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Abstract

We present LSTM-Shuttle, which applies hu-
man speed reading techniques to natural lan-
guage processing tasks for accurate and effi-
cient comprehension. In contrast to previous
work, LSTM-Shuttle not only reads shuttling
forward but also goes back. Shuttling for-
ward enables high efficiency, and going back-
ward gives the model a chance to recover lost
information, ensuring better prediction. We
evaluate LSTM-Shuttle on sentiment analysis,
news classification, and cloze on IMDB, Rot-
ten Tomatoes, AG, and Children’s Book Test
datasets. We show that LSTM-Shuttle predicts
both better and more quickly. To demonstrate
how LSTM-Shuttle actually behaves, we also
analyze the shuttling operation and present a
case study.

1 Introduction

Recently, recurrent neural networks (RNNs) and
long short-term memory (LSTM) cells and gate re-
current unit (GRU) cells have achieved great suc-
cess and are increasingly being applied in nature
language processing tasks, e.g., part-of-speech
(POS) tagging (Wang et al., 2015), named-entity
recognition (Chiu and Nichols, 2015), sentiment
analysis (Zhang et al., 2018), document classi-
fication (Kim, 2014; Le and Mikolov, 2014a),
cloze (Srinivasan et al., 2018), machine trans-
lation (Bahdanau et al., 2015), dialogue mod-
eling (Mei et al., 2017), document summariza-
tion (Allahyari et al., 2017), automatic knowledge
extraction (Durme and Schubert, 2008), and ques-
tion answering (Chen et al., 2017).

Those tasks all call for text comprehension tech-
niques. To solve these tasks, the proposed models
read all the text available. That is, models read
every token or word of the text from beginning
to end. However, for some classification tasks,
it is not necessary to treat each individual word

equally. Take, for example, sentiment analysis:
sentences such as “this movie is amazing” or “too
boring” are sufficient to judge a sentiment without
reading the entire comment. In addition, the fact
that texts are often written redundantly also mo-
tivates reading selectively, especially for certain
NLP tasks.

In terms of human reading habits, although peo-
ple tend to skim text when reading a newspaper
or a novel, this does not significantly impair com-
prehension. Speed reading, a reading technique,
is used to improve one’s ability to read quickly.
Work has been done on modeling skimming be-
havior along with the original sequence modeling
RNN. LSTM-Jump (Yu et al., 2017) predicts how
many words to skim based on the RNN hidden
state. They show that neglecting some words in
a document does not greatly harm prediction ac-
curacy but does significantly accelerate the pro-
cess. They also show that for certain tasks such
as cloze, skimming even outperforms traditional
methods. In addition, (Yu et al., 2018) use RNN
hidden states to decide when to stop. If the RNN
judges it has achieved sufficient comprehension of
the context, it stops early and produce the answer
directly.

However, strictly speakly, simply skimming and
stopping early is not speed reading. For example,
imagine that during a reading test, we first read the
question and then the long article. We read quickly
and skip some information. What do we do if we
encounter text that we don’t understand? We go
back, read the previous text, and try to fill in the
gaps in our understanding. For speed reading, go-
ing back – or “reading backward” – is likewise im-
portant as it helps us to recover lost information or
correct misunderstandings, leading to better com-
prehension of long documents. In fact, reading
backward increases rather than decreases reading
speed: given the opportunity to go back to correct



misunderstandings, we skim more words and thus
read faster without reducing our comprehension.

In this paper, we propose LSTM-Shuttle, which
teaches the RNN model to speed read by mod-
eling both forward and backward reading behav-
ior. We evaluate the proposed method on senti-
ment analysis, document classification, and cloze
tasks. We use IMDB (L. et al., 2011) and Rot-
ten Tomatoes (Pang and Lee, 2005) as sentiment
analysis datasets, AG New (Shang et al., 2015)
as a document classification dataset, and Face-
book Children’s Book Test (Hill et al., 2015) as a
cloze dataset. The experiments show that the pro-
posed method achieves better prediction perfor-
mance and reads faster at the same time, in com-
parison with the LSTM baseline (Hochreiter and
Schmidhuber, 1997) and LSTM-Jump. We also
analyze the shuttling behavior under different set-
tings, proving that reading forward and backward
does help in reading.

2 Related Work

The proposed method is inspired mainly by
LSTM-Jump (Yu et al., 2017), which predicts how
many words should be neglected, accelerating the
reading process using RNN. Both their work and
ours is related to the idea of learning visual at-
tention per (Mnih et al., 2015), where a recurrent
model is used to decide which image part to watch
seriatim. They train the model end-to-end using
the REINFORCE algorithm (Williams, 1992) and
sample from a continuous Gaussian distribution.
The difference between their and our methods is
that we sample from a discrete distribution to re-
flect the properties of text and image.

Many recent natural language processing appli-
cations have explored the idea of filtering irrele-
vant content. As in our work, instead of skimming
some words, (Seo et al., 2018) consider all words
but use a small RNN for irrelevant words and the
original large RNN for relevant ones. (Campos
et al., 2018) also attempt to dynamically control
the RNN’s computational costs, but they instead
control the number of units to update at each time
step. In our method, in contrast, we skim words,
directly setting the amount of computation to be
zero, which streamlines the reading process.

From another perspective, (Yu et al., 2018) at-
tempt to model early stopping behavior, deciding
whether the model can answer confidently based
on the hidden states. This is very effective for

tasks such as question answering. To ensure accu-
racy, (Shen et al., 2016) focuses on early stopping
after multiple passes, and (Shen et al., 2016) also
using reinforcement learning to attempt to learn to
reason. Both early stopping and our method ad-
equately take into account research on sufficient
comprehension. While, early stopping is not fast
enough for classification, we can do better with
text shuttling.

3 Main Idea

In this section, we describe the proposed LSTM-
Shuttle, first presenting its architecture. Then,
we show that due to the nondifferentiability of
the shuttle mechanism, we apply a policy gradi-
ent (Sutton et al., 1999) to train it end-to-end. Fi-
nally, we present the implementation details and
the inference approach.

3.1 Overview

As Fig. 1 illustrates, LSTM-Shuttle is based on an
LSTM recurrent neural network to which is added
an additional fully connected layer to predict for-
ward or backward steps after a softmax distribu-
tion.

Given a text which denoted as x1, x2, . . . , xL
or x1:L, LSTM-Shuttle first reads a fixed num-
ber of words sequentially and outputs the hidden
state. Then, based on the hidden state, LSTM-
Shuttle computes the shuttle softmax distribution
over the forward or backward steps on [−K,K].
Given a negative step value, LSTM-Shuttle goes
back to correct misunderstandings, and with a pos-
itive step value, LSTM-Shuttle speed reads, skim-
ming unimportant words. After shuttling, LSTM-
Shuttle reads words sequentially and then pro-
ceeds to shuttle again, iteratively. This process
continues until one of the following occurs:

• The shuttle softmax samples a 0
• The number of shuttles exceeds the prede-

fined upper limit
• The model has arrived at the last word

After stopping, the last hidden state is used to pre-
dict the desired task. The post-processing depends
on the task. For instance, for classification, the
hidden state generates a softmax distribution over
the target class, and for cloze, it is used to find the
correlation between the question article and each
candidate answer. The detailed settings of each
task are described in Section 4.



Figure 1: An overview of LSTM-Shuttle. In this example, we set the number of words read sequentially
before shuttling R = 2, and the maximum shuttle size K = 10. The shuttle action is sampled from
[−K,K]. After reading the entire text, the last hidden state is used to answer prediction. Note that when
going backward, the shuttle step is counted before reading sequentially.

As with LSTM-Jump (Yu et al., 2017), we use
the following notation:

• N : total number of allowed shuttles
• R: number of words to read before shuttling
• K: maximum shuttle size

WhereasK is a fixed hyperparameter during train-
ing, N and R can vary between training and test-
ing. Note that as LSTM-Shuttle proceeds not only
forwards but also backwards, the output shuttle
size is 2K + 1: K forward, K backward, and
1 for stopping. In contrast to LSTM-Jump (Yu
et al., 2017), when going back, our shuttle step is
counted before reading sequentially. In the exam-
ple in Fig. 1, we set R = 2 and K = 10.

3.2 Training via Policy Gradient

In LSTM-Shuttle, there are two main parameter
sets to compute: θR and θU . θR includes the RNN
along with the output prediction parameters, and
θU represents the parameters of the shuttle mech-
anism.

We compute θR via backpropagation directly by
minimizing J1(θR), the cross entropy loss, which
is differentiable over θR and is the target objective
function of the classification task.

However, this does not work for θU . Since cross
entropy isn’t differentiable over θU , we cannot use
backpropagation to compute θU . Therefore, we re-
cast it as a reinforcement learning problem and ap-
ply a policy gradient to train it: we seek to maxi-
mize the reward function over θU via the following
formulation.

We first denote s1:T as the shuttle action se-
quence when training with text x1:L. Assuming
that hi is the hidden state of LSTM before the
i-th shuttle si, it is a function of si:i−1 and thus
can be denoted as hi(s1:i−1). Also, the shuttle
action can be sampled from the distribution of
p(st|hi(s1:t−1); θU ), which is determined by the

shuttle softmax. We have the final prediction after
LSTM-Shuttle processes text x1:L under the cur-
rent θU shuttle strategy. As with (Yu et al., 2017),
we set the reward to 1 if the prediction is correct,
and -1 otherwise.

R =

{
1 if predicted correctly
−1 otherwise

The objective function of θU we seek to maxi-
mize is the expected reward under the distribution
over θU shuttle strategy, i.e.,

J2(θU ) = Ep(s1:T ;θU )[R], (1)

where p(s1:T ;θU ) =
∏
i p(s1:i|hi(s1:i−1; θU ).

To maximize the objective function, we must
compute the gradient of Eq. (1). We compute
an approximate gradient by running M exam-
ples with the REINFORCE algorithm (Williams,
1992):

∇θUJ2(θU ) =
T∑
i=1

Ep(s1:T ;θU
)[∇θU log p(s1:i|hi; θU )R]

≈ 1

M

M∑
m=1

T∑
i=1

[∇θU log p(sm1:i|hmi ; θU )Rm],

where the superscript m denotes that it belongs
to the m-th example. Eventually, the term
∇θU log p(s1:i|hi; θU ) is computed by backprop-
agation as usual.

Though the approximation of∇θUJ2(θU ) is un-
biased, it may have very high variance (Williams,
1992). One common way to reduce this variance
is to subtract a baseline value b from the reward
function R, transforming the approximated gradi-
ent into

∇θUJ2(θU ) ≈ 1
M

∑M
m=1

∑T
i=1[∇θU log p(sm1:i|hmi ; θU )Rm − bmi ].

Here we apply same bias strategy as (Lewis et al.,
2017), treating the bias value b as the average re-
ward from then until now.



The final objective function for LSTM-Shuttle
to minimize is

J(θR, θU ) = J1(θR)− J2(θU ),

which is entirely differentiable and can be com-
puted by standard backpropagation.

3.3 Implementation detail and Inference
To simulate negative step selection, which corre-
sponds to reading backward in the shuttle action,
we set the shuttle output dimension to [0, 2K],
where 0 maps to −K, 1 maps to −(K − 1), . . . ,
K maps to 0, . . . , 2K − 1 maps to +(K − 1), and
2K maps to +K.

We used the Adam optimizer (Kingma and Ba,
2014) with a learning rate of 10−3 for all exper-
iments. For a fair comparison with (Yu et al.,
2017), the dropout rate between LSTM layers
was set to 0.2 and the embedding dropout rate
to 0.1. We implemented LSTM-Shuttle in Py-
Torch (Adam et al., 2017) on a GTX 1080Ti gpu.

During inference, we apply greedy sampling:
we select the most probable shuttle step from the
shuttle softmax distribution.

4 Experiments

In this section, we evaluate the proposed LSTM-
Shuttle on three different tasks: sentiment analy-
sis, news classification, and cloze on four different
datasets. We use IMDB (L. et al., 2011) and Rot-
ten Tomatoes (Pang and Lee, 2005) for sentiment
analysis, AG (Shang et al., 2015) for news arti-
cle classification, and Children’s Book Test (Hill
et al., 2015) for cloze. Table 1 contains statistics
for the tasks and datasets in our experiments.

To show the improvement in not only accuracy
but also efficiency, we compared LSTM-Shuttle
with three baselines: vanilla LSTM (Hochreiter
and Schmidhuber, 1997), LSTM-Jump (Yu et al.,
2017), and bi-directional LSTM-Jump, as shown
in Fig. 2. For a fair comparison, we trained
LSTM-Shuttle with the same LSTM settings as
LSTM-Jump. For example, for sentiment analysis
on IMDB, LSTM-Jump was trained with R=20,
K=40, and N=80; we trained LSTM-Shuttle with
the same parameters. Vanilla LSTM is the tradi-
tional recurrent neural network using LSTM cells
which reads the entire text and then outputs the
prediction. LSTM-Jump has a skim mechanism
which neglects some text. Bi-directional LSTM-
Jump applies LSTM-Jump twice but starting from

different directions, and concatenates the last hid-
den state for answer prediction. To shorten the pre-
sentation, for LSTM-Jump we selected only two
results from the original paper directly on each
dataset: one with the best accuracy and the other
with the highest efficiency. This is to show the
difference between reading in two directions and
shuttling. The quantitative result of each dataset is
shown in the following sections.

In addition to the quantitative results, we sought
to investigate how the shuttle mechanism pro-
gresses in reality. We present the shuttle statistics
for different K settings, and show that because of
the backward mechanism which affords a chance
to recover lost information, LSTM-Shuffle shut-
tles with larger steps, increasing the shuttle step
size as it grows more and more confident in its pre-
diction.

4.1 Sentiment Analysis on IMDB and Rotten
Tomatoes

Sentiment analysis is a classic natural language
processing task, in which we read an article and
predict its latent sentiment as positive or negative.
It is widely implied in many forms or question-
naires such as satisfaction surveys. Here we use
IMDB (L. et al., 2011) and Rotten Tomatoes (Pang
and Lee, 2005) as our sentiment analysis datasets.

4.1.1 IMDB Results
IMDB (L. et al., 2011), a well-known movie infor-
mation website, also includes audience comments
and their sentiments. It contains 25,000 training
data and 25,000 testing data, where the average
length is 241 words. Both baselines and LSTM-
Shuttle used a single layer and 128 hidden units as
LSTM cells. We used pre-trained word2vec em-
beddings (Le and Mikolov, 2014b) as initial word
embeddings and trained it along with LSTM. For
a comparison with the baselines, all models were
trained under R = 20, K = 40, and N = 5.
We also show the result of a larger shuttle step
(K = 75) version of LSTM-Shuttle.

Table 2 shows the experimental results for
IMDB, where the speedup ratio is compared with
vanilla LSTM, conducted on a machine with a sin-
gle GTX 1080Ti GPU. For bi-directional LSTM-
Jump we used our own implementation, and the
“Backward” column in the table shows the fre-
quency ratio of backward shuttles.

Under the same (R,K,N) setting, LSTM-
Shuttle is a little slower than LSTM-Jump since



Figure 2: Baseline architectures. Left: Vanilla LSTM: reads entire text sequentially. Middle: LSTM-
Jump: skims to neglect some words. Right: Bi-direction LSTM-Jump: skims in two directions, con-
catenates two latest hidden states.

Task Dataset Level AvgLen #train #test #class
Sentiment analysis IMDB word 241 words 21,143 25,000 2
Sentiment analysis Rotten Tomatoes word 22 words 8,835 1,030 2
News classification AG character 200 characters 101,851 7,600 4

Cloze CBT-NE sentence 20 sentences 120,769 2,500 10

Table 1: Tasks and datasets

Method (R, K, N) Accuracy Speedup Backward
LSTM - 89.1% 1x -

LSTM-Jump (80, 40, 8) 89.4%∗ 1.64x -
LSTM-Jump (100, 40, 1) 88.0% 2.54x∗ -

Bi-LSTM-Jump (80, 40, 8) 89.6%∗ 1.12x -
Bi-LSTM-Jump (100, 40, 1) 88.4% 2.33x∗ -
LSTM-Shuttle (20, 40, 5) 88.9% 2.43x 0.23
LSTM-Shuttle (60, 40, 6) 89.9%∗ 2.08x 0.26
LSTM-Shuttle (80, 40, 8) 89.7% 1.49x 0.27
LSTM-Shuttle (100, 40, 1) 88.6% 2.46x∗ 0.12
LSTM-Shuttle (50, 75, 4) 89.7%∗ 2.27x 0.29
LSTM-Shuttle (50, 75, 2) 89.1% 2.45x∗ 0.21

Table 2: Sentiment analysis results on IMDB. ∗

means the best accuracy or highest speedup for
each method given the same setting of K.

the softmax size of K is larger, but the for-
mer yields better prediction. For bi-directional
LSTM-Jump, since it applies LSTM-Jump twice,
it predicts better than the original. How-
ever, we doubt whether it is worth sacrificing
so much efficiency for such a small increase
in prediction accuracy (+0.2%). Under the
same (R,K,N), LSTM-Shuttle is more accurate
and faster than bi-directional LSTM-Jump, even
though (80, 40, 8) is not in fact the best setting for
LSTM-Shuttle. LSTM-Shuttle achieves the high-
est accuracy (89.9%) with 2.08× acceleration un-
der (60, 40, 6). Due to the shuttle mechanism that
can go back, LSTM-Shuttle does not need to read
many words before each shuttle, thus accelerating
the overall reading process.

In general, the combination of (R,N) repre-
sents a trade-off between accuracy and efficiency.
If we use a larger (R,N), the model reads more
words and predicts better but more slowly. Oth-

erwise, for a smaller (R,N), the model reads
faster but yields predictions that are not as accu-
rate. A similar tendency is found when it comes
to the backward ratio. A smaller N means LSTM-
Shuttle shuttles less often, so the model tends to
read through as much as possible, making for a
lower backward ratio. On the other hand, LSTM-
Shuttle can shuttle many times so it is willing to
go back to correct misunderstandings.

We also show the result for K = 75. With
the larger shuttle step, fewer words are read be-
fore shuttling, which accelerates reading but has
little impact on accuracy. LSTM-Shuttle achieves
89.7% with 2.27× speedup under (50, 75, 4)
and 89.1% with 2.45× times speedup under
(50, 75, 2): both settings yield both high accuracy
and efficiency.

4.1.2 Rotten Tomatoes Results

The Rotten Tomatoes dataset (Pang and Lee,
2005) is to IMDB. We chose to use a two-layer
LSTM and 256 hidden units, and again used
the pre-trained word2vec embeddings (Le and
Mikolov, 2014b). We trained all models under
R = 8, K = 10, and N = 3.

The experimental results are shown in Table 3.
LSTM-Shuttle achieves an accuracy of 79.5%
with 1.55× speedup; a higher efficiency version
accelerates to 1.89×. These results demonstrate
a similar trade-off tendency with different (R,N)
combinations as those for IMDB. Since the aver-
age comment length in Rotten Tomatoes is short,
we used lower shuttle times (N = 2) for better
speed but also maintained high accuracy. Because



Method (R, K, N) Accuracy Speedup Backward
LSTM - 79.1% 1x -

LSTM-Jump (7, 10, 4) 79.3%∗ 1.56x -
LSTM-Jump (9, 10, 2) 78.3% 1.94x∗ -

Bi-LSTM-Jump (7, 10, 4) 79.4%∗ 1.32x -
Bi-LSTM-Jump (9, 10, 2) 78.9% 1.54x∗ -
LSTM-Shuttle (7, 10, 4) 79.5% 1.52x 0.41
LSTM-Shuttle (8, 10, 3) 79.5%∗ 1.55x 0.41
LSTM-Shuttle (9, 10, 2) 79.3% 1.89x∗ 0.45
LSTM-Shuttle (6, 20, 3) 79.8%∗ 1.74x 0.39
LSTM-Shuttle (6, 20, 2) 79.2% 1.97x∗ 0.48

Table 3: Sentiment analysis results for Rotten
Tomatoes. ∗ means the best accuracy or highest
speedup for each method given the same setting of
K.

of the shorter comments and lower shuttle times,
LSTM-Shuttle prefers to shuttle over almost the
entire text from the beginning, trying to see the last
part of a comment, and then goes back to the mid-
dle part; thus the backward ratio is much higher.

We also show the results under a largerK (K =
20). On Rotten Tomatoes, a larger shuttle step
seems more suitable. LSTM-Shuttle achieves the
best accuracy (79.8%) with 1.74× high efficiency.
A setting with fewer shuttles further accelerates
up to 1.97× while maintaining a high accuracy of
79.2%.

4.2 News Article Classification on AG dataset

News classification is a common application of
document comprehension. Given a news article,
the model must recognize which field it belongs
to. Modern topic classification is applied on dif-
ferent target sources such as blog posts. We used
AG (Shang et al., 2015) as news article classifica-
tion dataset in our experiments.

4.2.1 Result on AG dataset
We used the subset constructed by (Shang et al.,
2015) for classification at the character level.
AG contains news covering four topics (World,
Sports, Business, Sci/Tech), each of which in-
cludes 30,000 training and 1,900 testing docu-
ments. We used a single-layer LSTM with 64 hid-
den units. We trained the character embedding
with 16 dimensions for 70 characters in total, per
LSTM-Jump (Yu et al., 2017). We trained all mod-
els using R = 30, K = 40, and N = 5.

As shown in Table 4, LSTM-Shuttle still yields
improvement at the character level. For both
LSTM-Jump and bidirectional LSTM-Jump, the
speedup effect is not obvious because of the com-

Method (R, K, N) Accuracy Speedup Backward
LSTM - 88.1% 1x -

LSTM-Jump (30, 40, 5) 88.5%∗ 1.24x∗ -
LSTM-Jump (40, 40, 6) 87.4% 0.83x -

Bi-LSTM-Jump (30, 40, 5) 89.5%∗ 1.08x∗ -
Bi-LSTM-Jump (40, 40, 6) 88.4% 0.81x -
LSTM-Shuttle (20, 40, 5) 90.1%∗ 1.34x∗ 0.27
LSTM-Shuttle (30, 40, 5) 88.9% 1.16x 0.30
LSTM-Shuttle (40, 40, 6) 88.4% 0.82x 0.34
LSTM-Shuttle (20, 80, 4) 89.8% 1.63x∗ 0.26
LSTM-Shuttle (30, 80, 4) 90.1%∗ 1.29x 0.28

Table 4: News classification result on AG. ∗ means
the best accuracy or highest speedup for each
method given the same setting of K.

putational overhead of skim being larger than
when processing the entire text directly. On the
other hand, LSTM-Shuttle yields accurate pre-
dictions even when reading fewer characters be-
fore shuttling, and it clearly yields accelerated
performance. We reach an accuracy of 90.1%
with 1.34× speedup, both far from LSTM-Jump.
Interestingly, (20, 40, 5) reads fewer words than
(30, 40, 5), but the former predicts better. This
may be due to the character-level nature of the task
and because many characters actually mislead the
model. This can be seen with LSTM-Jump as well.
The backward ratio on the AG dataset is nearly
to that of IMDB: almost three times forward with
once backward.

We also show that a larger setting of K (K =
80) yields further acceleration, even at the charac-
ter level, achieving the highest (1.63×) speedup.

4.3 Cloze on Children’s Book Test Name
Entity dataset

For the cloze task, we must supply the missing
words in an article. In the Children’s Book Test
(CBT) (Hill et al., 2015), the question includes a
complete article and a query from which a specific
word is deleted. The model must determine which
of the ten candidate words is most suitable. In con-
trast to previous tasks, which have a fixed class
type, CBT provides different candidate words for
each question. Thus we cannot train it as with a
normal classification problem. Inspired by (Chen
et al., 2016), we formulate the task as

softmax(CWho) ∈ R10, (2)

where C ∈ R10×d is the word embedding matrix,
ho is the latest LSTM hidden state, and W is a
trainable weight variable. The output of the above
equation is taken as the index of the answer word.



Method (R, K, N) Accuracy Speedup Backward
LSTM - 45.3% 1x -

LSTM-Jump (1, 5, 5) 46.8%∗ 3.05x -
LSTM-Jump (1, 5, 1) 45.2% 6.28x∗ -

Bi-LSTM-Jump (1, 5, 5) 47.0%∗ 2.64x -
Bi-LSTM-Jump (1, 5, 1) 45.3% 6.19x∗ -
LSTM-Shuttle (1, 5, 5) 47.2%∗ 2.98x 0.31
LSTM-Shuttle (1, 5, 1) 46.0% 6.16x∗ 0.18
LSTM-Shuttle (1, 10, 5) 47.1%∗ 2.91x 0.36
LSTM-Shuttle (1, 10, 1) 46.6% 6.13x∗ 0.27

Table 5: Cloze result on CBT-NE. ∗ means the
best accuracy or highest speedup for each method
given the same setting of K.

We train LSTM-Shuttle to maximize the distribu-
tion over a one-hot answer index. Therefore for
different candidate words, we concatenate them
as an embedding matrix, feed this into the above
equation, and generate the prediction distribution.
We used the named-entity (NE) part of CBT as the
cloze dataset when evaluating LSTM-Shuttle.

4.3.1 Result on CBT-NE
CBT-NE includes 120,769 questions for training
and 2,500 for testing. We trained all models
using Eq. (2) with a two-layer LSTM and 256
hidden units. Pre-trained word2vec embeddings
were again applied directly. We trained them un-
der R = 1, K = 5, and N = 5 at the sen-
tence level, which means that LSTM-Shuttle read
one sentence and shuttled several sentences five
times. Vanilla LSTM, LSTM-Jump, Bi-LSTM-
Jump, and LSTM-Shuttle all read the query, but
only vanilla LSTM read the entire question article.
Others decided how to skim or shuttle.

The result is reported in Table 5. LSTM-
Shuttle’s best accuracy is 47.2% with 2.98×
speedup, and the highest efficiency version
achieved 46.0% accuracy with 6.16× speedup.
Despite the modest acceleration effect, LSTM-
Shuttle yields consistently better prediction accu-
racy with minimal drops in efficiency. Accelera-
tion is only modest because the average number of
article sentences was only 20, and it thus did not
need to read many sentences (R = 1) before shut-
tling or shuttling so many times (N = 5). That is
also why the backward ratio here is low in CBT-
NE.

LSTM-Shuttle maintains accurate prediction
and high efficiency under a larger K: 46.6% ac-
curacy with 6.13× speedup. To demonstrate the
proposed method, we offer a case study in Sec-
tion 4.5.

Figure 3: Average total shuttle steps

Figure 4: Backward ratio

4.4 Analysis of Shuttle Mechanism

Here we analyze how LSTM-Shuttle actually op-
erates. We compute the total average shuttle steps
and the average shuttle steps for each shuttle ac-
tion under same R = 20 and N = 6 but different
K on the IMDB datasets.

Fig. 3 shows the average total shuttle steps for
different K, taking into consideration both for-
ward and backward steps. For backward shuttling,
we use the absolute value as its shuttle steps. For
instance, shuttling -5 means it goes back 5 words,
and the shuttle step is 5 indeed. We can see that
a larger K, and thus a larger shuttle space, tends
to shuttle larger steps, but also converges for large
enough values of K. We see the same thing in the
backward ratio. Fig. 4 shows the backward ratio
under different K. Since a larger K shuttles more
both forward and backward, it has more chances
to go back. Also, it converges when K is large
enough.

Figure 5: Average steps per shuttle



Figure 6: Example 1 for R = 1, K = 15, and
N = 4, where read sentences are shown in bold

In addition to the total average, we seek to un-
derstand how LSTM-Shuttle shuttles for each. As
above, both forward and backward are taken into
consideration and the absolute value is used for
the backward steps. We show each shuttle record
for a total of 6 shuttles under K between [40, 50].
As shown in Fig. 5, all settings of LSTM-Shuttle
shuttle more steps after shuttling more times, but
LSTM-Jump skims at an almost fixed frequency.
Thus the model reads more words after more shut-
tles since it tends to read sequential words before
each shuttle, in turn yielding better comprehension
for the model. For LSTM-Shuttle, with its back-
ward mechanism to recover lost information, it
shuttles with larger and larger steps. However, for
LSTM-Jump, as it cannot go back, it reads more
carefully and maintains a constant skim step.

4.5 Case Study

Below, we show two examples of LSTM-Shuttle
shuttling on the CBT-NE dataset. Example 1 in
Fig. 6 illustrates a simple case. Based only on
the query, “King should promise him his daugh-
ter”, the deleted word clearly should be “King”.
LSTM-Shuttle shows more confidence providing
the answer given only this query, so it shuttles with

Figure 7: Example 2 for R = 1, K = 15, and
N = 4, where read sentences are shown in bold

large steps to read the last part of the article, from
sentence 1 to 12. Also, it goes back to confirm its
prediction: from sentence 15 to 10. Example 2 in
Fig. 7 is a more difficult task because the answer
word “Nora” appears only once in the entire arti-
cle. Thus LSTM-Shuttle must read more carefully.
The shuttle steps are all smaller than 8 before dis-
covering the answer in sentence 18, after which
it goes back to see if it missed something. From
these examples, we see that the shuttle mechanism
is used in diverse manners for queries with differ-
ent difficulties. For simple queries, LSTM-Shuttle
shuttles in large steps, while for difficult queries,
it shuttles more conservatively. In both cases we
witness the ability to go back if necessary to make
sure it understands correctly.

5 Conclusion

We present LSTM-Shuttle to use human speed
reading techniques for text comprehension. In ad-
dition to reading forward and skimming over text
to accelerate, LSTM-Shuttle goes back to recover
lost information or double-check its grasp of the
text’s meaning. We evaluate LSTM-Shuttle on
sentiment analysis, news classification, and cloze
on IMDB, Rotten Tomatoes, AG, and Children’s
Book Test datasets. We show that LSTM-Shuttle
predicts better on all datasets with higher effi-
ciency. We also analyze LSTM-Shuttle’s behavior
under different shuttle step restrictions, and pro-
vide case studies that reveal the specific shuttle op-
erations; these show how the model comprehends
the context to achieve specific goals.
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