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Abstract. In this study, we introduce a new cosegmentation approach,
MOMI-cosegmentation, to segment multiple objects that repeatedly ap-
pear among multiple images. The proposed approach tackles a more gen-
eral problem than conventional cosegmentation methods. Each of the
shared objects may even appear more than one time in one image. The
key idea of MOMI-cosegmentation is to incorporate a common pattern
discovery algorithm with the proposed Gibbs energy model in a Markov
random field framework. Our approach builds upon an observation that
the detected common patterns provide useful information for estimating
foreground statistics, while background statistics can be estimated from
the remaining pixels. The initialization and segmentation processes of
MOMI-cosegmentation are completely automatic, while the segmenta-
tion errors can be substantially reduced at the same time. Experimen-
tal results demonstrate the effectiveness of the proposed approach over
state-of-the-art cosegmentation method.

1 Introduction

Cosegmentation refers to simultaneous segmentation of similar objects from two
or more images. While many studies [1–3] have shown that better segmentation
from a single image could be achieved by interactive user inputs, completely au-
tomatic segmentation is possible for cosegmentation by using multiple images.
The commonality across the images provides the information needed for facil-
itating the cosegmentation task. This idea was first introduced by Rother et
al. [4] to segment an object of interest from an image pair, and has been ap-
plied to concurrent foreground extraction tasks, such as segmentation of image
sequences [5] and several other problems [6–8]. Besides apparent applications
in image or video editing, cosegmentation also implies several potential appli-
cations in other important areas, including biomedical imaging, video tracking,
and content-based image retrieval.

The original goal of cosegmentation is to facilitate segmentation of common
objects or regions by providing minimal additional information (such as just one
additional image) so that better results could be obtained without user inputs.
It is typically designed in a class-constrained fashion, i.e., a given set of images
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(a) Input image pair (b) Cosegmentation [9] (c) The proposed method

Fig. 1: Given two (or more) images (a), the objective of cosegmentation is to segment
the common objects in these images. Note that the problem here is more general since
multiple objects could occur multiple times in an image. (b) and (c) show the results
of state-of-the-art cosegmentaion algorithm [9] and the proposed method.

is assumed to be of the same object class. Because each image contains only one
instance of the same object, one could consider the problem as approximating
the position of the common object. In practice, many images, such as our daily
photos, often share more than one object in common. An object may even appear
more than one time in an image. Take Fig. 1 (a) for example. Two objects,
frog and cow, simultaneously appear in the image pair and cow appears twice
in the top image. As shown in Fig. 1 (b), the cosegmentation algorithm [9]
produces segmentation errors when similar colors appear both in the foreground
and background regions.

In this paper, we tackle a more general problem without the assumption
that only one object appears in each image. The problem becomes more diffi-
cult than conventional cosegmentation and object detection (or recognition) in
several aspects. First, no prior knowledge is provided for the common objects or
regions: we have no idea about what and how many the common objects are, and
how many times each object appears in an image. So how can we detect com-
mon objects in an unannotated image set? An intuitive way is to exhaustively
compare all sub-images at all possible positions and scales among these images.
The search domain, however, is extremely huge and the computational cost in-
creases exponentially with the number of input images. Therefore, we present a
new approach, MOMI-cosegmentation, to address the above issues in an unsu-
pervised framework. The novelty of MOMI-cosegmentation lies in incorporating
a common pattern discovery algorithm with the proposed MRF model, which
is extended from a Gibbs energy [10]. We propose to use the common pattern
discovery algorithm [11] to detect coherent objects among an unannotated im-
age set. Besides, the initialization and segmentation of the proposed approach is
completely automatic, which is vital for real world applications. Fig. 1 (c) shows
the results of the proposed method, where segmentation errors are significantly
reduced in comparison to Fig. 1 (b) obtained by [9].
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2 Related Work

This paper lies in the intersection between the fields of cosegmentation and
common pattern discovery. In this section, we briefly review previous works in
each field.

Cosegmentation belongs to the category of unsupervised techniques. Existing
approaches [4, 9, 12] cast this problem as a minimization problem of a Markov
random field (MRF), which discourages histogram dissimilarities of foreground
regions between two input images. The idea proposed in [4] penalized the MRF
energy by the L1 histogram dissimilarities of foreground regions. However, the
optimization problem regularized by the L1-norm becomes more difficult to solve.
Mukherjee et al. [12] considered the problem using the squared L2 distance and
showed the modified objective function leads to an optimal linear programming
solution of only “half-integrality” values. Hochbaum and Singh [9] claimed that
the regularization terms of histogram difference lead to difficult optimization,
and proposed to replace these terms by the “carrot or stick” strategy. The op-
timization problem was solved more efficiently in polynomial time using only
one maximum flow maximization. However, these works implicitly assumed that
only one object appears in each image.

Recent approaches for common pattern discovery are [11, 13–15]. Quack et
al. [13] use a data mining technique to find spatial configurations of local fea-
tures that frequently occur in an image set. A random partitioning approach
is adopted in [14] to match all pairs of sub-images. A common pattern is then
detected as the sub-image with the highest matching score. Yuan et al. [15] find
a common pattern by gradually pruning possible candidates. Common patterns
can be found by aggregating the voting maps in above methods. However, many
methods implicitly assume that only one object appears in one image. In [11],
common patterns are found as dense clusters in a correspondence graph repre-
sented by an incompatibility matrix. Because this work finds common patterns
in a density-based clustering framework, it by nature relaxes the assumption
that each image contains only one object. Nevertheless, these methods do not
consider segmentation and produces undesirable segmentation artifacts.

The rest of this paper is organized as follows. In Section 3, we describe the
concepts of [11] that is used to detect common objects that appears repeatedly
in a set of images. The proposed segmentation model is presented in Section 4.
We show the experimental results in Section 5 and give conclusions in Section 6.

3 Common Pattern Discovery

In this section, we review the concepts of the common pattern discovery algo-
rithm [11]. Given a set of N unannotated images, the goal is to unsupervisedly
detect common objects (or regions) shared by the image set. Note that the as-
sumption that only one common object in each image is relaxed in this approach.

Candidate matches. Given the n-th image In, we extract a set of local
appearance features Fn = {(pi

n, si
n,di

n)|i = 1, . . . , |Fn|}, where pi
n and si

n are
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Fig. 2: Illustration of the correspondence graph used for density-based clustering [11].
Each node represents a candidate match ii′; each dense cluster can be considered as a
common object (or region).

the position and the scale of the i-th feature in In, di
n is the corresponding

feature descriptor and |Fn| is the number of features in In. Here, we use the
Harris-Laplace corner detector and the OpponentSIFT descriptor [16] for feature
extraction. Note that other options [17,18] are also applicable for computing the
feature descriptor di

n.
Given two images Im and In as two sets of local features, the number of

all possible correspondences across each pair of local features is enormous. It
is computationally prohibitive to establish such a correspondence between each
image pair. Therefore, we filter out the candidate matches M by

M = {ii′ | ‖di
m − di′

n‖ < λ}, (1)

where ii′ stands for the match between the i-th feature in Im and the i′-th feature
in In. λ controls the maximum dissimilarity between two appearance features.
Typically, M will contain only a small subset of all possible matches.

Incompatibility matrix. After the relatively small candidate matches M
is filtered out for each image pair, the next goal is to construct an incompatibility
matrix D for these matches between two images Im and In. The incompatibility
matrix D measures the incoherence between a pair of “matches” in the two
images. Let i1 and i2 denote two local features in In, sdn(i1, i2) = ‖pi1

n − pi2
n ‖

indicates the spatial distance between i1 and i2. Considering each candidate
match i2i

′
2 within the spatial ε-neighborhood of i1i

′
1, i.e., sdm(i1, i2) < ε and

sdn(i′1, i
′
2) < ε, we can compute their incompatibility as:

D(i1i′1, i2i
′
2) = α1 × unary(i1i′1, i2i

′
2) + α2 × binary(i1i′1, i2i

′
2), (2)

where unary and binary are the constraints used to capture the appearance
dissimilarity and geometric inconsistency for each pair of candidate matches,
respectively. A possible choice of the unary and binary constraints can be given
as in [11]:

unary(i1i′1, i2i
′
2) =

‖di1
m − di′1

n ‖+ ‖di2
m − di′2

n ‖
2

, (3)

binary(i1i′1, i2i
′
2) =

|sdm(i1, i2)− sdn(i′1, i
′
2)|√

sdm(i1, i2)sdn(i′1, i
′
2)

. (4)
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(a) Confidence maps IC
n (b) Preliminary segmentation results IP

n

Fig. 3: The confidence maps of Fig. 1 (a). The larger value given in the confidence map
implies higher possibility that the pixel is a part of a shared object.

Correspondence graph. Small values in D reflects potential correct matches
of a shared object in the image pair, because appearance differences and geo-
metric inconsistency between correct matches shall be small. Incorrect matches
are likely to be inconsistent with each other with large incompatibilities. From
this point of view, we can see the candidate matches M as nodes that forms
the correspondence graph with corresponding linkage weights specified by D. As
illustrated in Fig. 2, correct matches tend to form dense clusters (blue circles
and green triangles) with small linkage weights. The isolated nodes (red crosses)
in the correspondence graph indicate the incorrect matches with large linkage
weights.

Density-based clustering. Given the correspondence graph, the problem
of finding common objects in an image set is reduced to a dense cluster discovery
problem. A dense cluster, i.e., a set of nodes linked by small weights, represents
a possible shared object appearing in an image pair. As we do not know in
advance the shape of each cluster, clustering methods that assume each cluster
has a globular shape, such as K-means and affinity propagation, are not adequate
for this case. Furthermore, the number of dense clusters in the correspondence
graph is not known either.

Therefore, the density-based algorithm [19] is utilized to discover clusters
with arbitrary shapes in the presence of a large number of outlier matches. One
of the benefits of the algorithm is that we do not have to specify the number of
clusters in advance. The only parameters used are the radius ε of neighborhood
and the density d in the ε-neighborhood. In our implementation, we fixed ε =
2000 and d = 20 across all experiments.

The confidence map. After performing the density-based algorithm for
each pair of images, we derive (N −1) feature masks for each image in the unan-
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notated image set. Each feature mask records the confidence of each local feature
and indicates that how likely a local feature is a part of a common object. The
confidence of the i-th local feature F i

n in the image In is accumulated across all
(N − 1) feature masks. By fusing these feature masks for each image, we then
obtain a confidence map of positive real values. The confidence map of Fig. 1 (a)
is shown in Fig. 3. Preliminary segmentation results can be obtained by perform-
ing a simple thresholding. The preliminary segmentation results obtained from
the image pair of 1 (a) are shown in Fig. 3 (b). See Fig. 4 (c) for more examples.
Although this algorithm can successfully detect common objects across input
images, the objects are only partly included in the preliminary segmentation
results.

4 MOMI-Cosegmentation Incorporating Common
Pattern Discovery

Conventional cosegmentaion methods [4,9,12] are restrictive in two assumptions:
the input is an image pair and each image contains the same object in different
backgrounds. In order to detect multiple objects that may appear multiple times
in one image, we incorporate the preliminary segmentation results IP

n and the
confidence maps IC

n images of N images generated from the common pattern
discovery algorithm [11]. We then consider the cosegmentation problem as an
individual foreground/background segmentation on each image In, n = 1, . . . , N .

The segmentation problem can be interpreted as a binary labelling problem:
each pixel p has to be assigned a unique label xp, where xp is a binary label of
0 (background) or 1 (foreground). Let V be the set of all pixels in In and E be
the set of all adjacent pixel pairs in In. We formulate the problem of computing
the optimal labels X = {xp|p ∈ V} as an energy minimization of the following
cost function:

E(X) = λcolor

∑
p∈V

Ecolor(xp) + λsmoothness

∑
(p,q)∈E

Esmoothness(xp, xq) +

λconfidence

∑
p∈V

Econfidence(xp) + λlocality

∑
p∈V

Elocality(xp). (5)

We introduce the different energy terms corresponding to various cues from
the prior knowledge of color models, smoothness, confidence maps and locality
relationship. The parameters λcolor, λsmoothness, λconfidence and λlocality balance
the contribution of each energy term. Each energy term is then described in the
following subsections.

4.1 Color term & smoothness term

The color and smoothness terms are frequently used in segmentation problems [1,
20,21]. We first explain the two terms as the fundamental model.
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Color term. The idea of color term is to exploit the fact that different groups
of foreground or background segments tend to follow different color distributions.
For an image In, we train two Gaussian mixture models (GMMs), one for the
foreground and one for the background, from the given preliminary segmentation
result IP

n . The purpose of each GMM is to estimate the likelihood of each pixel
p that belongs to foreground or background based on the color cue. Each GMM
is taken as full-covariance Gaussian with K components (typically K = 5). The
color term is defined as

Ecolor(xp) = − log G(p|xp), (6)

where each color model G is given by the mixture of Gaussians:

G(p|xp) =
K∑

k=1

πk
1√

det Σk

exp
(
−1

2
(p− μk)T Σ−1

k (p− μk)
)

. (7)

G(p|xp) indicates the probability that pixel p belongs to the label xp. Note that if
the pixel p is assigned to be foreground (xp = 1), the summation in Eq. (7) is over
the foreground GMMs for estimating the foreground likelihood of p; otherwise,
the summation is over the background GMMs. The color term encourages the
pixels to follow the labels of the most similar color model.

Smoothness term. The smoothness term is designed to preserve the coher-
ence between two neighboring pixels of similar pixel values and imply a tendency
to solidity of objects. This is useful in situations where matching constraints are
weak, such as too sparse candidate matches or too many ambiguous colors that
both occur in the foreground and the background GMMs. The smoothness term
between two adjacent pixels p and q is defined as

Esmoothness(xp, xq) = [xp �= xq] exp
(−β‖p− q‖2) , (8)

where [expr] denotes the indicator function taking value 0, 1 for the predicate
expr and the constant β can be chosen to be

(
1/2〈‖p− q‖2〉) as suggested in [10].

This term is a smoothness penalty when the neighboring pixels are labelled
differently, i.e., xp �= xp. In other words, the less similar colors of p and q are,
the smaller cost Esmoothness would produce, and therefore the more likely the
edge between p and q is on the object boundary.

The minimization problem using Ecolor and Esmoothness alone is similar to
that proposed in GrabCut [1]. The main distinction is that we extend the seg-
mentation domain from the initial user-defined rectangle trimap to the entire
image. The results of GrabCut used in this manner are shown in third column
of Fig. 7. Although color coherence and smoothness are preserved by Ecolor

and Esmoothness, noticeable segmentation errors occur because of the imperfect
preliminary segmentation in IP

n and the non-discriminative GMMs of the fore-
ground and background. We then introduce two more energy terms, Econfidence

and Elocality, to recover correct foreground pixels as well as remove false “back-
ground artifacts”.
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(a)

(b)

(c)

(d)

(e)

Fig. 4: Effects of confidence terms. (a) input images, (b) given confidence maps, (c)
preliminary segmentation results, (d) GrabCut with only color terms and smoothness
terms based on the preliminary results (red circles indicate the segmentation errors)
and (e) segmentation with additional confidence terms.

4.2 Confidence term

The energy functions discussed in the above section may cause the segmentation
errors where correct foreground pixels are assigned to background labels. This is
because the similar colors between the foreground and the background models
distract the labelling of foreground pixels. Fig. 4 shows examples when this type
of segmentation errors occur. Take the American flag in Fig. 4 (d) for example,
the white stripes are wrongly labelled because of its uncertain likelihood of white
color between foreground and background. The goal in each column (from left
to right) of this figure is to segment the American flag, the animation character
Sulley, the trademark of Starbucks and Superman’s S shield, respectively.

Therefore, we resort to the cues of confidence map IC
n , produced by the

common pattern discovery algorithm discussed in Section 3, to resolve the color
ambiguity. Specifically, we exploit the prior knowledge of confidence values to
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(a) (b) (c)

(d) (e) (f)

Fig. 5: Effects of locality terms. (a) input images, (b) given confidence maps, (c) pre-
liminary segmentation results, (d) GrabCut based on the preliminary results (blue
dashed circles indicate the background artifacts), (e) logarithmic distance map and (f)
segmentation with additional confidence terms.

encourage good and coherent segmentations; pixels with high confidence values
should be retained as foreground. Given c(p) as the original confidence value of
p in IC

n , we define the confidence term as

Econfidence(xp) =
{

(2xp − 1)c̃(p), c̃(p) > 0
(1− 2xp)c̃(p), otherwise.

(9)

where c̃(p) is the normalized confidence energy of pixel p in [−1, 1] by the sigmoid
function

c̃(p) = 4
(

1
1 + exp (−c(p))

− 3
4

)
. (10)

Larger c̃(p) refers to larger value of c(p), which indicates more confidence that
the pixel p belongs to common objects appearing repeatedly among an image set.
When c̃(p) > 0, p has high possibility of belonging to the foreground, and thus
the confidence term encourages the foreground (xp = 1) likelihood by adding
c̃(p) and penalizes the background (xp = 0) by subtracting c̃(p). On the other
hand, when c̃(p) ≤ 0, we subtract c̃(p) from xp = 1 and add c̃(p) to xp = 0. As
shown in Fig. 4 (d) and (e), most neglected foreground pixels could be recovered
by incorporating the confidence term.

4.3 Locality term

The color, smoothness and confidence cues could usually produce good results in
most image sets. However, when there are color ambiguities between background
and foreground GMMs, or when the number of background GMMs are not large
enough to model the colors in cluttered backgrounds, incorrect segmentations in
the background often occur. We call the undesirable background segments the
“background artifacts”.
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An example is illustrated in Fig. 5. The first row displays the input image,
given correspondences map and the preliminary segmentation. Segmentation
based on color and smoothness cues is shown in Fig. 5 (d), where the back-
ground artifacts are marked as red circles. In order to remedy these background
artifacts, we introduce the locality term

Elocality(xp) = log
(

min
q∈V,c(q)>δ

dist(p, q)
)

, (11)

where dist(p, q) = ‖pp − pq‖2 is the spatial distance between any pixel pairs
(p, q), δ controls the threshold for candidates of the reference pixel q and σ is a
parameter (typically σ = 20). We use the locality term to impose the distance
penalty on pixels that are away from those with confidence values higher than
δ. The further a pixel p is away from the reference pixel q, the less possible p
belongs to the foreground. The locality term, from this perspective, is helpful to
remove the background artifacts that have similar colors as foreground pixels.
Fig. 5 (e) and (f) display the logarithmic distance maps and segmentation results
incorporating the locality term, respectively.

5 Experimental Results

In this section, we discuss the experiments for evaluating the performance of
the proposed method. Qualitative and quantitative analysis of the proposed
approach are presented. We used the min-cut algorithm [10] to minimize the
energy function E(X). Throughout the following experiments, ε and d in [11]
were set to be 2000 and 20, and K for the color models was fixed at 5. Parameters
λcolor = 1 and λsmoothness = 40 were set for the proposed Gibbs model, while the
choices of λconfidence and λlocality were user-specified.

Comparison with cosegmentation. We firstly compare the proposed method
with state-of-the-art cosegmentation [9]. Because the cosegmentation algorithm [9]
considers only two input images, the proposed method was evaluated using only
two images for fairness. In addition, [9] takes a large memory storage of additional
nodes, hence the segmentation errors for [9] were reported on lower-resolution
images while those were reported on full-resolution images for the proposed
method. Although [9] was introduced for automatically extracting common fore-
ground from two images, it requires manually labelling of RGB intensities for
foreground and background. Our method, on the other hand, performs an auto-
matic preliminary labelling from the results of the common pattern discovery.

The segmentation errors, i.e., the percentage of wrongly labelled pixels with
respect to the whole image, were presented for five image sets as shown in Fig. 7.
We also performed GrabCut [1] on each image pair as a baseline algorithm. As
shown in the 3rd and 4th columns, GrabCut and [9] could extract the objects of
interest, but suffer from the problem of color ambiguity: similar colors between
foreground and background pixels. Note that in the last example, Leaning Tower
of Pisa, the tower exhibits different colors because of different illumination. [9]
fails to extract all correct foreground pixels, while our method, shown in the
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Fig. 6: The first row shows an input image set and the second row shows corresponding
segmentation obtained by our method. Segmentation errors are shown as percentages
and marked as red colors in the segmentation results.

5th column, utilized the confidence term to retain correct foreground pixels and
the locality term to remove mislabelled pixels in the background. Foreground
misses and background artifacts can be thus considerably reduced. Our method
in these image sets produces nearly perfect results as groundtruths with very
low segmentation errors. Results on more image sets will be presented shortly.

Comparison with the fundamental model. For image sets containing
more than two images, we compare the performance between the proposed ap-
proach and the fundamental model used in [1]. The datasets1 were collected from
Flickr with moderate variations in illumination and scale. Groundtruths were
manually labelled. Averaged segmentation errors of each dataset were presented
in Table 1. The results show that good segmentation for concurrent objects can
still be obtained using our method, although each dataset contains more than
two images. The fundamental model used in [1] considers only color and smooth-

1 The dataset is available at http://imp.iis.sinica.edu.tw/ivclab/research/

coseg/.



MOMI-Cosegmentation 361

Table 1: Comparison between the fundamental model (FM) used in [1] and the pro-
posed MOMI-cosegmentation (MOMI-CS). Each method is evaluated by averaging the
segmentation errors across the 12 datasets.

set(#img) sulley(3) starbucks(3) magnet(4) flag(6) pisa(6) superman(7)

FM 20.50 2.68 22.56 7.71 17.88 18.62
MOMI-CS 5.71 0.41 1.20 0.79 3.01 1.38

set(#img) domino(6) heineken(8) warcraft(6) kfc(6) lego(4) pringles(8)

FM 26.65 18.47 26.65 35.21 43.52 15.24
MOMI-CS 2.46 1.25 2.63 6.78 1.08 4.17

ness cues, therefore produces worse results when similar colors appear in both
foreground and background, as shown in the third column of Fig. 7. The pro-
posed method achieved an average of 2.57% segmentation errors across the 12
image sets.

Besides rigid objects, we also evaluated the proposed method on some de-
formable objects. Both qualitative and quantitative results are shown in Fig. 6.
Note that some objects of the same class may appear in heterogeneous circum-
stances, e.g., the second image in sulley is from animation while the others are
real models. Similar circumstances could be found in the 4th image (from left to
right) in flag and the 1st image in pisa. Moreover, some images are very challeng-
ing because of their cluttered backgrounds. The proposed method is capable of
successfully segment the shared objects, and produced satisfactory results with
less than 6% averaged segmentation errors in these mega-pixel images.

6 Conclusion

In this paper, we proposed a new cosegmentation approach called MOMI-coseg-
mentation, which is more general and scalable in many aspects. Compared to
conventional cosegmentation methods, the proposed approach can deal with
more than two input images, and allow multiple objects to appear more than
one time in an image. Although the domain of searching the common objects in
multiple images is computationally prohibitive, we combined color, smoothness,
confidence and locality cues and incorporated a common pattern discovery algo-
rithm to achieve satisfactory segmentation. Foreground misses and background
artifacts can be efficiently reduced using our method. In addition, label initial-
ization and segmentation process are automatic in MOMI-cosegmentation. The
experiments have demonstrated that the performance of the proposed method
outperforms state-of-the-art cosegmentation method [9].
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Fig. 7: Five examples of image pairs. Each column (from left to right) shows the input
image pairs, groundtruth, GrabCut [1] results, cosegmentation [9] results and results
of our method, respectively. (Errors are denoted as the percentages.)


