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Multiple Kernel Fuzzy Clustering
Hsin-Chien Huang, Yung-Yu Chuang, Member, IEEE, and Chu-Song Chen, Member, IEEE

Abstract—While fuzzy c-means is a popular soft-clustering
method, its effectiveness is largely limited to spherical clusters.
By applying kernel tricks, the kernel fuzzy c-means algorithm at-
tempts to address this problem by mapping data with nonlinear
relationships to appropriate feature spaces. Kernel combination,
or selection, is crucial for effective kernel clustering. Unfortu-
nately, for most applications, it is uneasy to find the right com-
bination. We propose a multiple kernel fuzzy c-means (MKFC)
algorithm that extends the fuzzy c-means algorithm with a multi-
ple kernel-learning setting. By incorporating multiple kernels and
automatically adjusting the kernel weights, MKFC is more im-
mune to ineffective kernels and irrelevant features. This makes the
choice of kernels less crucial. In addition, we show multiple kernel
k-means to be a special case of MKFC. Experiments on both syn-
thetic and real-world data demonstrate the effectiveness of the
proposed MKFC algorithm.

Index Terms—Clustering, fuzzy c-means (FCM), multiple kernel
learning, soft clustering.

I. INTRODUCTION

C LUSTERING is an unsupervised method to divide data
into disjoint subsets with high intracluster similarity and

low intercluster similarity. Over the past decades, many clus-
tering algorithms have been proposed, including k-means clus-
tering [1], mixture models [1], spectral clustering [2], locality-
sensitive hashing [3], and maximum margin clustering [4], [5].
Most of these approaches perform hard clustering, i.e., they
assign each item to a single cluster. This works well when clus-
tering compact and well-separated groups of data, but in many
real-world situations, clusters overlap. Thus, for items that be-
long to two or more clusters, it may be more appropriate to
assign them with gradual memberships to avoid coarse-grained
assignments of data [6]. This class of clustering methods is
called soft- or fuzzy-clustering.
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Fuzzy c-means (FCM) [7], [8] is one of the most promising
fuzzy clustering methods. In most cases, it is more flexible than
the corresponding hard-clustering algorithms. Unfortunately, as
with other clustering methods that are based on the L2-norm dis-
tance in the observation space, it has been shown that while it is
effective for spherical clusters, it does not perform well for more
general clusters [9]. Thus, kernel-based clustering has been pro-
posed to perform clustering in a typically higher dimensional
feature space spanned by embedding maps and corresponding
kernel functions [10]. The FCM algorithm has also been ex-
tended to the kernel FCM algorithm [11], which yields better
performance. However, for such kernel-based methods, a crucial
step is the combination or selection of the best kernels among an
extensive range of possibilities. This step is often heavily influ-
enced by prior knowledge about the data and by the patterns that
we expect to discover [12]. Unfortunately, it is unclear which
kernels are more suitable for a particular task [13], [14].

The problem is aggravated for many real-world clustering
applications, in which there are multiple potentially useful cues.
For such applications, to apply kernel-based clustering, it is
often necessary to aggregate features from different sources into
a single aggregated feature. However, these features are often
not equally relevant to clustering; some are irrelevant, and some
are less important than others [9]. As most clustering methods do
not embed a feature selection capability, such feature imbalances
often necessitate an additional process of feature selection, or
feature fusion, before clustering.

Instead of a single fixed kernel, multiple kernels may be used.
Recent developments in multiple kernel learning have shown
that the construction of a kernel from a number of basis kernels
allows for more flexible encoding of domain knowledge from
different sources or cues. However, as observed by Zhao et al.,
previous multiple kernel-learning approaches have focused on
supervised and semisupervised learning [13]. A notable excep-
tion is their work on multiple kernel maximum margin cluster-
ing [13], which is designed for hard clustering.

We here extend the multiple kernel-learning paradigm to
fuzzy clustering. The proposed multiple kernel fuzzy c-means
(MKFC) algorithm simultaneously finds the best degrees of
membership and the optimal kernel weights for a nonnegative
combination of a set of kernels. We also embed the feature
weight computation into the clustering procedure. The incor-
poration of multiple kernels and the automatic adjustment of
kernel weights renders MKFC more immune to unreliable fea-
tures or kernels. It also makes combining kernels more practical,
since appropriate weights are assigned automatically. Effective
kernels or features tend to contribute more to the clustering
and, therefore, improve results. Compared with the work of
Zhao et al. [13], our approach provides the following advan-
tages. First, our method does not require explicit evaluation in
the feature space but conducts only kernel-based evaluations.
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Thus, our method is more suitable for relational data than their
method. Second, MKFC is easy to implement. As mentioned by
Zhao et al. [13], their formulation leads to a nonconvex integer
optimization problem, which is much more difficult to solve. Fi-
nally, MKFC yields fuzzy (soft) clustering results that are more
appropriate when clusters have significant overlap.

The rest of this paper is organized as follows. In Section II,
we discuss related work, and in Section III, we review the FCM
algorithm. We derive the MKFC method in Section IV, and we
present experiments on both synthetic and real data in Section V.
We conclude this paper in Section VI.

II. RELATED WORK

In the FCM algorithm, a data item may belong to more than
one cluster with different degrees of membership. The algo-
rithm was first developed by Dunn [7] and was later improved
by Bezdek [8]. Dave and Krishnapuram [15] analyzed several
popular robust clustering methods and established the connec-
tion between fuzzy set theory and robust statistics. Hathaway
and Bezdek [16] extended the rough-fuzzy c-means algorithm to
arbitrary (non-Euclidean) dissimilarity data. Dave and Sen [17]
proposed the fuzzy relational data clustering algorithm that
can handle datasets containing outliers and can deal with all
kinds of relational data. Parameters such as the fuzzification
degree greatly affect the performance of FCM. While Pal and
Bezdek [18] suggest that a good setting for this degree for
some applications is 2, this choice was based on empirical stud-
ies and may not be appropriate for some real datasets. Yu and
Yang [19] presented the generalized FCM algorithm, proposing
an approach for setting algorithm parameters. Krishnapuram
et al. [20] presented the fuzzy c-medoid relational clustering
algorithm, which can efficiently cluster large datasets.

The use of kernels has received considerable attention because
kernels make it possible to map data onto a high-dimensional
feature space in order to increase the representation capability
of linear machines. Genton [21] presented classes of kernels
for machine learning from a statistical perspective. As FCM
is similar to the k-means algorithm in that it uses the squared
Euclidean distance to measure similarity between prototypes
and data points, it is more effective when clustering spherical
clusters [11]. Girolami generalized the approach for a wider va-
riety of clusters when he proposed kernel-based clustering [10].
Camastra and Verri [22] presented a kernel-based clustering
algorithm that is inspired by the k-means algorithm that itera-
tively refines results using a one-class support vector machine.
Tzortzis and Likas [23] proposed a deterministic and incremen-
tal algorithm to overcome the cluster initialization problem:
Their algorithm maps data points from the input space to a
higher dimensional feature space by the use of a kernel function
and optimizes the clustering error. Later, Zhang and Chen pro-
posed the kernel-based fuzzy c-means (KFC) algorithm [11],
which allows for incomplete data as well. Shen et al. addressed
the same problem using weighted KFC for better feature selec-
tion [9]. Leski extended the FCM algorithm with insensitivity
control so that the resulting method is more robust to noise and
outliers [24]. Filippone et al. [25] contributed a survey of kernel
and spectral clustering methods. Kernel clustering methods are

the kernel versions of many classical clustering algorithms such
as k-means and self-organized map (SOM). Hathaway et al. [26]
extended kernelization to relational data clustering by propos-
ing a kernelized form of the non-Euclidean relational FCM
algorithm. Chiang and Hao [27] proposed a multiple spheres
support vector clustering algorithm based on the adaptive cell
growing model which maps data points to a high-dimensional
feature space using the desired kernel function. As mentioned
by Graves and Pedrycz [14], KFC is divided into two categories.
In the first category, prototypes reside in the feature space and
are implicitly mapped to the kernel space by the use of a kernel
function, whereas in the second category, prototypes are directly
constructed in the kernel space, which allows more freedom for
prototypes in the feature space.

Our method is related to multiple kernel learning. For ker-
nel methods, the key to success is the formation of a suitable
kernel function [13]. However, a single kernel that is selected
from a predefined group is sometimes insufficient to represent
the data. Different features that are chosen for data can result in
different similarity measures corresponding to distinct kernels.
The combination of multiple kernels from a set of basis kernels
has, therefore, gained acceptance as a way to refine the results
of single kernel learning. Multiple kernel learning originates
from the work of Lanckriet et al. [28], which results in a convex
optimization problem for support vector machines. Bach et al.
suggested an alternative algorithm based on sequential mini-
mization optimization [29]. Efficiency issues of multiple kernel
learning were later addressed by Sonnenburg et al. using semi-
infinite linear programming [30] and by Rakotomamonjy et al.
using a two-step alternation optimization scheme [31]. Varma
and Babu studied superlinear combinations of kernels [32], and
Gonen et al. studied local combinations of kernels [33]. Frigui
and Hwang [34] proposed a semisupervised algorithm that clus-
ters and aggregates relational data (SS-CARD): This algorithm
not only partitions the data into meaningful clusters but aggre-
gates pairwise distances from multiple relational matrices and
learns a relevance weight for each matrix in each cluster as well.
However, most effort along this direction has been spent on su-
pervised learning, in particular, support vector classification and
regression. An exception to extend multiple kernels to unsuper-
vised learning, hard clustering, in particular, is the work of Zhao
et al. [13], which is based on maximum margin clustering. Our
work aims to extend multiple kernels to soft clustering.

III. FUZZY C-MEANS

In this section, we briefly review the FCM algorithm and its
derivation. Given the number of clusters C and a set of data
X containing Nl-dimensional vectors xi , the FCM algorithm
outputs the degrees of membership uic , i.e., the possibility that
data xi belong to the c-th cluster, by minimizing the following
objective function:

J(U,V) =
N∑

i=1

C∑

c=1

um
ic d2(xi ,vc)

subject to
C∑

c=1

uic = 1 ∀i
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and uic ≥ 0 ∀i, c

and
N∑

i=1

uic > 0 ∀c (1)

where m is the fuzzification degree, which should be larger
than 1; d(·, ·) is the Euclidean distance; vc is the center of the
cth cluster; U = [uic ]i=1. .N ,c=1. .C is an N × C membership
matrix whose elements are the degrees of membership; and V =
[v1v2 · · ·vC ] is an l × C matrix whose columns correspond to
cluster centers. In the FCM algorithm, we solve the previous
constrained optimization problem using Lagrange multipliers:

Jλ(U,V) =
N∑

i=1

C∑

c=1

um
ic d2(xi ,vc) + λ

(
C∑

c=1

uic − 1

)
. (2)

The problem is solved by iteratively updating degrees of mem-
bership with fixed centers and updating centers with fixed de-
grees of membership. The closed-form formulas for updates are
derived by taking the partial derivatives with respect to both and
setting them to zero:

uic =
1

∑C
c ′=1

(
d(x i ,vc )
d(x i ,vc ′ )

) 2
m −1

(3)

and

vc =
∑N

i=1 um
ic xi∑N

i=1 um
ic

. (4)

One thing to note is that although we do not add any La-
grange multiplier for the nonnegative constraints in (1), it can
be verified that the aforementioned formula implicitly satisfies
constraints such as uic ≥ 0∀i, c. In addition, when m is very
close to 1, the FCM algorithm degenerates to the k-means algo-
rithm. Algorithm 1 summarizes the FCM algorithm.

IV. MULTIPLE KERNEL FUZZY C-MEANS

A. Objective Function

To discover nonlinear relationships among data, kernel meth-
ods use embedding mappings that map features of the data to
new feature spaces [12]. Consider a set of M such mappings, i.e.,
Φ = {φ1 , φ2 , · · · , φM }. Each mapping φk recodes the l-d data

x as a vector φk (x) in its feature space whose dimensionality is
Lk . Let {κ1 , κ2 , . . . , κM } be the Mercer kernels corresponding
to these implicit mappings, respectively

κk (xi ,xj ) = φk (xi)T φk (xj ).

To combine these kernels, as well as to ensure that the re-
sulted kernel still satisfies Mercer’s condition, we consider a
nonnegative combination of these feature maps, φ′, i.e.,

φ′(x) =
M∑

k=1

ωkφk (x), with ωk ≥ 0.

Unfortunately, as these implicit mappings do not necessarily
have the same dimensionality, such a linear combination may
be impossible. Hence, we construct a new set of independent
mappings Ψ = {ψ1 , ψ2 , . . . , ψM } from the original mappings
Φ as

ψ1(x)=

⎡

⎢⎢⎣

φ1(x)
0
...
0

⎤

⎥⎥⎦ , ψ2(x)=

⎡

⎢⎢⎣

0
φ2(x)

...
0

⎤

⎥⎥⎦ , . . . , ψM (x)=

⎡

⎢⎢⎣

0
0
...

φM (x)

⎤

⎥⎥⎦ .

Each of these constructed mappings converts x into an L-d
vector, where L =

∑M
k=1 Lk . Note that it is possible that some

feature spaces have infinite dimensionalities. In such cases, we
can always interlace the dimensions of these features so that
they still form a set of orthogonal bases. However, as we later
eliminate evaluation in the feature space, this will not matter. To
construct new mappings this way ensures that the feature spaces
of these mappings have the same dimensionality, and their linear
combination can be well defined. In addition, these mappings
form a new set of orthogonal bases since

ψk (xi)T ψk (xj ) = κk (xi ,xj )

ψk (xi)T ψk ′(xj ) = 0, if k �= k′.

As such orthogonal bases prevent cross terms between different
implicit mappings, we can focus on the inner product of data
of the same mapping that can be well evaluated by the original
kernel functions. We seek to find ψ(x) =

∑M
k=1 ωkψk (x), i.e.,

a nonnegative linear expansion of the bases in Ψ, which maps
data to an implicit feature space. Thus, the objective function
becomes

J(w,U,V) =
N∑

i=1

C∑

c=1

um
ic (ψ(xi) − vc)

T (ψ(xi) − vc) (5)

ψ(x) = ω1ψ1(x) + ω2ψ2(x) + · · · + ωM ψM (x)

subject to ω1 + ω2 + · · · + ωM = 1 (6)

and ωk ≥ 0 ∀k (7)

and
C∑

c=1

uic = 1 ∀i (8)

and uic ≥ 0 ∀i, c

and
N∑

i=1

uic > 0 ∀c (9)
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where vc is the center of the cth cluster in the implicit fea-
ture space, w = (ω1 , ω2 , . . . , ωM )T is a vector consisting of
weights, U is an N × C membership matrix whose elements
are the memberships uic , and V is an L × C matrix whose
columns correspond to cluster centers.

B. Optimizing Memberships

The goal of MKFC is to simultaneously find combination
weights w, memberships U, and cluster centers V, which min-
imize the objective function in (5). However, direct evaluation
of the cluster centers may not be possible because they are
in the implicit feature space; we show later that their asso-
ciated computation can be replaced by the kernel trick. Sim-
ilar to FCM, we first fix the weights and cluster centers to
find the optimal memberships. For brevity, we use Dic to de-
note the distance between data xi and cluster center vc , i.e.,
D2

ic = (ψ(xi) − vc)
T (ψ(xi) − vc). Thus, (5) can be written

as

J(w,U,V) =
N∑

i=1

C∑

c=1

um
ic D2

ic . (10)

When the weights and cluster centers are fixed, the distances are
constants. Similar to FCM [see (2)], by forming an energy func-
tion with Lagrange multiplier λ for the constraint

∑C
c=1 uic = 1,

we have

Jλ(U,V) =
N∑

i=1

C∑

c=1

um
ic D2

ic + λ

(
C∑

c=1

uic − 1

)
.

Next, we take its derivatives with respect to the memberships
and set them to zero; for each membership uic , we have

∂Jλ
∂uic

= mD2
icu

m−1
ic + λ = 0.

The solution for uic is

uic =
(
−λ

m

) 1
m −1 1

D
2/(m−1)
ic

.

Because of the constraint
∑C

c=1 uic = 1, we can eliminate λ and
obtain the closed-form solution for the optimal memberships as

uic =
1

∑C
c ′=1

(
D 2

i c

D 2
i c ′

) 1
m −1

. (11)

C. Optimizing Weights

From (11), it can be seen that when the weights w and cluster
centersV are fixed, the optimal membershipsU can be obtained.
Now, let us assume that the memberships are fixed. We seek to
derive the optimal centers and weights to combine the kernels.
By taking the derivative of J(w,U,V) in (5) with respect to
vc and setting it to zero, we have

∂J(w,U,V)
∂vc

= −2
N∑

i=1

um
ic (ψ(xi) − vc) = 0.

Hence, when U are given, the optimal vc is the following closed-
form solution represented by the combination weights

vc =
∑N

i=1 um
ic ψ(xi)∑N

i=1 um
ic

=
N∑

i=1

ûicψ(xi) (12)

where ûic = um
i c∑N

i = 1
um

i c

is the normalized membership. How-

ever, these cluster centers are in the kernel-defined feature space
which might be implicit or even have an infinite dimensional-
ity. Therefore, it may be impossible to directly evaluate these
centers. Fortunately, for clustering, it is often sufficient to just
obtain the memberships; we later show that it is possible to
obtain memberships and weights without implicitly evaluating
cluster centers. Thus, we focus on finding optimal weights for
fixed memberships when the cluster centers are the closed-form
optimal solution [see (12)]

D2
ic = (ψ(xi) − vc)

T (ψ(xi) − vc)

= ψ(xi)T ψ(xi) − 2ψ(xi)T

⎛

⎝
N∑

j=1

ûjcψ(xj )

⎞

⎠

+

⎛

⎝
N∑

j=1

ûjcψ(xj )

⎞

⎠
T ⎛

⎝
N∑

j ′=1

ûj ′cψ(xj ′)

⎞

⎠

=
M∑

k=1

ω2
kκk (xi ,xi) − 2

N∑

j=1

M∑

k=1

ûjcω
2
kκk (xi ,xj )

+
N∑

j=1

N∑

j ′=1

M∑

k=1

ûjc ûj ′cω
2
kκk (xj ,xj ′). (13)

Since memberships are fixed and kernel functions can be eval-
uated, (13) can be rearranged as

D2
ic =

M∑

k=1

αickω2
k (14)

where the coefficient αick can be written as

αick =κk (xi ,xi) − 2
N∑

j=1

ûjcκk (xi ,xj )

+
N∑

j=1

N∑

j ′=1

ûjc ûj ′cκk (xj ,xj ′). (15)

Note that we have eliminated cluster centers from the evalu-
ation. Thus, the objective function in (10) becomes

J(w,U) =
N∑

i=1

C∑

c=1

um
ic

M∑

k=1

αickω2
k

subject to ω1 + ω2 + · · · + ωM = 1

and ωk ≥ 0 ∀k

and
C∑

c=1

uic = 1 ∀i

and uic ≥ 0 ∀i, c. (16)
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When memberships are fixed, we have

J(w) =
M∑

k=1

βkω2
k

subject to ω1 + ω2 + · · · + ωM = 1

and ωk ≥ 0 ∀k (17)

where the coefficient βk is

βk =
N∑

i=1

C∑

c=1

um
ic αick . (18)

This is a constrained optimization problem. By introducing a
Lagrange multiplier, we have

Jλ(w, λ) =
M∑

k=1

βkω2
k − 2λ

(
M∑

k=1

ωk − 1

)
.

Note that for now, we ignore the constraint that weights must be
nonnegative. Later, we show that it is satisfied in our solution.
By taking the partial derivatives and setting them to zero, we
have

∂Jλ
∂ωk

= 2βkωk − 2λ = 0.

The solution for the aforementioned equation is ωk = λ
βk

. In
addition, we know that

M∑

k=1

ωk =
(

1
β1

+
1
β2

+ · · · + 1
βM

)
λ = 1.

Thus, we have

λ =
1

1
β1

+ 1
β2

+ · · · + 1
βM

and the weight is the harmonic mean

ωk =
1

βk

1
β1

+ 1
β2

+ · · · + 1
βM

. (19)

Previously, we have derived the alternative optimizations of
memberships and kernel combination weights. However, the
derivations are based only on the equality constraints [see (6)
and (8)] and do not take into account the inequality constraint,
i.e., the memberships and weights should not be negative [see (7)
and (9)]. Since it is easy to verify that the derived memberships
[see (11)] always satisfy uic ≥ 0 and

∑N
i=1 uic > 0 ∀c, we show

that the solution of the combination weights also satisfies the
non-negative constraint, i.e., ωk ≥ 0. We first show that βk ≥ 0
for all k. By definition, D2

ic should always be nonnegative for
all weights, i.e., ∀ωk ,D2

ic =
∑M

k=1 αickω2
k ≥ 0. Thus, we can

conclude that ∀ωk , αick ≥ 0. Otherwise, if αick ′ < 0 for some
k′, we can let ωk ′ = 1 and ωk = 0 if k �= k′. However, this set
of weight assignments means that D2

ic < 0, which contradicts

its nonnegative property. Therefore, since both αick and uic are
nonnegative, from (18), we conclude that βk ≥ 0. Finally, since
ωk ’s are harmonic means of nonnegative βk ’s as shown in (19),
they are also nonnegative. Thus, even though we do not initially
take into account the nonnegative constraint, the solution that
we obtain automatically satisfies this constraint.

D. Algorithm

We start from the objective function involving cluster cen-
ters, memberships, and kernel weights. We show that the cluster
centers can be eliminated from the objective function so that we
do not need to implicitly evaluate cluster centers, which are po-
tentially not computable. Algorithm 2 summarizes the MKFC
algorithm, which starts by initializing a random membership
matrix satisfying nonnegative and unity constraints. Optimal
weights are calculated by fixing the memberships, and optimal
memberships are updated assuming fixed weights. The process
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TABLE I
SUMMARY OF THE DATASETS USED IN THE EXPERIMENTS

is repeated until the amount of change per iteration in the mem-
bership matrix falls below a given threshold. The computational
complexity of MKFC is O(N 2CM) per iteration, excluding
construction of the kernel matrices.

E. Multiple Kernel K-Means: A Special Case of Multiple Kernel
Fuzzy c-Means

The proposed MKFC method can be viewed as a multiple
kernel extension of k-means, which is the most widely used
clustering algorithm. The argument is similar to that for k-means
being a special case of FCM.

Consider (11) when m approaches 1. If there exists any cluster
c′ such that Dic ′ < Dic , then the denominator approaches ∞.
On the other hand, if Dic is the smallest among all Dic ′ , the
denominator approaches zero, i.e.,

uic =
{

0, if there exists c′ such that Dic ′ < Dic

1, otherwise.

Since uic is either 1 or 0 as determined by the nearest center,
MKFC reduces to hard clustering. We here refer to the resultant
hard-clustering version of MKFC (when m is very close to 1)
as multiple kernel k-means (MKKM). MKKM is depicted in
Algorithm 3. To the best of our knowledge, there is no previous
study that has extended k-means to MKKM.

V. EXPERIMENTS

We begin this section by reviewing the measures that we have
adopted to evaluate and compare the clustering results (see Sec-
tion V-A), after which we discuss the issue of the base kernel
selection (see Section V-B). We conclude the section with a pre-
sentation of experiments on synthetic data (see Section V-C), a
number of real datasets from the University of California, Irvine
(UCI) machine learning repository [35] (see Section V-D),
two well-known face databases from ORL [36] and CMU-
PIE [37] (see Section V-E), and two well-known text datasets
from 20 Newsgroups and Reuters-21578 (see Section V-F).

For each set of experiments, we describe the datasets, the
experimental settings, the choice of kernels, the experimental
results, and comparisons with other methods.

These datasets are summarized in Table I. For all experiments,
we set the fuzzification degree m to 1.08 and the stop threshold
ε as 0.0001. Since the focus of this paper is not the estimation
of the number of clusters, we set as the ground truth for all
methods the number of clusters C. Because the performance
of these clustering methods depends on the initial values, we
performed 50 runs for each experiment and report the average.
We compare the proposed method (MKFC) and MKKM with
k-means (Kmean), FCM, and single-KFC.

A. Performance Measures

The FCM-based soft-clustering algorithms (i.e., FCM, KFC,
and MKFC) that are described in this paper generate an N × C
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matrix U = [uic ]i=1. .N ,c=1. .C whose elements uic ∈ [0, 1] are
the membership degrees, the possibility that data xi belongs to
the cth cluster. These membership degrees make it possible for
us to measure the performance of these algorithms using either
hard-clustering measures or soft-clustering measures.

Hard-Clustering Measures: Most clustering measures are de-
signed for the evaluation of the results of hard clustering, in
which each data item is assigned to a single class. To use this kind
of measure for soft clustering, one must convert the membership
degrees to hard assignments. We take the conventional approach
for such assignments, i.e., we assign each data item to the cluster
with the highest membership degree. Hard-clusterings measures
can be roughly categorized into pair-counting-based measures
(e.g., Rand index (RI) and adjusted Rand index (ARI) [38]), set-
matching-based measures (e.g., H criterion), and information-
theoretic-based measures (e.g., mutual information and normal-
ized mutual information (NMI) [39]).

While there are studies that evaluate these clustering mea-
sures, there is currently no definite answer as to which measure
is best. Vinh et al. [40] reported that some popular measures
do not facilitate informative clustering comparisons because
they either do not have a predetermined range or do not have a
constant baseline value. For these measures, a poor clustering
could yield a very high performance index, especially with a
large number of clusters. They suggest the ARI as a faithful
measure that does not have these drawbacks. However, Wu et
al. [41] reported that when clustering performances are hard to
distinguish, we may still want to use the normalized variation
of information, i.e., NMI. For fair comparisons, this paper uses
both NMI and ARI as hard-clustering measures.

The goal of NMI [39] is to compare two hard partitions (R
and Q) of a dataset X with N objects. Assume that R and Q
have I and J clusters, respectively. The probability P (i) that a
randomly selected object from X falls into cluster Ri of partition
R is

P (i) =
|Ri |
N

.

The entropy H (R) associated with R is then defined as

H (R) = −
I∑

i=1

P (i) log P (i) .

Let P (i, j) denote the probability that an object belongs to
cluster Ri in R and cluster Qj in Q:

P (i, j) =
|Ri ∩ Qj |

N
.

The NMI between the two hard partitions R and Q can then be
defined as

NMI (R,Q) =

∑I
i=1

∑J
j=1 P (i, j) log P (i,j )

P (i)P (j )√
H (R)H (Q)

. (20)

In describing the formula for ARI, we start with the definitions
of the following quantities:

a number of pairs of data objects belonging to the same class
in R and to the same cluster in Q;

b number of pairs of data objects belonging to the same class
in R and to different clusters in Q;

c number of pairs of data objects belonging to different
classes in R and to the same cluster in Q;

d number of pairs of data objects belonging to different
classes in R and to different clusters in Q.

The RI is then defined as

RI =
a + d

a + b + c + d

and the ARI is

ARI =
a − (a+b)(a+c)

a+b+c+d

(a+b)+(a+c)
2 − (a+b)(a+c)

a+b+c+d

. (21)

By measuring the ARI between the clustering results and the
ground-truth clustering, we can evaluate the clustering perfor-
mance for each method.

Soft-Clustering Measures: As pointed out by Campello [42],
the casting of soft clusterings to hard clusterings often fails to
faithfully reflect the performance of soft-clustering algorithms.
For example, different fuzzy partitions (with potentially widely
divergent spatial distributions) may result in the same crisp parti-
tion; accordingly, both will have the same hard-clustering mea-
sure. This loss of information, caused by the disposal of the
fuzzy membership values, makes the hard clustering measures
unable to discriminate between overlapped and nonoverlapped
clusters. As such, these hard-clustering measures might not be
appropriate for the assessment of fuzzy clustering algorithms.
To get around these drawbacks, Campello proposed a fuzzy ex-
tension of the RI and other related indexes [42]. The extended
index is obtained by first rewriting the formulation of the RI in
a fully equivalent form using basic concepts from set theory.
Given two membership matrices (U1 and U2), the quantities
a, b, c, and d are redefined as follows when r and q are two soft
partitions:

a = |V ∩ Y |
b = |V ∩ Z|
c = |X ∩ Y |
d = |X ∩ Z| (22)

where V , which is defined as V (j1 , j2) = sk
i=1t (rij1 , rij2 ),

is the set of pairs of data objects belonging to the
same class in U1 ; X , which is defined as X (j1 , j2) =
si1 ,i2 ∈[1,k ]|i1 �=i2 t (ri1 j1 , ri2 j2 ), is the set of pairs of data ob-
jects belonging to different classes in U1 ; Y , which is defined as
Y (j1 , j2) = sv

l=1t (qlj1 , qlj2 ), is the set of pairs of data objects
belonging to the same cluster in U2 ; and Z, which is defined as
Z (j1 , j2) = sl1 ,l2 ∈[1,v ]|l1 �= l2 t (ql1 j1 , ql2 j2 ), is the set of pairs of
data objects belonging to different clusters in U2 .

Here, “t” is a t-norm that is used as a conjunction to imple-
ment the connective “and” of the proposition: We use the “min”
operator as a t-norm. Likewise, “s” is a co-norm that is used as a
disjunction to implement the connective “or” of the proposition:
We use the “max” operator as a co-norm. Since the cardinality
of a fuzzy set is given by the sum of its membership values, we
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rewrite (22) as

a = |V ∩ Y | =
N∑

j2 =2

j2 −1∑

j1 =1

t (V (j1 , j2) , Y (j1 , j2))

b = |V ∩ Z| =
N∑

j2 =2

j2 −1∑

j1 =1

t (V (j1 , j2) , Z (j1 , j2))

c = |X ∩ Y | =
N∑

j2 =2

j2 −1∑

j1 =1

t (X (j1 , j2) , Y (j1 , j2))

d = |X ∩ Z| =
N∑

j2 =2

j2 −1∑

j1 =1

t (X (j1 , j2) , Z (j1 , j2)) .

Plugging the aforementioned quantities into (21) yields ex-
tended ARI (EARI), i.e., the fuzzy extension to ARI. As we are
not aware of any soft extension for NMI, for the soft-clustering
measure, we use only EARI. In the following experiments, we
use NMI, ARI, and EARI to compare algorithms.

B. Selection of Base Kernels

Kernels are often used to address the problems of ineffective
features and similarity measures. Features can be ineffective
for two possible reasons. First, the data could exhibit nonlinear
relationships. For better modeling, kernel functions define the
similarity of data in a more appropriate feature space. Second,
the provided feature vectors may not faithfully reflect the intrin-
sic properties of the data, and thus, the resulting similarities will
not reflect the actual similarities between data items.

As kernel functions are essentially similarity measures for
pairs of data, they can be used in many different ways, and sets
of multiple kernels can be constructed in various ways. There are
two common ways to construct kernel functions, corresponding
to the two situations mentioned previously. First, given a set of
representative vectors for data items, one can employ a num-
ber of reproducible kernel functions in the Hilbert space for the
construction of multiple kernels. For example, we could mea-
sure the similarities between data items in different nonlinear
spaces by mapping data to these spaces with different Gaussian
kernels. For the UCI experiment, since we did not have access
to the raw data, we constructed kernels this way. Second, given
a set of raw data, different types of feature vectors can be ex-
tracted. These feature vectors often correspond to different cues
and similarities can be measured in different feature spaces. For
example, given a set of facial images for face clustering, one
could extract different types of visual features such as colors
or textures. For the face-clustering experiment, we extract three
types of features to define different similarity measures (ker-
nels). For the synthetic data, to facilitate analysis, we treat each
dimension as a feature. This allows for intuitive interpretation
of the experimental results.

In summary, the guideline to select base kernels is to use
kernels (features) that are known to be effective in related prob-
lems. For example, Gaussian kernels are known to be effective
in many classification problems, and local binary pattern (LBP)
is a popular feature in face image applications. In principle,

the more the kernels (features) are used, the better the perfor-
mance will be. We are still, however, limited by computational
resources and the algorithm’s tolerance to bad kernels.

C. Synthetic Data

We first evaluate MKFC on synthetic data because we know
the correct answers for this case. Our primary goal is to show
that because the proposed method assigns proper weights to
kernels, it is less vulnerable to irrelevant or ineffective features
or kernels. For this purpose, we synthesize l-dimensional vec-
tors and treat each dimension as a feature. Given a pair of data
xi , xj , which are l-dimensional vectors, each of its dimensions
xir(r=1···l) is taken as a scalar feature, and a kernel function
κ(·, ·) in 1-D space is used to measure the similarity between
xir and xjr . In this way, l kernels (similarities) can be obtained
for each of the data pair xi , xj . Two sets of synthetic data were
generated as follows. For the first one, Equal, we synthesized
eight groups of 10-D data, with 20 data points in each group.
We made these groups well separated by sampling eight points,
whose coordinates are uniformly sampled along each dimen-
sion. These eight points were then used as centers of Gaussians
with the same width. For each Gaussian, 20 points were drawn.
For this setup, it is reasonable to assume that each dimension has
a roughly equal capability to separate the eight groups. A similar
procedure was used for the second set, Variant. The only differ-
ence lies in the widths of the Gaussians. In Equal, we used the
same width in each dimension, but in Variant, the widths were
increased with the dimension index. Therefore, there was more
overlap in Variant data in the dimensions with higher indexes.

Accordingly, we use a Gaussian kernel for each dimension:

κr (xir ,xjr ) = exp(−‖xir − xjr‖2/σ).

To choose σ, let the minimal value allowed for the Gaussian
kernel over the dataset be γ. We then obtain the corresponding
σ as

σ = mini,j (−‖xir − xjr‖2/log(γ)).

We set γ to 0.005. Fig. 1(a) illustrates the results for the Equal
experiment. The x-axis is for the NMI index values. Each row
shows the NMI value distribution over runs for a method. From
left to right, the three green points of each row are sequen-
tially the minimal, mean, and maximal NMI values among the
runs. Thirteen methods are compared: k-means (Kmean), FCM,
MKFC, and ten KFC methods. In the synthetic-data experi-
ment, k-means and FCM use ten-dimensional feature vectors,
but each of the KFC methods uses only one dimension as the
feature. Hence, we expect k-means and FCM to outperform
each KFC, since the latter method uses incomplete data. As our
MKFC method uses a weighted combination of these 1-D ker-
nels, we expect it to outperform single kernel-based methods.
As can be seen, although the maximal NMI value of MKFC
is the same as for Kmean and FCM, MKFC has a better mean
NMI index (i.e., 0.9521) than the other two (i.e., 0.9486 for
FCM and 0.9206 for Kmean). Note that we expect MKFC
to exhibit performance similar to that of FCM, since the fea-
tures are equally important in this synthetic dataset. The real
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Fig. 1. For the Equal experiment, (a) the results and (b) the NMI values for each step of a single run.

Fig. 2. For the Variant experiment, (a) the results and (b) the NMI values for each step of a single run.

numbers for each KFC method are the weights that are discov-
ered by MKFC. These kernel weights are all of similar magni-
tudes, which is appropriate, considering the artificial setting of
equal weights in this synthetic dataset. Note that because of the
overlap between clusters and noise, the discovered weights are
not perfectly equal. Fig. 1(b) shows the NMI values for each
MKFC iteration for the Equal experiment: It converges after
only a few iterations.

Fig. 2 shows the results for the Variant experiment. As in
the Equal experiment, k-means and FCM use ten-dimensional
vectors, each KFC uses only one dimension as the feature, and
MKFC uses a weighted combination of these ten dimensions.
Because of the experiment settings, there is more data over-
lap in the dimensions of higher indexes, i.e., for data in these
dimensions, it is more difficult to separate the eight groups.
This is evident from Fig. 2(a). We observe that the NMI value
decreases as the index of KFC increases. Accordingly, MKFC
assigns higher weights to the kernels corresponding to the di-
mensions with lower indices. For example, the weight for KFC1
is 0.23147, while the weight for KFC10 is only 0.041994. Fig. 3
shows the evolution of weights in a run. In the first iteration,

Fig. 3. Evolution of weights for the Variant experiment.

all dimensions have roughly equal weights. With each iteration,
more weight is added to the more important dimensions (those
with lower indexes). Overall, MKFC has a better NMI value
(i.e., 0.9192) than Kmean (i.e., 0.9041) and FCM (i.e., 0.9102).
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TABLE II
COMPARISONS OF DIFFERENT ALGORITHMS ON UCI DATASETS IN TERMS OF NMI

Note that in the Variant dataset, MKFC performs noticeably bet-
ter than FCM because MKFC puts more emphasis on important
features.

D. University of California, Irvine, Repository

We tested these methods on 20 datasets that are selected
from the UCI repository. For each set, only the extracted feature
vectors are available—not the raw data. Using the provided
feature vectors for data items, we employ different types of
kernel functions as bases for multiple kernel learning. These
vectors are normalized to have zero mean and unit standard
deviation. They are then substituted into the chosen kernels to
calculate pairwise distances. As mentioned in Section I, optimal
kernel choice is still an open-research topic. Here, following the
strategy of other multiple kernel-learning approaches, we select
a set of reasonable kernels that are frequently used by kernel
methods. In our experiments, we used one polynomial kernel

κk (xi ,xj ) = (θ + xT
i xj )p

with θ = 1 and p = 2, and several Gaussian kernels

κk (xi ,xj ) = exp(−(xi − xj )T (xi − xj )/σ).

Assume that the minimal value of the Gaussian kernel over the
dataset is γ. We then obtain the corresponding σ as

σ = mini,j (−(xi − xj )T (xi − xj )/log(γ)).

We vary γ over {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}
to obtain seven Gaussian kernels. Finally, we normalize the
value of each kernel function to the range of [0.0001. .1]. We
use KFC1 , . . . , KFC8 to denote KFC’s with the aforemen-
tioned eight kernels (one polynomial and seven Gaussians),
respectively.

We first use hard-clustering measures (i.e., NMI and ARI)
to compare Kmean, FCM, KFC, and MKFC. Unlike previous
settings for the synthetic data, all the methods (i.e., k-means,
FCM, KFC, and MKFC) use data with the same dimensions
(specified by the #features attribute in Table I). In Table II,
we present the average NMI values over 50 runs and the
corresponding ranks for different algorithms on the 20 UCI
datasets. The numbers in parentheses are the ranks of different
methods for each dataset. For example, MKFC ranks 1 with
an NMI of 0.909 for the dataset R1, while Kmean ranks 8
with an NMI of 0.865. The last two rows (i.e., mNMI and
mRank) of Table II display the average NMI value and the
average rank for each method over 20 datasets, respectively.
MKFC has an average NMI 0.516 and ranks the best of all
the methods in terms of average NMI (mNMI). In terms of
average rank (mRank), MKFC’s average rank is 2.85, which is
again the best of all the methods. Note that mNMI and mRank
both yield similar rankings. Table III presents the results of
different algorithms in terms of ARI. Changing the measure
from NMI to ARI does not change the rankings significantly.
Again, MKFC is the best in terms of both mARI and mRank.

It is true that MKFC is not ranked 1 for each individual dataset.
However, given the datasets, we do not know in advance which
kernel will perform better for each, and there is no single kernel
that is suitable for all of them. While kernel combination does
not yield the best performance in every single case, on average,
it yields the best overall performance. If we were to use a fixed
kernel, it would have better performance for some datasets but
perform worse in general. This suggests that combining kernels
for clustering yields better overall performance than when using
a fixed kernel. For real-world applications, we have no cues in
advance as to which kernel will work best for the given problem.
Despite it is not always ranking the first, MKFC, on average, is
the best and yields stable performance.
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TABLE III
COMPARISONS OF DIFFERENT ALGORITHMS ON UCI DATASETS IN TERMS OF ARI

Fig. 4. Average NMI of various m for the UCI experiment.

Like most fuzzy clustering algorithms, choosing the best
fuzzification degree m remains an open problem. Graves and
Pedrycz [14] had conducted a comparative study on fuzzy clus-
tering and found that different applications and clustering meth-
ods may have the best performance with different m’s, i.e., the
choice of m depends on both applications and clustering algo-
rithms. Fig. 4 shows the performance given various fuzzification
degrees m. As mentioned in the experiment setting, we set m
to 1.08 in all experiments. Note that both MKFC and FCM per-
form best around m = 1.08, and MKFC is consistently better
than FCM for all m’s. We can also see that making the clustering
a little fuzzy provides better performance than hard clustering.

We also implemented MKKM and compared it with the other
methods. MKFC performs better than MKKM in terms of both

NMI and ARI. As can be seen, the performance is still im-
proved when there is a slight softness in the clustering. This
implies that fuzzy clustering methods may be more able to han-
dle overlapping clusters than the corresponding hard ones, and a
slightly larger fuzzification degree may help improve clustering
performance.

Again, hard-clustering measures do not necessarily faithfully
reflect the performance of soft-clustering algorithms, as they
completely ignore membership degrees. As such, we also use
the soft-clustering measure EARI to compare FCM, KFC, and
MKFC. Kmean and MKKM are omitted, since they are hard-
clustering methods. The results in Table IV show that MKFC
again ranks first in this measure.

Table V shows the computation time results for averages over
50 runs as the number of iterations and the total time in seconds
of each run for the sum of eight KFCs, MKFC, and MKKM
on all real datasets, respectively. Both MKFC and MKKM use
all eight kernels, while a single KFC only uses one kernel.
To ensure a fair comparison, we report the sum of the eight
KFCs. For most cases, MKFC requires fewer iterations than the
average of the KFCs. This indicates that MKFC converges more
quickly. In terms of running time, MKFC took anywhere from
less than a second to almost a minute for the test data and was
consistently faster than the combined running time of the eight
KFCs. MKFC was a bit slower than MKKM, because MKFC
uses more iterations to compute the membership of each object,
which results in performance gains.

E. Face Clustering

We also evaluated MKFC with face clustering. The face
databases are from ORL and CMU-PIE. Fig. 5(a) and (b) shows
several sample images of a single person from the ORL and
CMU-PIE databases, respectively. The face images are all nearly



HUANG et al.: MULTIPLE KERNEL FUZZY CLUSTERING 131

TABLE IV
COMPARISON OF DIFFERENT ALGORITHMS ON UCI DATASETS IN TERMS OF EARI

TABLE V
NUMBER OF ITERATIONS AND TIME PER RUN FOR THE SUM OF EIGHT KFCS,

MKFC, AND MKKM ON ALL REAL DATASETS

frontal, those in ORL include various facial expressions, and
those in CMU PIE include variable lighting conditions. In con-
trast with the UCI datasets, for this application, we have only
the raw data. Thus, our first step is to extract features from the

image data. All images were first normalized and cropped to
88 × 88 pixels. To utilize cues from different perspectives, we
extracted three different features.

1) Eigenface [43]: After performing principal compo-
nent analysis, each face image was projected into the
eigenspace which preserves 90% of the energy of the
eigenvalues.

2) Gabor texture [44]: Each face image was filtered with 40
Gabor filters that are generated with five different scales
and eight orientations.

3) LBP [45]: We used a uniform LBP with eight neighbors
and radius 1. Thus, each face image was represented as a
256-bin histogram.

These three features are frequently used for face recognition
and represent face images from different perspectives. After ex-
tracting these three features, each feature was treated as a vector;
these vectors were substituted into the Gaussian kernel to cal-
culate pairwise distances. As with the UCI datasets, we set γ to
0.005. We denote as KFCe , KFCg , and KFCl the resulting three
different kernels from these three features (Eigenface, Gabor
texture, and LBP), respectively.

In this experiment, we compared the proposed method
(MKFC) with single-KFC and MKKM. Tables VI and VII show
the ARI, NMI, EARI, the average number of iterations and the
average total time in seconds for ORL and CMU-PIE, respec-
tively. The eigenface, Gabor, and LBP kernel weights as deter-
mined by MKFC were 0.175, 0.164, and 0.661 for ORL and
0.626, 0.157, and 0.217 for CMU-PIE. Notably, LBP was more
effective for ORL (varying facial expressions), while Eigen-
face was the best for CMU-PIE (lighting changes). MKFC
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Fig. 5. Sample images of a subject from (a) ORL and (b) CMU-PIE datasets. Note that ORL exhibits more variation in facial expressions, while CMU-PIE
exhibits various lighting conditions.

TABLE VI
COMPARISON OF DIFFERENT METHODS ON FACE DATABASE ORL IN TERMS OF

ARI, NMI, EARI, # OF ITERATIONS, AND TIME PER RUN

TABLE VII
COMPARISON OF DIFFERENT METHODS ON FACE DATABASE CMU-PIE IN

TERMS OF ARI, NMI, EARI, # OF ITERATIONS, AND TIME PER RUN

successfully combined the strengths of different features for
different datasets and outperformed all other measures for both
datasets. As with the UCI datasets, MKKM performed slightly
worse than MKFC, showing that fuzzy methods are more able
to separate overlapping data than hard methods. The combined
computation times for all three KFCs are 1.201 and 14.211 s for
ORL and CMU-PIE, respectively, while MKFC took 1.783 and
10.562 s. MKFC was, thus, comparable with the combination
of the three KFCs. However, MKFC performs feature selec-
tion automatically and provides better clustering results. MKFC
was slightly slower than MKKM but yielded better clustering
performance.

F. Text Clustering

For text clustering, we used two popular text datasets: 20
Newsgroups and Reuters-21578, which are downloaded from
[46]. Each of them is preprocessed by four steps: all-terms,
no-short, no-stop, and stemmed. We use the datasets 20ng-
test-stemmed and r8-test-stemmed to evaluate MKFC. Let D =
{d1 , . . . , dn} be the set of documents and T = {t1 , . . . , tm} the
set of distinct words occurring in D. We denote the frequency
of word t ∈ T in the document d ∈ D as tf (d, t). tf -idf is
a weighting scheme which weights the frequency of a word t
in the document d with a factor that discounts its importance
with its occurrences in the whole document collection, which is

defined as

tf -idf (d, t) = tf (d, t) × log

(
|D|

df (t)

)

where df (t) is the number of documents in which the word t
appears. Thus, the feature vector representation of a document
d is defined as

−→
td = (tf -idf (d, t1) , . . . , tf -idf (d, tm )) .

After normalizing the vectors to a unit length, we used the fol-
lowing four kernels to calculate the pairwise distances between
two documents.

1) Euclidean distance:

κed(
−→
tdi

,
−→
tdj

)=

(
m∑

t=1

|tf -idf (di, t) − tf -idf (dj , t)|2
) 1

2

.

2) Cosine similarity:

κcs(
−→
tdi

,
−→
tdj

) =
−→
tdi

· −→tdj

|−→tdi
||−→tdj

|
.

3) Jaccard coefficient:

κjc(
−→
tdi

,
−→
tdj

) =
−→
tdi

· −→tdj

|−→tdi
|2 + |−→tdj

|2 −−→
tdi

· −→tdj

.

4) Pearson correlation coefficient:

κpcc(
−→
tdi

,
−→
tdj

) =
m × (−→tdi

· −→tdj
) − TFi × TFj√

I × J

where

TFi =
m∑

t=1

tf -idf (di, t)

TFj =
m∑

t=1

tf -idf (dj , t)

I = m

m∑

t=1

tf -idf (di, t)
2 − TFi

2

J = m

m∑

t=1

tf -idf (dj , t)
2 − TFj

2 .

Finally, we normalized the value of each kernel function. We
denote as KFCed , KFCcs , KFCjc , and KFCpcc the resulting four
kernels, respectively.

Tables VIII and IX show the ARI, NMI, EARI, the aver-
age number of iterations and the average total time in seconds
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TABLE VIII
COMPARISON OF DIFFERENT METHODS ON TEXT DATASET 20 NEWSGROUPS IN

TERMS OF ARI, NMI, EARI, # OF ITERATIONS, AND TIME PER RUN

TABLE IX
COMPARISON OF DIFFERENT METHODS ON TEXT DATASET REUTERS-21578 IN

TERMS OF ARI, NMI, EARI, # OF ITERATIONS, AND TIME PER RUN

for 20 Newsgroups and Reuters-21578, respectively. The kernel
weights determined by MKFC were 0.249, 0.250, 0.248, and
0.253 for 20 Newsgroups and 0.248, 0.252, 0.247, and 0.253
for Reuters-21578, respectively. Note that documents are rep-
resented with the bag-of-word model, and these four kernels
essentially have quite similar clustering capability. Neverthe-
less, MKFC was still able to assign the weights appropriately to
improve the clustering performance.

VI. CONCLUSION

We extended the FCM algorithm to MKFC. The proposed
algorithm is easy to implement and provides soft-clustering
results that are immune to irrelevant, redundant, ineffective,
and unreliable features or kernels. Experiments show that the
method effectively incorporates multiple kernels and yields bet-
ter overall performance. These characteristics make it useful for
real-world applications. In the future, we expect to devote our
efforts to related open topics, such as strategies for setting the
fuzzification degree or choosing the basis kernels.
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