
Handling Local State with Global State

Koen Pauwels1, Tom Schrijvers1, and Shin-Cheng Mu2

1 Department of Computer Science, KU Leuven, Belgium,
first.last@cs.kuleuven.be

2 Institute of Information Science, Academia Sinica, Taiwan,
scm@iis.sinica.edu.tw

Abstract. Equational reasoning is one of the most important tools of
functional programming. To facilitate its application to monadic pro-
grams, Gibbons and Hinze have proposed a simple axiomatic approach
using laws that characterise the computational effects without exposing
their implementation details. At the same time Plotkin and Pretnar have
proposed algebraic effects and handlers, a mechanism of layered abstrac-
tions by which effects can be implemented in terms of other effects.
This paper performs a case study that connects these two strands of
research. We consider two ways in which the nondeterminism and state
effects can interact: the high-level semantics where every nondetermin-
istic branch has a local copy of the state, and the low-level semantics
where a single sequentially threaded state is global to all branches.
We give a monadic account of the folklore technique of handling local
state in terms of global state, provide a novel axiomatic characterisation
of global state and prove that the handler satisfies Gibbons and Hinze’s
local state axioms by means of a novel combination of free monads and
contextual equivalence. We also provide a model for global state that is
necessarily non-monadic.

Keywords: monads · effect handlers · equational reasoning · nondeterminism ·
state · contextual equivalence

1 Introduction

Monads have been introduced to functional programming to support side ef-
fects in a rigorous, mathematically manageable manner [11,14]. Over time they
have become the main framework in which effects are modelled. Various monads
were developed for different effects, from general ones such as IO, state, non-
determinism, exception, continuation, environment passing, to specific purposes
such as parsing. Much research was also devoted to producing practical monadic
programs.

Equational reasoning about pure functional programs is particularly simple
and powerful. Yet, Hutton and Fulger [7] noted that a lot less attention has been
paid to reasoning about monadic programs in that style. Gibbons and Hinze [4]
argue that equational reasoning about monadic programs becomes particularly

convenient and elegant when one respects the abstraction boundaries of the
monad. This is possible by reasoning in terms of axioms or laws that characterise
the monad’s behavior without fixing its implementation.

This paper is a case study of equational reasoning with monadic programs.
Following the approach of algebraic effects and handlers [12], we consider how
one monad can be implemented in terms of another—or, in other words, how one
can be simulated in by another using a careful discipline. Our core contribution
is a novel approach for proving the correctness of such a simulation. The proof
approach is a convenient hybrid between equational reasoning based on axioms
and inductive reasoning on the structure of programs. To capture the simulation
we apply the algebraic effects technique of handling a free monad representa-
tion [15]. The latter provides a syntax tree on which to perform induction. To
capture the careful discipline of the simulation we use contextual equivalence
and perform inductive reasoning about program contexts. This allows us to deal
with a heterogeneous axiom set where different axioms may make use of different
notions of equality for programs.

We apply this proof technique to a situation where each “monad” (both the
simulating monad and the simulated monad) is in fact a combination of two
monads, with differing laws on how these effects interact: non-determinism and
state.

In the monad we want to implement, each non-deterministic branch has
its own ‘local’ copy of the state. This is a convenient effect interaction which
is provided by many systems that solve search problems, including Prolog. A
characterisation of this ‘local state’ monad was given by Gibbons and Hinze [4].

We realise this local state semantics in terms of a more primitive monad where
a single state is sequentially threaded through the non-deterministic branches.
Because this state is shared among the branches, we call this the ‘global state’
semantics. The appearance of local state is obtained by following a discipline of
undoing changes to the state when backtracking to the next branch. This folk-
lore backtracking technique is implemented by most sequential search systems
because of its relative efficiency: remembering what to undo often requires less
memory than creating multiple copies of the state, and undoing changes often
takes less time than recomputing the state from scratch. To the best of our
knowledge, our axiomatic characterisation of the global state monad is novel.

In brief, our contributions can be summarized as follows:

– We provide an axiomatic characterisation for the interaction between the
monadic effects of non-determinism and state where the state is persistent
(i.e., does not backtrack), together with a model that satisfies this charac-
terisation.

– We prove that—with a careful discipline—our characterisation of persistent
state can correctly simulate Gibbons and Hinze’s monadic characterisation
of backtrackable state [4]. We use our novel proof approach (the core contri-
bution of this paper) to do so.

– Our proof also comes with a mechanization in Coq.3

3 The proof can be found at https://github.com/KoenP/LocalAsGlobal.

https://github.com/KoenP/LocalAsGlobal

The rest of the paper is structured as follows. First, Section 2 gives an
overview of the main concepts used in the paper and defines our terminology.
Then, Section 3 informally explores the differences between local and global state
semantics. Next, Section 4 explains how to handle local state in terms of global
state. Section 5 formalizes this approach and proves it correct. Finally, Sections 6
and 7 respectively discuss related work and conclude.

2 Background

This section briefly summarises the main concepts we need for equational rea-
soning about effects. For a more extensive treatment we refer to the work of
Gibbons and Hinze [4].

2.1 Monads, Nondeterminism and State

Monads A monad consists of a type constructor M :: ∗ → ∗ and two operators
return :: a → M a and “bind” (>>=) :: M a → (a → M b) → M b that satisfy the
following monad laws:

return x >>= f = f x , (1)

m >>= return = m , (2)

(m >>= f) >>= g = m >>= (λx → f x >>= g) . (3)

Nondeterminism The first effect we introduce is nondeterminism. Following the
trail of Hutton and Fulger [7] and Gibbons and Hinze, we introduce effects
based on an axiomatic characterisation rather than a specific implementation.
We define a type class to capture this interface as follows:

class Monad m ⇒ MNondet m where
∅ :: m a
(8) :: m a → m a → m a .

In this interface, ∅ denotes failure, while m8n denotes that the computation may
yield either m or n. Precisely what laws these operators should satisfy, however,
can be a tricky issue. As discussed by Kiselyov [8], it eventually comes down to
what we use the monad for.

It is usually expected that (8) and ∅ form a monoid. That is, (8) is associative,
with ∅ as its zero:

(m 8 n) 8 k = m 8 (n 8 k) , (4)

∅ 8 m = m = m 8 ∅ . (5)

It is also assumed that monadic bind distributes into (8) from the end, while
∅ is a left zero for (>>=):

left-distributivity : (m1 8 m2) >>= f = (m1 >>= f) 8 (m2 >>= f) , (6)

left-zero : ∅ >>= f = ∅ . (7)

We will refer to the laws (4), (5), (6), (7) collectively as the nondeterminism
laws.

One might might intuitively expect some additional laws from a set of non-
determinism operators, such as idempotence (p 8 p = p) or commutativity (p 8
q = q 8 p). However, our primary interest lies in the study of combinations
of effects and – as we shall see very soon – in particular the combination of
nondeterminism with state. One of our characterisations of this interaction would
be incompatible with both idempotence and commutativity, at least if they are
stated as strongly as we have done here. We will eventually introduce a weaker
notion of commutativity, but it would not be instructive to do so here (as its
properties would be difficult to motivate at this point).

State The state effect provides two operators:

class Monad m ⇒ MState s m | m → s where
get :: m s
put :: s → m () .

The get operator retrieves the state, while put overwrites the state by the given
value. They satisfy the state laws:

put-put : put st >> put st ′ = put st ′ , (8)

put-get : put st >> get = put st >> return st , (9)

get-put : get >>= put = return () , (10)

get-get : get >>= (λst → get >>= k st) = get >>= (λst → k st st) , (11)

where m1 >> m2 = m1 >>= λ → m2, which has type (>>) :: m a → m b → m b.

2.2 Combining Effects

As Gibbons and Hinze already noted, an advantage of defining our effects ax-
iomatically, rather than by providing some concrete implementation, is that it
is straightforward to reason about combinations of effects. In this paper, we are
interested in the interaction between nondeterminism and state, specifically.

class (MState s m,MNondet m)⇒ MStateNondet s m | m → s .

The type class MStateNondet s m simply inherits the operators of its superclasses
MState s m and MNondet m without adding new operators, and implementa-
tions of this class should comply with all laws of both superclasses.

However, this is not the entire story. Without additional ‘interaction laws’,
the design space for implementations of this type class is left wide-open with
respect to questions about how these effects interact. In particular, it seems
hard to imagine that one could write nontrivial programs which are agnostic
towards the question of what happens to the state of the program when the
program backtracks. We discuss two possible approaches.

Local State Semantics One is what Gibbons and Hinze call “backtrackable
state”, that is, when a branch of the nondeterministic computation runs into
a dead end and the continuation of the computation is picked up at the most
recent branching point, any alterations made to the state by our terminated
branch are invisible to the continuation. Because in this scheme state is local to
a branch, we will refer to these semantics as local state semantics. We charac-
terise local state semantics with the following laws:

right-zero : m >> ∅ = ∅ , (12)

right-distributivity : m >>= (λx → f1 x 8 f2 x) = (m >>= f1) 8 (m >>= f2). (13)

With some implementations of the monad, it is likely that in the lefthand side of
(13), the effect of m happens once, while in the righthand side it happens twice.
In (12), the m on the lefthand side may incur some effects that do not happen
in the righthand side.

Having (12) and (13) leads to profound consequences on the semantics and
implementation of monadic programs. To begin with, (13) implies that for (8)
we have some limited notion of commutativity. For instance, both the left and
right distributivity rules can be applied to the term (return x 8 return y) >>=
λz → return z 8 return z . It is then easy to show that this term must be equal to
both return x 8 return x 8 return y 8 return y and return x 8 return y 8 return x 8
return y .4

In fact, having (12) and (13) gives us very strong and useful commutative
properties. To be clear what we mean, we give a formal definition:

Definition 1. Let m and n be two monadic programs such that x does not occur
free in m, and y does not occur free in n. We say m and n commute if

m >>= λx → n >>= λy → f x y =

n >>= λy → m >>= λx → f x y .
(14)

We say that effects ε and δ commute if any m and n commute as long as their
only effects are respectively ε and δ.

One important result is that, in local state semantics, non-determinism com-
mutes with any effect :

Theorem 1. If right-zero (12) and right-distributivity (13) hold in addition to
the other laws, non-determinism commutes with any effect.

Implementation-wise, (12) and (13) imply that each nondeterministic branch
has its own copy of the state. To see that, let m = put 1, f1 () = put 2, and
f2 () = get in (13) — the state we get in the second branch does not change,
despite the put 2 in the first branch. One implementation satisfying the laws is

4 Gibbons and Hinze [4] were mistaken in their claim that the type s → [(a, s)]
constitutes a model of their backtrackable state laws; it is not a model because its
(8) does not commute with itself. One could consider a relaxed semantics that admits
s → [(a, s)], but that is not the focus of this paper.

M s a = s → Bag (a, s), where Bag a is an implementation of a multiset or
“bag” data structure. If we ignore the unordered nature of the Bag type, this
implementation is similar to StateT s (ListT Identity) in the Monad Transformer
Library [5]. With effect handling [15,9], the monad behaves similarly (except for
the limited commutativity implied by law (13)) if we run the handler for state
before that for list.

Global State Semantics Alternatively, we can choose a semantics where state
reigns over nondeterminism. In this case of non-backtrackable state, alterations
to the state persist over backtracks. Because only a single state is shared over all
the branches of the nondeterministic computation, we call this semantics global
state semantics. We will return later to the question of how to define laws that
capture our intuition for this kind of semantics, because (to the best of our
knowledge) this constitutes a novel contribution.

Even just figuring out an implementation of a global state monad that
matches our intuition is already tricky. One might believe that M s a = s →
([a], s) is a natural implementation of such a monad. The usual, naive im-
plementation of (>>=) using this representation, however, does not satisfy left-
distributivity (6), violates monad laws, and is therefore not even a monad. The
type ListT (State s) generated using the Monad Transformer Library [5] expands
to essentially the same implementation, and is flawed in the same way. More
careful implementations of ListT, which do satisfy (6) and the monad laws, have
been proposed [3,13]. Effect handlers (e.g. Wu [15] and Kiselyov and Ishii [9])
do produce implementations which match our intuition of a non-backtracking
computation if we run the handler for non-determinism before that of state.

We provide a direct implementation to aid the intuition of the reader. Es-
sentially the same implementation is obtained by using the type ListT (State s)
where ListT is implemented as a correct monad transformer. This implementa-
tion has a non-commutative (8).

M s a = s → (Maybe (a,M s a), s) .

The Maybe in this type indicates that a computation might fail to produce a
result. But note that the s is outside of the Maybe: even if the computation fails
to produce any result, a modified state may be returned (this is different from
local state semantics). ∅, of course, returns an empty continuation (Nothing)
and an unmodified state. (8) first exhausts the left branch (always collecting
any state modifications it performs), before switching to the right branch.

∅ = λs → (Nothing, s) ,
p 8 q = λs → case p s of (Nothing, t) → q t

(Just (x , r), t)→ (Just (x , r 8 q), t) .

The state operators are implemented in a straightforward manner.

get = λs → (Just (s , ∅), s) ,
put s = λt → (Just ((), ∅), s) .

And this implementation is also a monad. The implementation of p >>= k extends
every branch within p with k , threading the state through this entire process.

return x = λs → (Just (x , ∅), s) ,
p >>= k = λs → case p s of (Nothing, t) → (Nothing, t)

(Just (x , q), t)→ (k x 8 (q >>= k)) t .

3 Motivation

In the previous section we discussed two possible semantics for the interaction of
state and nondeterminism: global and local state semantics. In this section, we
will further explore the differences between these two interpretations. Using the
classic n-queens puzzle as an example, we show that sometimes we end up in a
situation where we want to write our program according to local state semantics
(which is generally speaking easier to reason about), but desire the space usage
characteristics of global state semantics.

3.1 Example: The n-Queens Problem

0 1 2 3 4 5 6 7
0 Q . .
1 . . . Q
2 Q .
3 Q
4 Q
5 . Q
6 Q . . .
7 . . Q

(a)

0 1 2 3 4 5 6 7
0 0 1 2 3 4 . . .
1 1 2 3 4
2 2 3 4
3 3 4
4 4
5 12
6 12 13
7 12 13 14

(b)

0 1 2 3 4 5 6 7
0 0 −1 . . . −5 −6 −7
1 . 0 −1 . . . −5 −6
2 . . 0 −1 . . . −5
3 3 . . 0
4 4 3 . . 0 . . .
5 5 4 3 . . 0 . .
6 6 5 4 3 . . 0 .
7 7 6 5 4 3 . . 0

(c)

Fig. 1: (a) This placement can be represented by [3, 5, 7, 1, 6, 0, 2, 4]. (b) Up di-
agonals. (c) Down diagonals.

The n-queens puzzle presented in this section is adapted and simplified from
that of Gibbons and Hinze [4]. The aim of the puzzle is to place n queens on a
n by n chess board such that no two queens can attack each other. Given n, we
number the rows and columns by [0 . .n − 1]. Since all queens should be placed
on distinct rows and distinct columns, a potential solution can be represented
by a permutation xs of the list [0 . .n − 1], such that xs !! i = j denotes that
the queen on the ith column is placed on the jth row (see Figure 1(a)). The
specification can be written as a non-deterministic program:

queens :: MNondet m ⇒ Int→ m [Int]
queens n = perm [0 . .n − 1] >>= filt safe ,

where perm non-deterministically computes a permutation of its input, and the
pure function safe :: [Int] → Bool, to be defined later, determines whether a
solution is valid. The function filt p x returns x if p x holds, and fails otherwise.
It can be defined in terms of a standard monadic function guard :

filt :: MNondet m ⇒ (a → Bool)→ a → m a
filt p x = guard (p x) >> return x ,

guard :: MNondet m ⇒ Bool→ m ()
guard b = if b then return () else ∅ .

The function perm can be written either as a fold or an unfold. For this problem
we choose the latter, using a function select , which non-deterministically splits
a list into a pair containing one chosen element and the rest. For example,
select [1, 2, 3] yields one of (1, [2, 3]), (2, [1, 3]) and (3, [1, 2]).

select :: MNondet m ⇒ [a]→ m (a, [a])
select [] = ∅
select (x : xs) = return (x , xs) 8 ((id × (x :)) 〈$〉 select xs) ,

perm :: MNondet m ⇒ [a]→ m [a]
perm [] = return []
perm xs = select xs >>= λ(x , ys)→ (x :) 〈$〉 perm ys ,

where f 〈$〉 m = m >> (return · f) which applies a pure function to a monadic
value, and (f × g) (x , y) = (f x , g y).

This specification of queens generates all the permutations, before checking
them one by one, in two separate phases. We wish to fuse the two phases, which
allows branches generates a non-safe placement to be pruned earlier, and thus
produce a faster implementation.

A Backtracking Algorithm In our representation, queens cannot be put on the
same row or column. Therefore, safe only needs to make sure that no two queens
are put on the same diagonal. An 8 by 8 chess board has 15 up diagonals (those
running between bottom-left and top-right). Let them be indexed by [0 . . 14]
(see Figure 1(b)). Similarly, there are 15 down diagonals (running between top-
left and bottom right, indexed by [−7 . . 7] in Figure 1(c)). We can show, by
routine program calculation, that whether a placement is safe can be checked in
one left-to-right traversal — define safe xs = safeAcc (0, [], []) xs, where

safeAcc :: (Int, [Int], [Int])→ [Int]→ Bool
safeAcc (i , us, ds) [] = True
safeAcc (i , us, ds) (x : xs) = ok (i ′, us ′, ds ′) ∧ safeAcc (i ′, us ′, ds ′) xs ,

where (i ′, us ′, ds ′) = (i + 1, (i + x : us), (i − x : ds)) ,

ok (i , (x : us), (y : ds)) = x 6∈ us ∧ y 6∈ ds .

Operationally, (i , us, ds) is a “state” kept by safeAcc, where i is the current
column, while us and ds are respectively the up and down diagonals encountered

so far. Function safeAcc behaves like a fold-left. Indeed, it can be defined using
scanl and all (where all p = foldr (∧) True ·map p):

safeAcc (i , us, ds) = all ok · tail · scanl (⊕) (i , us, ds) ,
where (i , us, ds)⊕ x = (i + 1, (i + x : us), (i − x : ds)) .

One might wonder whether the “state” can be implemented using an actual
state monad. Indeed, the following is among the theorems we have proved:

Theorem 2. If state and non-determinism commute, we have that for all xs,
st, (⊕), and ok,

filt (all ok · tail · scanl (⊕) st) xs =
protect (put st >> foldr (�) (return []) xs) ,
where x �m = get >>= λst → guard (ok (st ⊕ x)) >>

put (st ⊕ x) >> ((x :) 〈$〉 m) .

The function protect m = get >>= λini → m >>= λx → put ini >> return x saves
the initial state and restores it after the computation. As for (�), it assumes that
the “state” passed around by scanl is stored in a monadic state, checks whether
the new state st ⊕ x satisfies ok , and updates the state with the new value.

For Theorem 2 to hold, however, we need state and non-determinism to
commute. It is so in the local state semantics, which can be proved using the
non-determinism laws, (12), and (13).

Now that the safety check can be performed in a foldr , recalling that perm is
an unfold, it is natural to try to fuse them into one. Indeed, it can be proved that,
with (⊕), ok , and (�) defined above, we have perm xs >>= foldr (�) (return []) =
qBody xs, where

qBody :: MStateNondet (Int, [Int], [Int]) m ⇒ [Int]→ m [Int]
qBody [] = return []
qBody xs = select xs >>= λ(x , ys)→

get >>= λst → guard (ok (st ⊕ x)) >>
put (st ⊕ x) >> ((x :) 〈$〉 qBody ys) .

The proof also heavily relies on the commutativity between non-determinism
and state.

To wrap up, having fused perm and safety checking into one phase, we may
compute queens by:

queens :: MStateNondet (Int, [Int], [Int]) m ⇒ Int→ m [Int]
queens n = protect (put (0, [], []) >> qBody [0 . .n − 1]) .

This is a backtracking algorithm that attempts to place queens column-by-
column, proceeds to the next column if ok holds, and backtracks otherwise. The
derivation from the specification to this program relies on a number of properties
that hold in the local state semantics.

3.2 Transforming between Local State and Global State

For a monad with both non-determinism and state, the local state laws imply
that each non-deterministic branch has its own state. This is not costly for states
consisting of linked data structures, for example the state (Int, [Int], [Int]) in the
n-queens problem. In some applications, however, the state might be represented
by data structures, e.g. arrays, that are costly to duplicate: When each new state
is only slightly different from the previous (say, the array is updated in one place
each time), we have a wasteful duplication of information. Although this is not
expected to be an issue for realistic sizes of the n-queens problem due to the
relatively small state, one can imagine that for some problems where the state
is very large, this can be a problem.

Global state semantics, on the other hand, has a more “low-level” feel to it.
Because a single state is threaded through the entire computation without mak-
ing any implicit copies, it is easier to reason about resource usage in this setting.
So we might write our programs directly in the global state style. However, if we
do this to a program that would be more naturally expressed in the local state
style (such as our n-queens example), this will come at a great loss of clarity.
Furthermore, as we shall see, although it is easier to reason about resource usage
of programs in the global state setting, it is significantly more difficult to reason
about their semantics. We could also write our program first in a local state
style and then translate it to global state style. Doing this manually is a tedious
and error-prone process that leaves us with code that is hard to maintain. A
more attractive proposition is to design a systematic program transformation
that takes a program written for local state semantics as input, and outputs a
program that, when interpreted under global state semantics, behaves exactly
the same as the original program interpreted under local state semantics.

In the remainder of the paper we define this program transformation and
prove it correct. We believe that, in particular, the proof technique is of interest.

4 Non-Determinism with Global State

So far, we have evaded giving a precise axiomatic characterisation of global
state semantics: although in Section 2 we provided an example implementa-
tion that matches our intuition of global state semantics, we haven’t provided
a clear formulation of that intuition. We begin this section by finally stating
the “global state law”, which characterises exactly the property that sets apart
non-backtrackable state from backtrackable state.

In the rest of the section, we appeal to intuition and see what happens when
we work with a global state monad: what pitfalls we may encounter, and what
programming pattern we may use, to motivate the more formal treatment in
Section 5.

4.1 The Global State Law

We have already discussed general laws for nondeterministic monads (laws (4)
through (7)), as well as laws which govern the interaction between state and

nondeterminism in a local state setting (laws (13) and (12)). For global state
semantics, an alternative law is required to govern the interactions between non-
determinism and state. We call this the global state law.

put-or : (put s >> m) 8 n = put s >> (m 8 n) , (15)

This law allows the lifting of a put operation from the left branch of a nondeter-
ministic choice, an operation which does not preserve meaning under local state
semantics. Suppose for example that m = ∅, then by (12) and (5), the left-hand
side of the equation is equal to n, whereas by (5), the right-hand side of the
equation is equal to put s >> n.

By itself, this law leaves us free to choose from a large space of implemen-
tations with different properties. For example, in any given implementation,
the programs return x 8 return y and return y 8 return x may be considered
semantically identical, or they may be considered semantically distinct. The
same goes for the programs return x 8 return x and return x , or the programs
(put s >> return x) 8 m and (put s >> return x) 8 (put s >> m). Additional axioms
will be introduced as needed to cover these properties in Section 5.2.

4.2 Chaining Using Non-deterministic Choice

In backtracking algorithms that keep a global state, it is a common pattern to
1. update the current state to its next step, 2. recursively search for solutions,
and 3. roll back the state to the previous step (regardless of whether a solution
is found). To implement such pattern as a monadic program, one might come
up with something like the code below:

modify next >> search >>= modReturn prev ,

where next advances the state, prev undoes the modification of next (prev ·next =
id), and modify and modReturn are defined by:

modify f = get >>= (put · f) ,
modReturn f v = modify f >> return v .

Let the initial state be st and assume that search found three choices m18m28m3.
We wish that m1, m2, and m3 all start running with state next st , and the state
is restored to prev (next st) = st afterwards. Due to (6), however, it expands to

modify next >> (m1 8 m2 8 m3) >>= modReturn prev =
modify next >> ((m1 >>= modReturn prev) 8

(m2 >>= modReturn prev) 8
(m3 >>= modReturn prev)) .

With a global state, it means that m2 starts with state st , after which the state
is rolled back further to prev st . The computation m3 starts with prev st , after
which the state is rolled too far to prev (prev st). In fact, one cannot guarantee

that modReturn prev is always executed — if search fails and reduces to ∅,
modReturn prev is not run at all, due to (7).

We need a way to say that “modify next and modReturn prev are run ex-
actly once, respectively before and after all non-deterministic branches in solve.”
Fortunately, we have discovered a curious technique. Define

side :: MNondet m ⇒ m a → m b
side m = m >> ∅ .

Since non-deterministic branches are executed sequentially, the program

side (modify next) 8 m1 8 m2 8 m3 8 side (modify prev)

executes modify next and modify prev once, respectively before and after all the
non-deterministic branches, even if they fail. Note that side m does not generate
a result. Its presence is merely for the side-effect of m, hence the name.

The reader might wonder: now that we are using (8) as a sequencing operator,
does it simply coincide with (>>)? Recall that we still have left-distributivity (6)
and, therefore, (m1 8 m2) >> n equals (m1 >> n) 8 (m2 >> n). That is, (8) acts
as “insertion points”, where future code followed by (>>) can be inserted into!
This is certainly a dangerous feature, whose undisciplined use can lead to chaos.
However, we will exploit this feature and develop a safer programming pattern
in the next section.

4.3 State-Restoring Operations

The discussion above suggests that one can implement backtracking, in a global-
state setting, by using (8) and side appropriately. We can even go a bit further
by defining the following variation of put , which restores the original state when
it is backtracked over:

putR :: MStateNondet s m ⇒ s → m ()
putR s = get >>= λs0 → put s 8 side (put s0) .

Fig. 2: Illustration of state-restoring put

To help build understanding for putR, Figure 2 shows the flow of execution
for the expression (putR t >> ret x)8 ret y . Initially, the state is s; it gets modified
to t at the put t node after which the value x is output with the working state
t . Then, because we found a result, we backtrack (since we’re using global-state
semantics, the state modification caused by put t is not reversed), arriving in
the side operation branch. The put s operation is executed, which resets the
state to s, and then the branch immediately fails, so we backtrack to the right
branch of the topmost (8). There the value y is output with working state s.

For some further intuition about putR, consider putR s >> comp where comp
is some arbitrary computation:

putR s >> comp
= (get >>= λs0 → put s 8 side (put s0)) >> comp
= { monad law, left-distributivity (6) }

get >>= λs0 → (put s >> comp) 8 (side (put s0) >> comp)
= { by (7) ∅ >> comp = ∅, monad laws }

get >>= λs0 → (put s >> comp) 8 side (put s0) .

Thanks to left-distributivity (6), (>>comp) is promoted into (8). Furthermore,
the (>>comp) after side (put s0) is discarded by (7). In words, putR s >> comp
saves the current state, computes comp using state s, and restores the saved
state! The subscript R stands for “restore.” Note also that (putR s >>m1)>>m2 =
putR s >> (m1 >> m2) — the state restoration happens in the end.

The behaviour of putR is rather tricky. It is instructive comparing

(a) return x ,
(b) put s >> return x ,
(c) putR s >> return x .

When run in initial state s0, they all yield x as the result. The final states after
running (a), (b) and (c) are s0, s and s0, respectively. However, (c) does not
behave identically to (a) in all contexts! For example, in the context (>>get), we
can tell them apart: return x >> get returns s0, while putR s >> return x >> get
returns s, even though the program yields final state s0.

We wish that putR, when run with a global state, satisfies laws (8) through
(13) — the state laws and the local state laws. If so, one could take a program
written for a local state monad, replace all occurrences of put by putR, and run
the program with a global state. Unfortunately this is not the case: putR does
satisfy put-put (8) and put-get (10), but get-put (9) fails — get >>= putR and
return () can be differentiated by some contexts, for example (>>put t). To see
that, we calculate:

(get >>= putR) >> put t
= (get >>= λs → get >>= λs0 → put s 8 side (put s0)) >> put t
= { get-get }

(get >>= λs → put s 8 side (put s)) >> put t
= { monad laws, left-distributivity }

get >>= λs → (put s >> put t) 8 side (put s)
= { put-put }

get >>= λs → put t 8 side (put s) .

Meanwhile, return () >> put t = put t , which does not behave in the same way
as get >>= λs → put t 8 side (put s) when s 6= t.

In a global-state setting, the left-distributivity law (6) makes it tricky to
reason about combinations of (8) and (>>=) operators. Suppose we have a program
(m 8 n), and we construct an extended program by binding a continuation f to
it such that we get (m 8n) >>= f (where f might modify the state). Under global-
state semantics, the evaluation of the right branch is influenced by the state
modifications performed by evaluating the left branch. So by (6), this means
that when we get to evaluating the n subprogram in the extended program, it
will do so with a different initial state (the one obtained after running m >>=
f) compared to the initial state in the original program (the one obtained by
running m). In other words, placing our program in a different context changed
the meaning of one of its subprograms. So it is difficult to reason about programs
compositionally in this setting—some properties hold only when we take the
entire program into consideration.

It turns out that all properties we need do hold, provided that all occurrences
of put are replaced by putR—problematic contexts such as put t above are thus
ruled out. However, that “all put are replaced by putR” is a global property,
and to properly talk about it we have to formally define contexts, which is what
we will do in Section 5. Notice though, that simulation of local state semantics
by judicious use of putR does not avoid the unnecessary copying mentioned in
Section 3.2, it merely makes it explicit in the program. We will address this
shortcoming in Section 5.6.

5 Laws and Translation for Global State Monad

In this section we give a more formal treatment of the non-deterministic global
state monad. Not every implementation of the global state law allows us to
accurately simulate local state semantics though, so we propose additional laws
that the implementation must respect. These laws turn out to be rather intricate.
To make sure that there exists a model, an implementation is proposed, and it
is verified in Coq that the laws and some additional theorems are satisfied.

The ultimate goal, however, is to show the following property: given a pro-
gram written for a local-state monad, if we replace all occurrences of put by
putR, the resulting program yields the same result when run with a global-state
monad. This allows us to painlessly port our previous algorithm to work with
a global state. To show this we first introduce a syntax for nondeterministic
and stateful monadic programs and contexts. Then we imbue these programs
with global-state semantics. Finally we define the function that performs the
translation just described, and prove that this translation is correct.

5.1 Programs and Contexts

data Prog a where
Return :: a → Prog a
∅ :: Prog a
(8) :: Prog a → Prog a → Prog a
Get :: (S→ Prog a)→ Prog a
Put :: S→ Prog a → Prog a

(a)

run :: Prog a → Dom a

ret :: a → Dom a

∅ :: Dom a

([]) :: Dom a → Dom a → Dom a

get :: (S→ Dom a)→ Dom a

put :: S→ Dom a → Dom a

(b)

Fig. 3: (a) Syntax for programs. (b) Semantic domain.

In the previous sections we have been mixing syntax and semantics, which
we avoid in this section by defining the program syntax as a free monad. This
way we avoid the need for a type-level distinction between programs with local-
state semantics and programs with global-state semantics. Figure 3(a) defines
a syntax for nondeterministic, stateful, closed programs Prog, where the Get
and Put constructors take continuations as arguments, and the (>>=) operator is
defined as follows:

(>>=) :: Prog a → (a → Prog b)→ Prog b
Return x >>= f = f x
∅ >>= f = ∅
(m 8 n) >>= f = (m >>= f) 8 (n >>= f)
Get k >>= f = Get (λs → k s >>= f)
Put s m >>= f = Put s (m >>= k) .

One can see that (>>=) is defined as a purely syntactical manipulation, and its
definition has laws (6) and (7) built-in.

The meaning of such a monadic program is determined by a semantic do-
main of our choosing, which we denote with Dom, and its corresponding domain
operators ret , ∅, get , put and ([]) (see figure 3(b)). The run :: Prog a → Dom a
function “runs” a program Prog a into a value in the semantic domain Dom a:

run (Return x) = ret x
run ∅ = ∅
run (m1 8 m2) = run m1 [] run m2

run (Get k) = get (λs → run (k s))
run (Put s m) = put s (run m) .

Note that no >>= operator is required to define run; in other words, Dom need
not be a monad. In fact, as we will see later, we will choose our implementation
in such a way that there does not exist a bind operator for run.

5.2 Laws for Global State Semantics

We impose the laws upon Dom and the domain operators to ensure the semantics
of a non-backtracking (global-state), nondeterministic, stateful computation for
our programs. Naturally, we need laws analogous to the state laws and nondeter-
minism laws to hold for our semantic domain. As it is not required that a bind
operator ((>>=) :: Dom a → (a → Dom b)→ Dom b) be defined for the semantic
domain (and we will later argue that it cannot be defined for the domain, given
the laws we impose on it), the state laws ((8) through (11)) must be reformulated
to fit the continuation-passing style of the semantic domain operators.

put s (put t p) = put t p , (16)

put s (get k) = put s (k s) , (17)

get (λs → put s m) = m , (18)

get (λs → get (λt → k s t)) = get (λs → k s s) . (19)

Two of the nondeterminism laws—(6) and (7)—also mention the bind operator.
As we have seen earlier, they are trivially implied by the definition of (>>=) for
Prog. Therefore, we need not impose equivalent laws for the semantic domain
(and in fact, we cannot formulate them given the representation we have chosen).
Only the two remaining nondeterminism laws—(4) and (5)—need to be stated:

(m [] n) [] p = m [] (n [] p) , (20)

∅ [] m = m [] ∅ = m . (21)

We also reformulate the global-state law (15):

put s p [] q = put s (p [] q) . (22)

It turns out that, apart from the put-or law, our proofs require certain additional
properties regarding commutativity and distributivity which we introduce here:

get (λs → put (t s) p [] put (u s) q [] put s ∅) =

get (λs → put (u s) q [] put (t s) p [] put s ∅) ,
(23)

put s (ret x [] p) = put s (ret x) [] put s p . (24)

These laws are not considered general “global state” laws, because it is possible
to define reasonable implementations of global state semantics that violate these
laws, and because they are not exclusive to global state semantics.

The ([]) operator is not, in general, commutative in a global state setting.
However, we will require that the order in which results are computed does
not matter. This might seem contradictory at first glance. To be more pre-
cise, we do not require the property p [] q = q [] p because the subprograms p
and q might perform non-commuting edits to the global state. But we do ex-
pect that programs without side-effects commute freely; for instance, we expect
return x [] return y = return y [] return x . In other words, collecting all the

results of a nondeterministic computation is done with a set-based semantics in
mind rather than a list-based semantics, but this does not imply that the order
of state effects does not matter.

In fact, the notion of commutativity we wish to impose is still somewhat
stronger than just the fact that results commute: we want the ([]) operator to
commute with respect to any pair of subprograms whose modifications of the
state are ignored—that is, immediately overwritten—by the surrounding pro-
gram. This property is expressed by law (23). An example of an implementation
which does not respect this law is one that records the history of state changes.

In global-state semantics, put operations cannot, in general, distribute over
([]). However, an implementation may permit distributivity if certain conditions
are met. Law (24) states that a put operation distributes over a nondeterministic
choice if the left branch of that choice simply returns a value. This law has a
particularly striking implication: it disqualifies any implementation for which a
bind operator (>>=)::Dom a → (a → Dom b)→ Dom b can be defined! Consider
for instance the following program:

put x (ret w [] get ret) >>= λz → put y (ret z) .

If (24) holds, this program should be equal to

(put x (ret w) [] put x (get ret)) >>= λz → put y (ret z) .

However, it is proved in Figure 4 that the first program can be reduced to
put y (ret w [] ret y), whereas the second program is equal to put y (ret w [] ret x),
which clearly does not always have the same result.

To gain some intuition about why law (24) prohibits a bind operator, con-
sider that the presence or absence of a bind operator influences what equality
of programs means. Our first intuition might be that we consider two programs
equal if they produce the same outputs given the same inputs. But this is too
narrow a view: for two programs to be considered equal, they must also be-
have the same under composition; that is, we must be able to replace one for
the other within a larger whole, without changing the meaning of the whole.
The bind operator allows us to compose programs sequentially, and therefore
its existence implies that, for two programs to be considered equal, they must
also behave identically under sequential composition. Under local-state seman-
tics, this additional requirement coincides with other notions of equality: we
can’t come up with a pair of programs which both produce the same outputs
given the same inputs, but behave differently under sequential composition. But
under global-state semantics, we can come up with such counterexamples: con-
sider the subprograms of our previous example put x (ret w [] get ret) and
(put x (ret w) [] put x (get ret)). Clearly we expect these two programs to
produce the exact same results in isolation, yet when they are sequentially com-
posed with the program λz → put y (ret z), their different nature is revealed
(by (6)).

It is worth remarking that introducing either one of these additional laws
disqualify the example implementation given in Section 2.2 (even if it is adapted

put x (ret w [] get ret) >>= λz → put y (ret z)

= { definition of (>>=) }
put x (put y (ret w) [] get (λs → put y (ret s)))
= { by (22) and (16) }
put y (ret w [] get (λs → put y (ret s)))
= { by (24) }
put y (ret w) [] put y (get (λs → put y (ret s)))
= { by (17) and (16) }
put y (ret w) [] put y (ret y)
= { by (24) }
put y (ret w [] ret y)

(a)

(put x (ret w) [] put x (get ret))

>>= λz → put y (ret z)

= { definition of (>>=) }
put x (put y (ret w))

[] put x (get (λs → put y (ret s)))
= { by (16) and (17) }
put y (ret w) [] put x (put y (ret x))
= { by (16) }
put y (ret w) [] put y (ret x)
= { by (24) }
put y (ret w [] ret x)

(b)

Fig. 4: Proof that law (24) implies that a bind operator cannot exist for the
semantic domain.

for the continuation-passing style of these laws). As the given implementation
records the order in which results are yielded by the computation, law (23)
cannot be satisfied. And the example implementation also forms a monad, which
means it is incompatible with law (24).

Machine-Verified Proofs From this point forward, we provide proofs mechanized
in Coq for many theorems. When we do, we mark the proven statement with a
check mark (X).

5.3 An Implementation of the Semantic Domain

We present an implementation of Dom that satisfies the laws of section 5.2, and
we provide machine-verified proofs to that effect. In the following implementa-
tion, we let Dom be the union of M s a for all a and for a given s.

The implementation is based on a multiset or Bag data structure. In the
mechanization, we implement Bag a as a function a → Nat.

type Bag a

singleton :: a → Bag a
emptyBag :: Bag a
sum :: Bag a → Bag a → Bag a

We model a stateful, nondeterministic computation with global state semantics
as a function that maps an initial state onto a bag of results, and a final state.
Each result is a pair of the value returned, as well as the state at that point in
the computation. The use of an unordered data structure to return the results
of the computation is needed to comply with law (23).

In Section 5.2 we mentioned that, as a consequence of law (24) we must design
the implementation of our semantic domain in such a way that it is impossible to
define a bind operator >>= ::Dom a → (a → Dom b)→ Dom b for it. This is the
case for our implementation: we only retain the final result of the branch without
any information on how to continue the branch, which makes it impossible to
define the bind operator.

type M s a = s → (Bag (a, s), s)

∅ does not modify the state and produces no results. ret does not modify the
state and produces a single result.

∅ :: M s a
∅ = λs → (emptyBag , s)

ret :: a → M s a
ret x = λs → (singleton (x , s), s)

get simply passes along the initial state to its continuation. put ignores the
initial state and calls its continuation with the given parameter instead.

get :: (s → M s a)→ M s a
get k = λs → k s s

put :: s → M s a → M s a
put s k = λ → k s

The [] operator runs the left computation with the initial state, then runs the
right computation with the final state of the left computation, and obtains the
final result by merging the two bags of results.

([]) :: M s a → M s a → M s a

(xs [] ys) s = let (ansx , s ′) = xs s
(ansy , s ′′) = ys s ′

in (sum ansx ansy , s ′′)

Lemma 1. This implementation conforms to every law introduced in Section 5.2. X

5.4 Contextual Equivalence

With our semantic domain sufficiently specified, we can prove analogous prop-
erties for programs interpreted through this domain. We must take care in how
we reformulate these properties however. It is certainly not sufficient to merely
copy the laws as formulated for the semantic domain, substituting Prog data
constructors for semantic domain operators as needed; we must keep in mind
that a term in Prog a describes a syntactical structure without ascribing mean-
ing to it. For example, one cannot simply assert that Put x (Put y p) is equal

data Ctx e1 a e2 b where
� :: Ctx e a e a
COr1 :: Ctx e1 a e2 b → OProg e2 b

→ Ctx e1 a e2 b
COr2 :: OProg e2 b → Ctx e1 a e2 b

→ Ctx e1 a e2 b
CPut :: (Env e2 → S)→ Ctx e1 a e2 b

→ Ctx e1 a e2 b
CGet :: (S→ Bool)→ Ctx e1 a (S : e2) b

→ (S→ OProg e2 b)→ Ctx e1 a e2 b
CBind1 :: Ctx e1 a e2 b → (b → OProg e2 c)

→ Ctx e1 a e2 c
CBind2 :: OProg e2 a → Ctx e1 b (a : e2) c

→ Ctx e1 b e2 c

(a)

data Env (l :: [∗]) where
Nil :: Env ‘[]
Cons :: a → Env l → Env (a : l)

type OProg e a = Env e → Prog a

(b)

Fig. 5: (a) Environments and open programs. (b) Syntax for contexts.

to Put y p, because although these two programs have the same semantics,
they are not structurally identical. It is clear that we must define a notion of
“semantic equivalence” between programs. We can map the syntactical struc-
tures in Prog a onto the semantic domain Dom a using run to achieve that.
Yet wrapping both sides of an equation in run applications is not enough as
such statements only apply at the top-level of a program. For instance, while
run (Put x (Put y p)) = run (Put y p) is a correct statement, we cannot prove
run (Return w 8 Put x (Put y p)) = run (Return w 8 Put y p) from such a law.

So the concept of semantic equivalence in itself is not sufficient; we require
a notion of “contextual semantic equivalence” of programs which allows us to
formulate properties about semantic equivalence which hold in any surround-
ing context. Figure 5(a) provides the definition for single-hole contexts Ctx. A
context C of type Ctx e1 a e2 b can be interpreted as a function that, given a
program that returns a value of type a under environment e1 (in other words: the
type and environment of the hole), produces a program that returns a value of
type b under environment e2 (the type and environment of the whole program).
Filling the hole with p is denoted by C[p]. The type of environments, Env is
defined using heterogeneous lists (Figure 5(b)). When we consider the notion of
programs in contexts, we must take into account that these contexts may intro-
duce variables which are referenced by the program. The Prog datatype however
represents only closed programs. Figure 5(b) introduces the OProg type to repre-
sent “open” programs, and the Env type to represent environments. OProg e a is
defined as the type of functions that construct a closed program of type Prog a,
given an environment of type Env e. Environments, in turn, are defined as het-
erogeneous lists. We also define a function for mapping open programs onto the
semantic domain.

orun :: OProg e a → Env e → Dom a
orun p env = run (p env) .

We can then assert that two programs are contextually equivalent if, for any
context, running both programs wrapped in that context will yield the same
result:

m1 =GS m2 , ∀C.orun (C[m1]) = orun (C[m2]) .

We can then straightforwardly formulate variants of the state laws, the non-
determinism laws and the put-or law for this global state monad as lemmas. For
example, we reformulate law (16) as

Put s (Put t p) =GS Put t p .

Proofs for the state laws, the nondeterminism laws and the put-or law then
easily follow from the analogous semantic domain laws.

More care is required when we want to adapt law (24) into the Prog setting.
At the end of Section 5.2, we saw that this law precludes the existence of a
bind operator in the semantic domain. Since a bind operator for Progs exists,
it might seem we’re out of luck when we want to adapt law (24) to Progs. But
because Progs are merely syntax, we have much more fine-grained control over
what equality of programs means. When talking about the semantic domain,
we only had one notion of equality: two programs are equal only when one can
be substituted for the other in any context. So if, in that setting, we want to
introduce a law that does not hold under a particular composition (in this case,
sequential composition), the only way we can express that is to say that that
composition is impossible in the domain. But the fact that Prog is defined purely
syntactically opens up the possibility of defining multiple notions of equality
which may exist at the same time. In fact, we have already introduced syntactic
equality, semantic equality, and contextual equality. It is precisely this choice
of granularity that allows us to introduce laws which only hold in programs of
a certain form (non-contextual laws), while other laws are much more general
(contextual laws). A direct adaptation of law (24) would look something like
this:

∀C. C is bind-free⇒orun (C[Put s (Return x 8 p)])

=orun (C[Put s (Return x) 8 Put s p]) .

In other words, the two sides of the equation can be substituted for one another,
but only in contexts which do not contain any binds. However, in our mech-
anization, we only prove a more restricted version where the context must be
empty (in other words, what we called semantic equivalence), which turns out
to be enough for our purposes.

run (Put s (Return x 8 p)) = run (Put s (Return x) 8 Put s p) .X (25)

5.5 Simulating Local-State Semantics

We simulate local-state semantics by replacing each occurrence of Put by a vari-
ant that restores the state, as described in Section 4.3. This transformation is
implemented by the function trans for closed programs, and otrans for open
programs:

trans :: Prog a → Prog a
trans (Return x) = Return x
trans (p 8 q) = trans p 8 trans q
trans ∅ = ∅
trans (Get p) = Get (λs → trans (p s))
trans (Put s p) = Get (λs ′ → Put s (trans p) 8 Put s ′ ∅) ,

otrans :: OProg e a → OProg e a
otrans p = λenv → trans (p env) .

We then define the function eval , which runs a transformed program (in other
words, it runs a program with local-state semantics).

eval :: Prog a → Dom a
eval = run · trans .

We show that the transformation works by proving that our free monad equipped
with eval is a correct implementation for a nondeterministic, stateful monad with
local-state semantics. We introduce notation for “contextual equivalence under
simulated backtracking semantics”:

m1 =LS m2 , ∀C.eval (C[m1]) = eval (C[m2]) .

For example, we formulate the statement that the put-put law (16) holds for our
monad as interpreted by eval as

Put s (Put t p) =LS Put t p .X

Proofs for the nondeterminism laws follow trivially from the nondeterminism
laws for global state. The state laws are proven by promoting trans inside, then
applying global-state laws. For the proof of the get-put law, we require the
property that in global-state semantics, Put distributes over (8) if the left branch
has been transformed (in which case the left branch leaves the state unmodified).
This property only holds at the top-level.

run (Put x (trans m1 8 m2)) = run (Put x (trans m1) 8 Put x m2) .X (26)

Proof of this lemma depends on law (24).
Finally, we arrive at the core of our proof: to show that the interaction of state

and nondeterminism in this implementation produces backtracking semantics.
To this end we prove laws analogous to the local state laws (13) and (12)

m >> ∅ =LS ∅ ,X (27)

m >>= (λx → f1 x 8 f2 x) =LS (m >>= f1) 8 (m >>= f2) .X (28)

We provide machine-verified proofs for these theorems. The proof for (27) follows
by straightforward induction. The inductive proof (with induction on m) of
law (28) requires some additional lemmas.

For the case m = m1 8 m2, we require the property that, at the top-level of a
global-state program, (8) is commutative if both its operands are state-restoring.
Formally:

run (trans p 8 trans q) = run (trans q 8 trans p) .X (29)

The proof of this property motivated the introduction of law (23).
The proof for both the m = Get k and m = Put s m ′ cases requires that Get

distributes over (8) at the top-level of a global-state program if the left branch
is state restoring.

run (Get (λs → trans (m1 s) 8 (m2 s))) = (30)

run (Get (λs → trans (m1 s)) 8 Get m2) .X (31)

And finally, we require that the trans function is, semantically speaking,
idempotent, to prove the case m = Put s m ′.

run (trans (trans p)) = run (trans p) .X (32)

5.6 Backtracking with a Global State Monad

Although we can now interpret a local state program through translation to a
global state program, we have not quite yet delivered on our promise to address
the space usage issue of local state semantics. From the definition of putR it
is clear that we simply make the implicit copying of the local state semantics
explicit in the global state semantics. As mentioned in Section 4.2, rather than
using put , some algorithms typically use a pair of commands modify next and
modify prev , with prev ·next = id , to respectively update and roll back the state.
This is especially true when the state is implemented using an array or other
data structure that is usually not overwritten in its entirety. Following a style
similar to putR, this can be modelled by:

modifyR :: MStateNondet s m ⇒ (s → s)→ (s → s)→ m ()
modifyR next prev = modify next 8 side (modify prev) .

Unlike putR, modifyR does not keep any copies of the old state alive, as it does
not introduce a branching point where the right branch refers to a variable in-
troduced outside the branching point. Is it safe to use an alternative translation,
where the pattern get >>= (λs → put (next s) >> m) is not translated into get >>=
(λs → putR (next s)>>trans m), but rather into modifyR next prev>>trans m? We
explore this question by extending our Prog syntax with an additional ModifyR

construct, thus obtaining a new ProgM syntax:

data ProgM a where
...
ModifyR :: (S→ S)→ (S→ S)→ ProgM a → ProgM a

We assume that prev · next = id for every ModifyR next prev p in a ProgM a
program.

We then define two translation functions from ProgM a to Prog a, which both
replace Puts with putRs along the way, like the regular trans function. The first
replaces each ModifyR in the program by a direct analogue of the definition given
above, while the second replaces it by Get (λs → Put (next s) (trans2 p)):

trans1 :: ProgM a → Prog a
...
trans1 (ModifyR next prev p) = Get (λs → Put (next s) (trans1 p)

8 Get (λt → Put (prev t) ∅))
trans2 :: ProgM a → Prog a
...
trans2 (ModifyR next prev p) = Get (λs → putR (next s) (trans2 p))

where putR s p = Get (λt → Put s p 8 Put t ∅)

It is clear that trans2 p is the exact same program as trans p′, where p′ is p
but with each ModifyR next prev p replaced by Get (λs → Put (next s) p).

We then prove that these two transformations lead to semantically identical
instances of Prog a.

Lemma 2. run (trans1 p) = run (trans2 p). X

This means that, if we make some effort to rewrite parts of our program to use
the ModifyR construct rather than Put, we can use the more efficient translation
scheme trans1 to avoid introducing unnecessary copies.

n-Queens using a global state To wrap up, we revisit the n-queens puzzle. Recall
that, for the puzzle, the operator that alters the state (to check whether a chess
placement is safe) is defined by

(i , us, ds)⊕ x = (1 + i , (i + x) : us, (i − x) : ds) .

By defining (i , us, ds) 	 x = (i − 1, tail us, tail ds), we have (x) · (⊕x) = id .
One may thus compute all solutions to the puzzle, in a scenario with a shared
global state, by run (queensR n), where

queensR n = put (0, [], []) >> qBody [0 . .n − 1] ,

qBody [] = return []
qBody xs = select xs >>= λ(x , ys)→

(get >>= (guard · ok · (⊕x))) >>
modifyR (⊕x) (x) >> ((x :) 〈$〉 qBody ys) ,

where (i , us, ds)⊕ x = (1 + i , (i + x) : us, (i − x) : ds)
(i , us, ds)	 x = (i − 1, tail us, tail ds)
ok (, u : us, d : ds) = (u /∈ us) ∧ (d /∈ ds) .

6 Related Work

6.1 Prolog

Prolog is a prominent example of a system that exposes nondeterminism with
local state to the user, but is itself implemented in terms of a single global state.

Warren Abstract Machine The folklore idea of undoing modifications upon back-
tracking is a key feature of many Prolog implementations, in particular those
based on the Warren Abstract Machine (WAM) [1]. The WAM’s global state
is the program heap and Prolog programs modify this heap during unification
only in a very specific manner: following the union-find algorithm, they overwrite
cells that contain self-references with pointers to other cells. Undoing these mod-
ifications only requires knowledge of the modified cell’s address, which can be
written back in that cell during backtracking. The WAM has a special stack,
called the trail stack, for storing theses addresses, and the process of restoring
those cells is called untrailing.

The 4-Port Box Model While trailing happens under the hood, there is a folklore
Prolog programming pattern for observing and intervening at different points in
the control flow of a procedure call, known as the 4-port box model. In this
model, upon the first entrance of a Prolog procedure it is called; it may yield
a result and exits; when the subsequent procedure fails and backtracks, it is
asked to redo its computation, possibly yielding the next result; finally it may
fail. Given a Prolog procedure p implemented in Haskell, the following program
prints debugging messages when each of the four ports are used:

(putStr "call" 8 side (putStr "fail")) >>
p >>= λx →
(putStr "exit" 8 side (putStr "redo")) >> return x .

This technique was applied in the monadic setting by Hinze [6], and it has been
our inspiration for expressing the state restoration with global state.

6.2 Reasoning About Side Effects

There are many works on reasoning and modelling side effects. Here we cover
those that have most directly inspired this paper.

Axiomatic Reasoning Our work was directly inspired by Gibbons and Hinze’s
proposal to reason axiomatically about programs with side effects, and their
axiomatic characterisation of local state in particular [4]. We have extended
their work with an axiomatic characterisation of global state and on handling
the former in terms of the latter. We also provide models that satisfy the axioms,
whereas their paper mistakenly claims that one model satisfies the local state
axioms and that another model is monadic.

Algebraic Effects Our formulation of implementing local state with global state
is directly inspired by the effect handlers approach of Plotkin and Pretnar [12].
By making the free monad explicit our proofs benefit directly from the induction
principle that Bauer and Pretnar establish for effect handler programs [2].

While Lawvere theories were originally Plotkin’s inspiration for studying al-
gebraic effects, the effect handlers community has for a long time paid little
attention to them. Yet, recently Lukšič and Pretnar [10] have investigated a
framework for encoding axioms (or “effect theories”) in the type system: the
type of an effectful function declares the operators used in the function, as well
as the equalities that handlers for these operators should comply with. The type
of a handler indicates which operators it handles and which equations it com-
plies with. This type system would allow us to express at the type-level that our
handler interprets local state in terms of global state.

7 Conclusions

Starting from Gibbons and Hinze’s observation [4] that the interaction between
state and nondeterminism can be characterized axiomatically in multiple ways,
we explored the differences between local state semantics (as characterised by
Gibbons and Hinze) and global state semantics (for which we gave our own
non-monadic characterisation).

In global state semantics, we find that we may use (8) to simulate sequenc-
ing, and that the idea can be elegantly packaged into commands like putR and
modifyR. The interaction between global state and non-determinism turns out
to be rather tricky. For a more rigorous treatment, we enforce a more precise
separation between syntax and semantics and, as a side contribution of this pa-
per, propose a global state law, plus some additional laws, which the semantics
should satisfy. We verified (with the help of the Coq proof assistant) that there
is an implementation satisfying these laws.

Using the n-queens puzzle as an example, we showed that one can end up in
a situation where a problem is naturally expressed with local state semantics,
but the greater degree of control over resources that global state semantics offers
is desired. We then describe a technique to systematically transform a monadic
program written against the local state laws into one that, when interpreted
under global state laws, produces the same results as the original program. This
transformation can be viewed as a handler (in the algebraic effects sense): it
implements the interface of one effect in terms of the interface of another. We
also verified the correctness of this transformation in Coq.

Acknowledgements We would like to thank Matija Pretnar, the members of IFIP
WG 2.1, the participants of Shonan meeting 146 and the MPC reviewers for their
insightful comments. We would also like to thank the Flemish Fund for Scientific
Research (FWO) for their financial support.

References

1. Aı̈t-Kaci, H.: Warren’s Abstract Machine: A Tutorial Reconstruction (01 1991)
2. Bauer, A., Pretnar, M.: An effect system for algebraic effects and handlers.

Logical Methods in Computer Science 10(4) (2014), https://doi.org/10.2168/
LMCS-10(4:9)2014

3. Gale, Y.: ListT done right alternative. https://wiki.haskell.org/ListT_done_
right_alternative (2007)

4. Gibbons, J., Hinze, R.: Just do it: simple monadic equational reasoning. In: Danvy,
O. (ed.) International Conference on Functional Programming. pp. 2–14. ACM
Press (2011)

5. Gill, A., Kmett, E.: The monad transformer library. https://hackage.haskell.
org/package/mtl (2014)

6. Hinze, R.: Prolog’s control constructs in a functional setting - axioms and imple-
mentation. Int. J. Found. Comput. Sci. 12(2), 125–170 (2001), https://doi.org/
10.1142/S0129054101000436

7. Hutton, G., Fulger, D.: Reasoning about effects: seeing the wood through the trees.
In: Symposium on Trends in Functional Programming (2007)

8. Kiselyov, O.: Laws of monadplus. http://okmij.org/ftp/Computation/monads.
html#monadplus (2015)

9. Kiselyov, O., Ishii, H.: Freer monads, more extensible effects. In: Reppy, J.H. (ed.)
Symposium on Haskell. pp. 94–105. ACM Press (2015)

10. Lukšič, v., Pretnar, M.: Local algebraic effect theories (2019), submitted
11. Moggi, E.: Computational lambda-calculus and monads. In: Parikh, R. (ed.) Logic

in Computer Science. pp. 14–23. IEEE Computer Society Press (1989)
12. Plotkin, G., Pretnar, M.: Handlers of algebraic effects. In: Castagna, G. (ed.) Eu-

ropean Symposium on Programming. pp. 80–94. No. 5502 in Lecture Notes in
Computer Science (2009)

13. Volkov, N.: The list-t package. http://hackage.haskell.org/package/list-t

(2014)
14. Wadler, P.: Monads for functional programming. In: Broy, M. (ed.) Program Design

Calculi: Marktoberdorf Summer School. pp. 233–264. Springer-Verlag (1992)
15. Wu, N., Schrijvers, T., Hinze, R.: Effect handlers in scope. In: Voigtländer, J. (ed.)

Symposium on Haskell. pp. 1–12. ACM Press (2012)

https://doi.org/10.2168/LMCS-10(4:9)2014
https://doi.org/10.2168/LMCS-10(4:9)2014
https://wiki.haskell.org/ListT_done_right_alternative
https://wiki.haskell.org/ListT_done_right_alternative
https://hackage.haskell.org/package/mtl
https://hackage.haskell.org/package/mtl
https://doi.org/10.1142/S0129054101000436
https://doi.org/10.1142/S0129054101000436
http://okmij.org/ftp/Computation/monads.html#monadplus
http://okmij.org/ftp/Computation/monads.html#monadplus
http://hackage.haskell.org/package/list-t

	Handling Local State with Global State

