size of the input image,
we can identify the image regions most relevant to the particu-
lar (sharp or blur) category [32]. Given the generated deblurred
output by iGAN, the regions that are still blurred can be readily
revealed in the heatmap Hb and thus further improvements can
be made via the coupled CGAN, i.e., pGAN. We now summarize
the two operations of iGAN. In the first operation, the generator
Gi of iGAN, trained by using a combination of adversarial and L1
losses (refer to Subsection 3.1), is applied to globally perform image
deblurring. In the second operation, the discriminator Di is used
to output the heatmap Hb for the blur class. The most blurred
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Algorithm 1: Image Deblurring with adversarial BRMR
** Training:
Blurred images B = {Bj }Nj=1.
Sharp images (ground truth) S = {Sj }Nj=1.
Blurred patches pb = {pbj }

M
j=1.

Sharp patches (ground truth) ps = {psj }
M
j=1.

(Gi ,Di ): The generator and discriminator of iGAN.
(Gp ,Dp ): The generator and discriminator of pGAN.

Train iGAN (Gi ,Di ) with B and S.
Mine blurred patches pb using Di through inside testing.
Extract the corresponding patches ps from S.
Train pGAN (Gp ,Dp ) with pb and ps .

** Testing:
Input :A testing blurred image B.
Initialize :Deblurred image D = ∅,

t = 1, indexing the t th local patch refinement,
current confidence for sharp class δ = 0,
updated confidence for sharp class δ̃ = 0.

Output :A deblurred image D.
1 Generate a deblurred image D from Gi (B).
2 Compute blur heatmap Hb

t−1 and δ via Di (B,D).
3 repeat
4 Mine the most blurred patch pt from Hb

t−1.
5 Generate a deblurred patch p̃t via Gp (pt ).
6 D̃ ← Replace pt in D with p̃t .
7 Compute blur heatmap Hb

t and δ̃ via Di (B, D̃).
8 if δ̃ > δ then
9 D ← D̃, δ ← δ̃ , t = t + 1.

until patch refinement is not good and δ̃ ≤ δ

region is mined by comparing the heatmap response of the slid-
ing window (so-called patch), where patch size is set to 128×128
(achieved best performance) and shifted 64 pixels away to overlap
50%, sequentially from left to right and from top to bottom.

pGAN For blur region refinement, the pGAN is trained to locally
restore the sharpness of a particular blur region singled out in the
mining operation. Similar to the iGAN architecture, pGAN is es-
tablished based on the pix2pix architecture and trained from pairs
of blurred image patches and corresponding sharp patches. Those
blurred patches are mined by driving the discriminator Di of iGAN
through inside testing during the training stage. In performing blur
region refinement for the globally-generated deblurred image by
iGAN, pixel values within the mined blur region are replaced with
those generated from the patch-scale generator Gp of pGAN. The
updated deblurred image with the newly refined region is then fed
back to the discriminator Di of iGAN to verify if the refinement re-
sults in increase in the confidence of predicting the updated version
as sharp. Once a blurred region is sharpened and the verification
evidence is supported, the discriminator Di is driven to discover an-
other blurred region to be enhanced. This process is repeated until

no more supportable evidence can be detected. This collaborative
mechanism allows the adversarial BRMR approach to drive the two
coupled CGANs to restore a latent sharp image distribution globally
and locally for blind image deblurring. Algorithm 1 summarizes
the procedure of the adversarial BRMR approach.

3.1 Objective
The objective of both iGAN and pGAN can be expressed as

LCGAN (G,D) =Eb,s [logD(b, s)]+
Eb,z [log(1 − D(b,G(b, z)))],

(3)

whereG and D represent the generator and the discriminator (clas-
sifier) in both iGAN and pGAN. b, s , and z denote the blurred
image (or patch), sharp image (or patch), and random noise, re-
spectively. To avoid learning deterministic mapping from b to s ,
similar to the pix2pix architecture [8], z is provided in the form of
dropout, which is applied to several layers of the G in the train-
ing and testing phases. During training, G tries to minimize this
objective against an adversarial D that tries to maximize it, i.e.,
G∗ = argminG maxD LCGAN (G,D).

In addition, previous researches have demonstrated that it is
beneficial to mix GAN objective (adversarial loss) with a traditional
loss, such as L1 or L2 distance [8, 20]. The discriminator’s job
remains unchanged, but the generator is tasked not only to fool
the discriminator but also to be near the ground truth output in an
L1 or L2 sense. Accordingly, we also consider this option, using L1
loss rather than L2 as L1 encourages less blurring:

LL1(G) = Eb,s,z [ | |s −G(b, z)| |1 ]. (4)

Thus, our final objective is

G∗ = arg min
G

max
D
LCGAN (G,D) + λLL1(G), (5)

where λ is set to 100 for both iGAN and pGAN in all experiments.

4 EXPERIMENTS
To demonstrate the effectiveness of the adversarial BRMR approach,
experiments were conducted on two challenging datasets, namely
the proposed concert-related dataset and the GOPRO dataset [18].

4.1 Concert-Related Dataset
Although researchers have devoted considerable effort to image
deblurring [3, 10, 12, 13, 18, 23, 26], the collected datasets do not
consider the shot types defined in film terminology [1, 17], thus
ignoring the details of deblurring under different shots. In the lan-
guage of film [1, 17], a type of shot is defined as how much a target
subject and its surrounding area can be seen. Totally, six types of
shots are defined, as described in Table 1. Take, for example, that
the two images in Figure 4 are obtained with the medium close-up
shot and extreme long shot, respectively. One can easily see that
the left image emphasizes the singer Bruno Mars from shoulders to
the top of head, and the right image instead highlights the small
body of singer in vista. Such examples suggest that the method of
creating an image deblurring should take into account the proper-
ties of the shot. For example, when performing image deblurring
on close up and medium close-up shots, the model should focus on
maintaining the details (e.g., detail texture) of the target subject,
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Table 1: The definition of six types of shots [1, 17].
Types of Shots Description Example

Close-Up A Close-Up is used to show emotion
on the subject’s face. That is, the
face occupies most of the screen
(image).

(CU)

Medium Close-Up A Medium Close-Up contains a sub-
ject’s head and shoulders com-
pletely.

(MCU)

Medium Shot A Medium Shot contains a subject
from the waist to the top of the
head.

(MS)

Medium Long Shot AMedium Long Shot would contain
a subject from his/her knees to the
top of the head.

(MLS)

Long Shot A Long Shot would contain a sub-
ject’s entire body from the top of
the head to the bottom of the feet.

(LS)

Extreme Long Shot An Extreme Long Shot covers
a large area or landscape. It
would be hard to see any reac-
tions/emotion from people in the
shot since they are too far away.

(XLS)

Figure 4: Two images from an official concert video of the
song “When I was Your Man” by Bruno Mars live at BBC
Radio 2013. The left image is yielded by a medium close-up
shot, and the right by an extreme long shot.

while long and extreme long shots should instead strive to maintain
the main structure of the target because the size of the target is
too small. Therefore, learning how to sharpen recordings under
different shots is crucial to guaranteeing a high-quality visual sto-
rytelling process [1, 16, 17, 29, 30]. Besides the six shot types listed
in Table 1, this study also considers two additional variants that
focus on either the audience shot (ADS) or musical instrument shot
(MIS) to enrich the shot variations in a concert video.

To this end, a dataset was created from a set of official concert
videos downloaded from YouTube. The dataset comprises 37 official
video clips collected from 30 live concerts, with a total of 440 anno-
tated sharp images. Each image was specified with an appropriate
film shot type [1, 17]. To obtain pairs of sharp and blurry images,
seven uniform blur kernels, namely horizontal, vertical, averaging,
Gaussian, median, bilateral and resizing, were first generated using

Table 2: Quantitative deblurring performance comparison
on the concert-related dataset.

Metric multi-scale DeblurGAN iGAN adversarial
CNN [18] [11] BRMR

Avg. PSNR 29.90 dB 28.57 dB 30.77 dB 31.93 dB

the OpenCV Python Program library1. The blurry images were
then synthesized by convolving the blur kernels to the sharp im-
ages collected from our dataset. Finally, the dataset was composed
of 3,080 pairs of blurry and sharp images at 256×256 resolution.
Among the 3,080 pairs, 2,800 were adopted for training, and the
remaining 280 pairs were adopted for testing. The dataset links and
the detailed information such as blur kernel setting are provided in
https://sites.google.com/site/adversarialbrmr/blur-kernel-script.

The performance of the proposed adversarial BRMR approach
was compared with two state-of-the-art approaches for blind image
deblurring, namely multi-scale CNN [18] and DeblurGAN [11]. For
training, both iGAN and pGAN in the adversarial BRMR approach
were trained by using mini-batch stochastic gradient descent (SGD)
and applying the Adam solver [9]. The batch size and learning rate
were set to 1 and 2 × 10−4, respectively. Multi-scale CNN [18] was
also trained by using the Adam solver. The batch size is set to 4,
and the learning rate is initialized with 5 × 10−5 and updated with a
linear decay. Regarding DeblurGAN, it was trained with the Adam
solver, initialized with a learning rate of 1 × 10−4 and updated with
a linear decay [11]. The batch size was set to 1. Techniques such as
batch normalization, data augmentation, and dropout were used
for the mentioned approaches to alleviate overfitting. When the
batch size is set to 1, batch normalization has been termed “instance
normalization” and has proven to be effective in image generation
tasks [8, 28]. In the experiments, the standard peak signal-to-noise
ratio (PSNR) metric was used for performance evaluation. The
average PSNR over the testing set was reported.

The experimental results in Table 2 and Figure 5 demonstrate that
the proposed adversarial BRMR approach not only shows superior
results in terms of PSNR than multi-scale CNN and DeblurGAN, but
also provides better visual perception. We believe that it is because
multi-scale CNN and DeblurGAN have difficulty in correctly match-
ing some local details of sharp image distribution, resulting in poor
local foreground/background area quality. Further, DeblurGAN [11]
has integrated the PatchGAN architecture [8, 15] in the discrimi-
nator network for alleviating the effects due to mismatched local
details, but the improvements are moderate. Using the collaborative
mechanism of the two CGANs, the proposed adversarial BRMR ap-
proach can indeed learn the real sharp image distribution globally
and locally. Overall, the adversarial BRMR approach increased the
PSNR by approximately 2.03dB and 3.4dB, respectively, compared
to multi-scale CNN and DeblurGAN. In addition, the results also in-
dicate that the adversarial BRMR approach is superior to the iGAN
in both qualitative and quantitative ways. As shown in Figure 5, the
results demonstrate that without collaborate with pGAN by using
adversarial BRMR approach, the iGAN has difficulty in resulting the
sharp local details. Again, it confirms the importance of modeling
the local details of sharp image distribution.
1https://docs.opencv.org/3.1.0/d4/d13/tutorial_py_filtering.html
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Figure 5: Test results on the concert-related dataset. From left to right: blurry image, result of multi-scale CNN [18], result of
DeblurGAN [11], result of iGAN, and result of our adversarial BRMR approach. From top to down: close-up with horizontal
blur, and medium close-up and extreme long shot with Gaussian blur. Red bounding box highlights the deblurring result.

Figure 6: The results of blurred region detection. From top to
down: partially blurred images and the corresponding blur
region detection results. From left to right represent differ-
ent types of blur kernel: vertical, horizontal, averaging, and
resizing that respect to medium close up shot, long shot, ex-
treme long shot, and musical instrument shot.

To demonstrate whether the iGAN discriminator Di in the ad-
versarial BRMR approach can effectively localize a blurred region,
we further carry out the experiment of the blurred region detection.
For experimental setup, a test image was generated by convolving a
blur kernel to a single patch of the sharp image. The patch size is set
to 128×128 and the sharp image comes from above mentioned 280
pairs of testing data. Both the location of the patch and the type of

the blur kernel (from mentioned seven types) are randomly chosen.
Finally, a total of 280 partially blurred images were generated for
testing. In the experiments, the Di was used to detect the blurred
patch of the partially blurred image. The intersection over union
(IoU) metric was used for performance evaluation. The IoU score,
which is defined as |P∩Q |

|P∪Q | , where P denotes the detected blurred
patch and Q denotes the ground-truth blurred patch. The mean IoU
over the testing set was reported.

The quantitative result first indicates that ourDi reached a mean
IoU score of 0.676. Such a result confirms that the blurred patch
detected by Di is highly overlapping with the blurred patch of the
ground-truth. Some qualitative results are further shown in Figure 6.
The results show that theDi can effectively localize a blurred region
regardless of the location of the patch and the type of the blur kernel.
Both quantitative and qualitative results support the Di , which is
positive for adversarial BRMR approach to achieve the blur region
mining process. For more experiments, we also provide a video
demo at https://sites.google.com/site/adversarialbrmr/demo.

4.2 GOPRO Dataset
To further verify the effectiveness of the proposed adversarial
BRMR approach, a challenging benchmark dataset GOPRO [18]
was adopted for performance evaluation. The GOPRO dataset is
composed of 3,214 pairs of non-uniform blurry images and sharp

Session 2B: Adversarial Learning MM ’19, October 21–25, 2019, Nice, France

708

https://sites.google.com/site/adversarialbrmr/demo


Figure 7: Test results on theGOPROdataset. From left to right: blurry image, result of DeblurGAN [11], result of our adversarial
BRMR approach, and ground truth sharp image. Red bounding box highlights the deblurring result.

Table 3: Quantitative deblurring performance comparison
on the GOPRO dataset. Run time indicates the average ex-
ecution time of deblurring a single image.

Metric multi-scale DeblurGAN adversarial
CNN [18] [11] BRMR

Avg. PSNR 29.08 dB 27.94 dB 30.27 dB

Run Time 4.22 s 0.91 s 2.16 s

images. Among the 3,214 pairs, 2,103 pairs were set for training,
and the remaining 1,111 pairs were set for the test [18]. Similar to
the experimental setup in the concert-related dataset, the parame-
ter settings of multi-scale CNN, DeblurGAN, and our adversarial
BRMR approach were optimized in the training stage. In the exper-
iments, quantitative (average PSNR and run time) and qualitative
results of the testing set were reported.

The results in Table 3 first indicate that even in the challenging
GOPRO dataset, the proposed adversarial BRMR approach has a
better average PSNR performance thanmulti-scale CNN andDeblur-
GAN. The qualitative results shown in Figure 7 further demonstrate
that compared with DeblurGAN [11], the latent sharp image gen-
erated by the adversarial BRMR approach is notably close to that
of the ground truth sharp image. The findings are in accordance
with the analytical results of the concert-related dataset. That is,
modeling the local details of sharp image distribution can indeed
help sharpen the local foreground/background area, thereby en-
hancing subjects’ viewing experiences. Despite the challenging
GOPRO dataset, the adversarial BRMR approach still increased the
average PSNR by 1.19dB and 2.33dB compared to multi-scale CNN
and DeblurGAN, and achieved an average PSNR of 30dB.We further

show the run time of each approach on a single NVIDIA GTX 1080
GPU. The results demonstrate that even though the adversarial
BRMR couples two CGANs, it achieves the run time comparable to
the other techniques. This is because for deblurring a single image,
our approach only needs to perform an average of 2.3 iterations of
adversarial BRMR, so it does not consume a lot of run time. Com-
pared with the state-of-the-art approaches for image deblurring,
the proposed adversarial BRMR technique has shown promising
results both quantitatively and qualitatively.

5 CONCLUSION
This study introduces a novel adversarial blurred region mining and
refining (adversarial BRMR) approach that effectively integrates
two conditional generative adversarial networks (CGANs) to auto-
matically and progressively localize and sharpen the blurred regions
for blind image deblurring. Experiments on both uniform and non-
uniform blurry datasets demonstrate that the adversarial BRMR
approach outperforms the state-of-the-art approaches, and gen-
erates satisfactory blind image deblurring results. Based on these
promising outcomes, our future work in this field will focus on
expanding the adversarial BRMR approach from image deblurring
to video deblurring, which would require incorporating temporal
information into the CAM-motivated collaborative mechanism of
the two coupled CGANs.
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