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Abstract—Conventional image copy detection research concen-
trates on finding features that are robust enough to resist various
kinds of image attacks. However, finding a globally effective fea-
ture is difficult and, in many cases, domain dependent. Instead of
simply extracting features from copyrighted images directly, we
propose a new framework called the extended feature set for de-
tecting copies of images. In our approach, virtual prior attacks are
applied to copyrighted images to generate novel features, which
serve as training data. The copy-detection problem can be solved
by learning classifiers from the training data, thus, generated. Our
approach can be integrated into existing copy detectors to further
improve their performance. Experiment results demonstrate that
the proposed approach can substantially enhance the accuracy of
copy detection.

Index Terms—Extended feature set (EFS), Gaussian mixture
model, image copy detection, ordinal measure, pattern classifica-
tion, support vector machine.

I. INTRODUCTION

ITH the growing popularity of the Internet and ad-
annces in computer technology, digital images can be
distributed ubiquitously. Since it is possible to copy, alter, and
distribute digital content easily to a large number of recipients,
maintaining intellectual property rights (IPR) in the digital
world has become an important issue. Thus, the legal owners
of digital content need a way to check whether the images
available through a third party originated from their own image
collections.

Digital watermarking was the first solution developed to
prevent the abuse of digital images. Many digital watermark
schemes, such as spectrum watermarks [9], quantization wa-
termarks [8], and blind detection watermarks [39], have been
proposed to protect digital images. A digital watermark is
basically an identification code that carries information about
the copyright owner. It can be invisible and permanently
embedded in digital data for copyright protection, ownership
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verification, and integrity verification. The effectiveness of a
watermark-based protection system depends to a large extent on
the robustness of the associated digital watermarking method
[19], [20]. However, the embedded watermark is not expected
to survive under several kinds of attacks. In practice, although
many techniques have been proposed, watermark-based frame-
works still suffer from robustness problems; consequently,
malicious users could remove a watermark via postprocessing.

Recently, the concept of content-based copy detection has
been proposed as an alternative means of identifying illegal
image copies. The idea is that, instead of hiding additional infor-
mation in an image to enable copy detection, the image itself can
be employed for the same purpose. A content-based copy detec-
tion system works as follows: given an image registered by the
owner, the system can determine whether near-replicas of the
image are available on the Internet or through an unauthorized
third party. If it is found that an image is registered (i.e., it be-
longs to a content owner), but the user does not have the right
to use it, the image will be deemed an illegal copy. The suspect
image is then sent to the content owner for further identification
and a decision about taking legal action against the user.

Content-based copy detection can be used to distinguish il-
legal copies on its own, or it can complement digital watermark
techniques. One way to combine the two methods is to employ a
copy detector to find near-replica images initially, and then ex-
tract the digital watermarks to confirm ownership.

Some researchers consider that the content-based copy de-
tection is a kind of content-based image retrieval (CBIR) [1],
[2], [13], [16], which is widely used to retrieve desired im-
ages from a large collection of images. Nevertheless, there is
a difference between content-based copy detection and CBIR.
An image copy detector searches for near-replicas of an image,
whereas CBIR not only retrieves image replicas, but also im-
ages that share the same or similar semantics. Copy detection
can, thus, be treated as a restricted case of CBIR. However, it is
not usually feasible to apply existing CBIR techniques directly
to image copy detection, since they may cause a considerable
number of false alarms. Therefore, in this paper, we focus on
copy detection techniques.

First, we review the literature on copy detection methods. To
the best of our knowledge, the work of Chang et al. [7] was the
first to study this topic. It proposed a near-replica search engine
called RIME (Replicated IMage dEtector) for detecting unau-
thorized copies of images on the Internet. The authors charac-
terized images using wavelets and C;C2C3 color space. Sub-
sequently, a clustering technique [6] was developed to improve
the efficiency of RIME. Although the method can detect slightly
modified images with a high degree of accuracy, it may have dif-
ficulty identifying seriously distorted images.
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Bhat and Nayar [4] found some defects in correlation-based
methods for measuring the distance between images. The typical
L; and L, norms are not robust when an image contains too
many outlying pixels. For this reason, they proposed the use
of ordinal measures for image matching, whereby an image is
partitioned into m X n equal-size blocks. The average value of
each block is then calculated and converted to a rank matrix,
which represents the ordinal measures and can be used for
similarity measurement. In [17], Kim showed that the use
of an ordinal measure of the DCT coefficient is more robust
for resisting image modifications and attacks, and employed
the MAP (maximum a posteriori) criterion to find an optimal
threshold.

In [21] and [37], a dynamic partial function (DPF) was
proposed for discovering a better perceptual distance function
through mining a large set of visual data. Subsequently, Meng et
al. [25] developed an enhanced DPF to solve the “one-size-fits-
all” problem in DPF. The method uses three schemes to address
the image copy detection problem, namely, a thresholding
scheme, a sampling scheme, and a weighting scheme. The
thresholding scheme allows different numbers of features to
be selected in a pairwise manner. Then, the sampling scheme
and the weighting scheme are used to substantially improve
the detection accuracy. More recently, Qamra and Chang [29]
improved the DPF scheme by introducing a locality sensitive
hashing (LSH) technique for indexing images.

The use of global image features, as introduced above, may
limit the performance of copy detection methods, since only
images that are globally similar to the query image will be re-
turned. To resolve this problem, some local region-based algo-
rithms have been proposed. For example, Amsaleg et al. [1] and
Berrani et al. [3] use local descriptors to capture the characteris-
tics of images. They compute many descriptors for each image,
where one descriptor corresponds to a region of interest in the
image. In [38], Yan ef al. propose a part-based image copy de-
tector. First, they use a difference of Gaussian (DoG) detector
to construct Gaussian pyramids and then search for scale-space
extrema (i.e., keypoints) by scanning the image over locations
and scales. The keypoints are represented as local descriptors by
using PCA-SIFT (principle components analysis on a scale-in-
variant feature transform). PCA-SIFT extracts a 41 x 41 pixel
patch at the given scale and rotates it to a canonical orienta-
tion. The patch is used to generate a compact feature vector
by PCA (principle components analysis), which is then em-
ployed to construct a distinctive local descriptor for near-dupli-
cate image matching.

Media hashing is another method of content identification
and copy detection. The technique differs from conventional
cryptographic hashing functions whose outputs change dramat-
ically, even when only one bit of input is changed. However,
images with reasonable amounts of distortion are still deemed
the same as the original image, so the required hashing function
must be less sensitive to image variations. Venkatesan et al. [33]
proposed an image hash function that converts the traditional
hash function to a valid one for copy detection. Their algo-
rithm, which uses randomized signal processing strategies to
compress images into random binary strings in a nonreversible
way, has been shown to be robust against some image changes.
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In [24], Mihcak et al. used iterative geometric techniques that
can tolerate geometric distortion in images. By so doing, their
algorithm can withstand slight geometric distortions. More
recently, Lu er al. [23] proposed a geometry-invariant image
hashing scheme that uses mesh-based hash extraction and hash
matching for similarity measurement. The proposed method
can handle geometric attacks better than conventional media
hash techniques. It is worth noting that, although media hashing
originated from cryptography, it can still be viewed as a method
of discovering a robust feature vector in an image that can
tolerate errors caused by attacks.

In this paper, we propose an approach that enhances the detec-
tion accuracy, instead of finding attack-invariant image features
only in a copyrighted image. The remainder of the paper is or-
ganized as follows. In Section II, we present the main concept
of our work. In Sections III and IV, we introduce some classi-
fiers incorporated into our framework to solve the copy-detec-
tion problem. A comparative evaluation of their respective per-
formances in terms of both detection accuracy and speed is also
given. In Section V, a detection cascade is developed to balance
the detection accuracy and time, and associated experimental
results are detailed to demonstrate its effectiveness. Finally, a
discussion and our conclusion are presented in Sections VI and
VII, respectively.

II. MAIN CONCEPT

A. Existing Frameworks

Most copy detection methods emphasize finding good image
features for copy detection. We reviewed various kinds of fea-
tures in Section I. Typically, existing approaches consist of a
registration stage and a detection stage. In the registration stage,
images are mapped into feature vectors, which are then stored
into the database. In the detection stage, the features of a test
image are extracted with the same feature-extraction procedures
used in the first stage, and then matched with those stored in
the registration stage. This is done by computing the distances
between the features of the test and the registered images in
the feature space, and then applying some thresholds to decide
whether the test image is an illegal copy.

In the above scenario, the accuracy of the copy detector de-
pends to a large extent on the robustness of the feature, and on a
suitable threshold that can balance false rejection and false ac-
ceptance rates. However, although features with possibly high
identification power have been introduced, they may not be ef-
fective under various kinds of attacks. This reflects a limitation
of existing approaches: they lack the ability to exploit useful
prior information, such as possible attack models, to boost copy
detection performance—even when such information is easy to
generate or acquire.

The limitation makes existing approaches vulnerable to mali-
cious attacks. Fig. 1(a) illustrates this phenomenon. In practice,
a feature of an attacked image, say A, can often be successfully
detected, but some others, such as B, cannot be detected if they
are far away from I in the feature space. However, increasing the
acceptance range threshold ¢ to include the attacked images B
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Fig. 1. Let I denote the feature vector of a copyrighted image, A and B be the vectors obtained by applying some attacks to the copyrighted image, and C be an
unrelated feature vector. (a) The radius of the cluster ¢ denotes the error tolerance for finding copies in the feature space. In practice, an attack on a feature, say A,
can often be successfully resisted, but attack on some other feature, such as B cannot be detected if it is far away from 7 in the feature space. However, increasing
the threshold of the acceptance range ¢ to include the attacked image B could result in a very high false-alarm rate. In this case, C could be wrongly detected as a
copyrighted image. (b) The concept of using EFS to enhance the performance of copy detection, where the gray points are the extended features generated from
prior simulated virtual attacks. The boundary between the copyrighted image and unrelated images can be defined more precisely by learning a classifier; thus, the

copy detection problem can be solved more effectively.

could result in a high false-alarm rate. In this case, an irrelevant
image C could be falsely detected as a copyrighted image.

In this paper, we propose a new method called the extended
feature set (EFS) for copy detection. By employing pattern clas-
sification techniques, the proposed approach enhances the accu-
racy of copy-detection, without significantly increasing the de-
tection time.

B. New Scenario

We use an unconventional approach that uses simulated
(or virtual) attacks as prior guidance to extract features from
a copyrighted image. This information is exploited so that
the boundary between a copyrighted image and unrelated
images can be defined more accurately. Typical virtual attacks
considered in our approach include signal-processing attacks,
geometric attacks, and image-compression attacks. By applying
the attacks to a copyrighted image, a set of novel images can
be generated. Both the copyrighted and the novel images are
processed by extracting their features, referred to as the original
and extended features, respectively. Fig. 1(b) shows the concept
of extended features in a 2-D space. By using the extended
features, we expect to solve the copy-detection problem more
effectively.

To train a classifier for copy detection, not only positive ex-
amples (which are mainly extended features), but also negative
examples are used in our approach. The latter are easy to acquire
or generate; for example, they can be collected from the Internet.
Note that a registered image can also serve as a negative example
of another registered image. Compared to approaches that iden-
tify copies based only on the distance between the input image
and the original copyrighted image in the feature space, the pro-
posed approach is more effective for copy detection. Our exper-
iment results demonstrate that it generally outperforms conven-
tional methods when the same feature space is employed.

C. Feature Space Employed

To realize the proposed framework, we have to select a fea-
ture space onto which an image can be projected. Without loss

of generality, we choose the DCT ordinal feature proposed in
[17] to build the feature space. In the past, the ordinal measure
[4] was widely adopted for applications in image/video retrieval
[36] and copy detection [17], [18]. The DCT ordinal feature is
particularly suitable for efficient image copy detection over the
Internet, since it can be applied to compressed image formats
(such as JPEG). However, a limitation of the features generated
by the ordinal measure is that they are not robust against geo-
metric attacks. We will show that our approach can effectively
boost the performance of the DCT ordinal feature by integrating
it into the EFS framework.

Note that, although we use the ordinal feature in this work,
our framework is still effective when other features are chosen.
Since our approach “increases” the number of features of a
copyrighted image by considering modified copies of it gener-
ated by simulated attacks, one may wonder whether it is similar
to extracting a large set of features (by applying various feature
extractors) directly from the copyrighted image. Basically, the
two approaches are different because the latter tries to select
a set of features that can adequately represent the original
(copyrighted) image by using multiple features. However, how
to find such a set of features that are invariant to various image
attacks remains a key question. To this end, our approach uses
different versions of an image generated from prior simulated
attacks to learn features with the necessary invariance to cope
with image manipulations.

Another distinction is that the number of extended features
in our approach can be grown almost infinitely by applying the
priori simulated attacks. It is easy to find thousands, or even
tens of thousands, of extended features for copy-detection by
using our framework. In contrast, it is hard to create the same
number of useful image features by simply applying various
feature extraction methods to a single (i.e., original) image.

In addition, our framework can be used when a set of features
is computed for an image. In this case, we can still use different
versions of an image (synthesized by mounting attacks on the
original image) to generate “even more” features by applying
the same feature extraction methods to each version; thus, it
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should be possible to learn a better copy detector. Note that the
framework proposed in this paper is independent of the selection
of feature types. It boosts copy-detection performance by using
virtual prior attacks. The use of ordinal features is just one of
the techniques used to implement our framework.

D. Learning Methods Employed and Overview of Our
Approach

We now present an overview of our approach. To learn the
copy detectors, we use three pattern classification methods: the
multivariate Gaussian, the Gaussian mixture model (GMM),
and the support vector machine (SVM). The first method simply
models positive or negative data with a Gaussian distribution.
The second models the data by a mixture of multiple Gaussian
distributions. The third maps the data into a high-dimensional
space (in our framework, a Gaussian kernel function is used)
and finds the maximum-margin separation hyperplane in that
space. The trained classifiers are then applied to test images
not seen in the training stage to evaluate the copy detection
performance.

We care about both the accuracy and speed of the copy de-
tector trained. Since it is difficult to model the exact distribu-
tion of the training data, we simply try some popular classifi-
cation methods, namely, SVM and GMM, which have proven
effective for solving many pattern classification problems. As
will be seen in Section IV-C, both methods improve the accu-
racy of the original ordinal-measure approach by substantially
increasing both the precision rate and the recall rate. However,
their classification speeds are slow because multiple evaluations
of Gaussian densities are needed, which reduces the detection
efficiency. Hence, we employ a two-stage approach that forms
a decision cascade. The first stage employs a classifier that is
not as effective as the one used in the second stage, but it is
faster for classification; and the second stage employs SVM or
GMM, which perform better in terms of classification accuracy,
but they are slower. The first-stage classifier is constructed by
the multivariate Gaussian approach, which simply assumes that
both the positive and negative training data can fit a Gaussian
distribution. Although this assumption is probably not valid in
practice, it can be employed to train a classifier that is compu-
tationally efficient.

In the following, we introduce each approach and present the
results of employing them for training image copy detectors in
our framework.

III. USING THE MULTIVARIATE GAUSSIAN CLASSIFIER

IN THE EFS FRAMEWORK

We consider the construction of an efficient classifier for
image copy detection based on the multivariate Gaussian
classifier of two classes in this section. We assume that both
the positive and negative examples correspond to Gaussian
distributions in which the probability density function is

l(:1: — )Yz — )

1
P’I"Ob(.’l?) = W exp —2
()
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where d is the feature space dimension, x is a d-dimensional
vector in the feature space, and « and ¥ denote the dx 1 mean
vector and d X d covariance matrix, respectively.

Let the positive training sample set be Dp =
{zo,21,...,2n_1}, where xzo is the feature vector of
the original copyrighted image, and zi,...,z,—1 are the
extended features generated by applying virtual prior attacks to
the image. Let p = (up,Xp) be the unknown mean vector
and covariance matrix. As suggested in [11], we estimate the

maximum-likelihood (ML) estimation of 6p by

n—1
1
o1 ) )
ip = — ; @ ©)
and
n—1
~ 1 . ot
Yp= - (z; —4) (z; — 0)". 3)
i=0

The mean vector and covariance matrix = (uy, Xy ) for the
negative training set D can be estimated in a similar manner.

We assume that the covariance matrix is diagonal (i.e., the
elements of a feature vector are statistically independent) for
fast computation. For a nondiagonal covariance matrix, the time
complexity for density evaluation in (1) is O(n?), but it is only
O(n) when the matrix is diagonal. Note that evaluating the Eu-
clidean distance in the feature space also requires O(n) com-
putations. Thus, the resulting classifier has the same time com-
plexity as that of the original ordinal-measure approach, which
finds a copy by calculating the Euclidean distance between two
vectors in the feature space. Hence, compared to the original ap-
proach we can train an effective copy detector at the expense of
only a small increase in detection time.

To determine whether an input image is a copy, the following
likelihood ratio L is used:

“

where z is the feature of the input image. The determination is
then made by a threshold 7. When L > 7, the input is deemed
a copy, otherwise it is not.

The decision threshold 7) can be determined in various ways,
such as by the Neyman-Pearson criterion [31]. Instead of simply
using a particular threshold for testing, we show the overall per-
formance under various thresholds (cf. Section III-B) to demon-
strate the effectiveness of the proposed approach.

In the following, we present the experiment results of the
EFS framework when multivariate Gaussian classifiers are
used. We first describe the common setup of our experiments
in Section III-A, and then report the experiment results in
Section III-B. Finally, in Section III-C, we propose a more
efficient detector and discuss its performance.

A. Experimental Setup

As mentioned in Section II, we use Kim’s approach [17] as
the baseline for comparison. In this approach, an input image is
divided into 8 x 8 equal-sized subimages. Only AC coefficients
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Fig. 2. PR curve for the DCT ordinal measure, EFS-multivariate-Gaussian, and prototype-replacement approaches. Note that the computation time is the same

for the ordinal and prototype-replacement approaches.

of the 8 X 8 DCT coefficients are used to form an ordinal mea-
sure. We, thus, generate a 63-dimensional image feature vector.

To build the experimental data set, we collected images from
the Corel image CDs and the Internet to form a base set of orig-
inal images. One hundred images were then randomly selected
from the base set to form a copyrighted image set, and the re-
maining images in the base set served as an irrelevant image set.
The latter was further divided into an irrelevant training image
set and an irrelevant test image set, which contained 20 000 and
15 000 images, respectively. Note that the sets of training and
test images did not overlap.

In the learning stage, each copyrighted image was manipu-
lated with seven different kinds of prior simulated image attacks,
namely, noise, blurring, sharpening, cropping, JPEG compres-
sion, rescaling, and rotation, which generated 1,679 modified
images of the original copyrighted image. The modified images
were used to produce extended features (i.e., positive examples),
and the irrelevant training images were used as negative exam-
ples.! Both types of images (i.e., positive and negative exam-
ples) were then used to train a classifier based on the multivariate
Gaussian approach introduced earlier.

B. Experimental Results for the Multivariate Gaussian
Classifier

In the testing stage, we used the one hundred copyrighted im-
ages as queries to determine how many modified versions of
them could be detected successfully. A standard benchmark,
StirMark 4.0 [27], [28], was used to generate novel test data
from the one hundred copyrighted images. The image replicas
were randomly generated by using the following 13 image at-
tacks from those listed by StirMark 4.0: Convolution filtering
(including blurring and sharpening); Cropping (into 20% ~
95% sizes); JPEG (with the quality factor ranging from 95% to
5%); Noise adding; Scaling (ranging from 30% to 300%); Ro-
tation (from 1-359 degrees); Median filtering; Affine transfor-
mation; Self-similarity (changing color space); Removing lines
(frequency from 10 to 100); PSNR (all pixels have had the same
values added, ranging from 10 to 100); Rotation+ReScaling (ro-
tation degree from —30° to 30° ); and Rotation+Cropping (ro-
tation degree from —30° to 30°).

IFor instance, for the simulated priori cropping attacks, we cropped rectan-
gular regions arbitrarily from a copyrighted image. Each region was then divided
into 8 x 8 equal-sized blocks to extract the copyrighted image’s ordinal feature.

Note that while some types of attacks (e.g., JPEG, noise
adding, scaling, rotation, cropping, and convolution filtering)
were trained in advance, some other types (e.g., affine trans-
formation, self-similarities, removing lines, PSNR, median
filtering, Rotation+ReScaling, and Rotation+Cropping) were
not used in training. Hence, in our experiments, the latter attack
types that are unseen in the training stage were included in the
testing phase to evaluate the performance of our approach. In
addition, for the pretrained types of attacks, different param-
eters were used to randomly produce new test images, so the
training and testing images were totally different.

We generated a total of 124 near-replicas for each copyrighted
image: 69 from the pretrained attacks and 55 from unseen at-
tacks; hence, there were 12 400 positive-class images in the test.
In addition to the image replicas that served as positive test data,
the irrelevant test images described in Section III-A were used
as negative test data to evaluate the false alarm rate of our ap-
proach, resulting in a total of 27 400 test images.

We use the precision and recall rates to evaluate the copy
detection performance. Let 7p be the number of relevant copies
correctly assigned to the positive class; let fp be the number of
irrelevant images incorrectly assigned to the positive class; and
let v be the number of relevant copies incorrectly rejected by
the positive class. Then, we can express the precision and recall
with r7p, fp, and r as follows:

rp
e+ fp

The results are summarized in the precision-recall (PR) curve
shown in Fig. 2. The curve marked “ordinal” was obtained
by using Kim’s DCT-ordinal-measure algorithm [17] with a
threshold that varies in the feature-space distance. The curve
marked “EFS-multivariate-Gaussian” was obtained by using the
multivariate Gaussian method with a threshold that varies in the
likelihood ratio. As can be seen, our EFS-multivariate-Gaussian
approach achieves better precision for all recall rates. Thus,
the detection accuracy can be improved by simply adopting a
classifier constructed by modeling both classes with Gaussian
distributions.

Table I shows the values of the precision/recall-breakpoint
(BEP) for both methods, where the BEP point is the point where
the precision and recall are equal (or very close) in the PR curve.
BEP has been widely used as a performance measure in classi-
fication problems. Table I shows that our framework achieves a

rp

recall = ———
rp+rn

)

precision =
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TABLE I
BEP AND THE AVERAGE DETECTION TIME OF THE ORDINAL MEASURE,
EFS-MULTIVARIATE-GAUSSIAN, AND PROTOTYPE REPLACEMENT APPROACHES;
DETECTION TIME CONSISTS OF THE FEATURE-EXTRACTION AND
CLASSIFICATION TIMES

Algorithm BEP Precision | BEP Recall Avg. (LI
time (ms)
DCT ordinal measures 62.24% 63.11% 1.1
EFS-Multivariate-Gaussian 85.08% 78.22% 1.28
Prototype-Replacement 80.71% 75.64% 1.1

better performance in terms of BEP than the DCT ordinal mea-
sure.

The average detection time, shown in Table I, comprises
the time required for feature extraction and the time required
for classification. Since the covariance matrix is diagonal, the
average detection time only increases slightly (from 1.1 to
1.28 ms).

C. Enhancement of Detection Efficiency and Experiment
Results

The above experiments show that the detection accuracy can
be improved with only a slight degradation in the detection
speed. It would be interesting to know whether we can achieve
better detection accuracy than the original (ordinal-feature) ap-
proach without any increase in detection time. To this end, we
reduce the covariance matrix 3 from an arbitrary diagonal to a
special diagonal case, ¥ = o021, where I is the n x n identity
matrix and o is the standard deviation. It is well known that, in
this case, the density evaluation can be simplified by computing
the Euclidean distance between the test data and the mean vector
.

Given a test data set z, instead of computing the likelihood
ratio by evaluating the densities, we compute the Euclidean dis-
tance directly from z to @ p, the mean vector estimated for the
positive class. Then, we apply a threshold T to this distance to
detect copies. In other words, if x( is the feature vector of the
copyrighted image, the ordinal-feature approach detects copies
by computing the Euclidean distance between z and z¢, how-
ever, we simply replace zo with @p and perform the same de-
tection procedure. Hence, our approach takes exactly the same
detection time as the original ordinal-feature approach. Since
this approach is equivalent to replacing x in the originally ref-
erenced approach by up, we call it the prototype-replacement
approach.

We used the same positive and negative test data as the pre-
vious experiment. Fig. 2 shows the PR-curve obtained by the
prototype-replacement approach. From this curve, we observe
that the detection accuracy can be enhanced, even when we only
replace the copyrighted image feature with the one learned from
the positive set. The prototype-replacement approach is more ef-
ficient in terms of the detection time (1.1 ms), with the detection
accuracy being only slightly lower than that of the EFS-multi-
variate-Gaussian approach.

In summary, we have shown that, even when simple distribu-
tion models and classification rules are used, the proposed EFS
framework can improve copy detection accuracy. Furthermore,
the increase in computational overhead is limited or even nonex-
istent.
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IV. USING MULTIMODEL CLASSIFIERS
IN THE EFS FRAMEWORK

In the previous section, we fitted a Gaussian distribution to
both the positive and negative training data. Although the clas-
sification performance (in terms of precision and recall) has al-
ready been improved, it may not achieve the best performance.
In this section, we focus on improving the performance of copy
detection when the detection speed is not a major issue. We ex-
amine two multimodel approaches for classifier-based image
copy detection: the Gaussian mixture model and the support
vector machine (SVM). We discuss the models in the following
subsections.

A. Mixture of Gaussians

A Gaussian mixture model is defined as
k
Fe(210) =" wjg(x|))) (6)
j=1

where g(x|A;) is a multivariate Gaussian distribution, as defined
in (2); A; = (u, X) denotes the mean and the covariance matrix
of the jth Gaussian component; w; denotes the weight of the
Jth component; &k denotes the number of components; and § =
{wj, Ajlj = 1,2,...,k} is the model parameter set.

To train the GMM model for each class, we apply the expec-
tation—maximization (EM) algorithm, which can converge to a
maximum likelihood estimate of 6. In this paper, we used the
library in [34] for GMM training.

B. Support Vector Machine (SVM)

In our two-class copy detection problem, SVM [32]
can help find the decision boundary with the maximum
margin. Given a set of labeled training samples, S =
{(z1,91), (x2,92),...(x1,y1)}, y € {1,—1}, SVM finds
the maximum-margin hyperplane classifier with the boundary
wlz +b = 0(w € R",b € R) by solving the following
equation:

1

min —wT w
w,b

subject to : y;((wTa;)) +b) > 1,i=1,...,1
)

where (w, b) specifies a hyper-plane in the n-dimensional space.
To deal with problems that are not linearly separable, SVM
maps the input data into a high-dimensional feature space by a
transformation ®, and employs an equivalent kernel operation,
K(z;,zj) = ®7T(x;)®(x;), to compute the inner product in
the high-dimensional space efficiently. The radial basis function
kernel and the polynomial kernel are two of the most commonly
used kernels. In our work, we employ the radial basis function
kernel

K (g, 2;) = e leemmll ®)

where 7 is a parameter to be adjusted. The decision function is
defined as

!
f(x) = Sgn(w" ®(x) + b) = Sgn Z oy K (i, x) + b
=1
©)
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Fig. 3. PR curves for GMM and SVM.
TABLE II To ensure that SVM works well in practice, it is important to

PRECISION AND RECALL RATES OBTAINED USING GMM AND SVM IN
THE EFS FRAMEWORK. THE THRESHOLDS OF BOTH METHODS WERE
SET ACCORDING TO THE BEP. THE DETECTION TIME 1S COMPRISED
OF THE FEATURE EXTRACTION AND CLASSIFICATION TIMES

Algorithm BEP Precision | BEP Recall Avg. dEailE
time (ms)
DCT ordinal measures 62.24% 63.11% 1.1
GMM 96.56% 93.54% 2.5
SVM 99.27% 96.77% 2.2
2-stage detection cascade 91.20% 91.93% 1.35

Fig. 4. Five color images (512 * 512 pixels) used in the smaller-scale experi-
ment: an airplane, a baboon, a selection of fruit, Lena, and peppers.

where the factors «; are non-negative Lagrange multipliers.
To find the maximum margin decision boundary, the following
quadratic programming problem must be solved:

1
1
min EwTw + C’Zfi yi(we ®(x;)+b) >1-¢& (10)

i=1

where YX¢; is an upper bound of the empirical risk (with & > 0
forall # = 1...l) and C is a penalty parameter. In this paper,
we use LIBSVM [5] for SVM training and model-parameter
selection.

C. Experimental Results

The experimental setup described in Section III-B is also
used for the performance evaluation. The selection of the
cluster number k is critical in training a GMM [12]. Since we
have prior categorical knowledge about the training data, the
number of clusters can be set initially as the number of image
attack types, which we want to model in advance. To improve
the accuracy, the cluster number & can also be assigned auto-
matically by maximizing the logarithm of the likelihood of the
Gaussian mixture model on the training samples, and estimated
via cross-validation [35]. In our approach, we initially set &k
as the number of attack types, and continue adding clusters
until the log-likelihood either starts to decrease, or keeps on
increasing in increments lower than a specific threshold.

select appropriate models in its learning phase. In our work, we
use cross validation to select the best model parameters C and
~ for classification, as suggested in LIBSVM [5]. The output of
SVM, f(-), in (9) is a function with a value of 1 or —1. It can be
converted into a probabilistic output. LIBSVM uses the method
introduced in [22] to estimate the probability

1

P(y=1|f($)):W~ (1n

where A and B are estimated by minimizing the negative log-
likelihood function. Further details can be found in [22].

The results of the above method are summarized by the PR
curve shown in Fig. 3. The “GMM” curve is drawn with a
threshold that varies in the likelihood ratio, and the “SVM”
curve is drawn with a threshold that varies with the proba-
bility in (11). Clearly, the multimodel classifiers improve the
detection performance substantially. Both the SVM and GMM
methods achieve far better precision-recall performances than
the original ordinal-feature approach.

Table II shows the BEP values for both methods. SVM per-
forms slightly better than GMM in both detection accuracy and
speed. Both SVM and GMM achieve very high recall rates of
96.77% and 93.54%, respectively, while the precision rate is
99.27% for SVM and 96.56% for GMM. The high accuracy
rates show that our classification-based EFS framework is very
effective for image copy detection.

The above experiment shows the overall performance of
our methods. To observe the robustness of our EFS-based ap-
proaches against different attacks in more detail, we performed
another smaller experiment based only on the five images
shown in Fig. 4. The results are summarized in Table III. The
thresholds used in the DCT ordinal measures and our EFS
methods (SVM and GMM) were set according to the BEP
obtained in the above experiment, and the recognition rate (the
rate of correctly-classified test data) is shown in Table III. From
Table III, we observe that the robustness against geometric
attacks (e.g., cropping, rotation, and scaling) is significantly
enhanced by our approaches.

In terms of efficiency, the detection times of the SVM and
GMM classifiers (2.2 and 2.5 ms, respectively) are approxi-
mately twice that of the DCT ordinal measure (1.1 ms). This
means that the response time of our multimodel classifiers is
roughly double that of the ordinal approach, but the detection
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TABLE III
DETAILED RECOGNITION RESULTS OF SVM AND GMM FOR THE FIVE SELECTED IMAGES. THE FORM “ATTACK TYPE *k” INDICATES THAT THIS ATTACK
TYPE WAS APPLIED k& TIMES. FOR EXAMPLE, THE ROTATION ATTACK WAS APPLIED 18 TIMES. THE FORM “m-n-0” INDICATES THAT THE NUMBER
OF IMAGE REPLICAS SUCCESSFULLY DETECTED BY SVM, GMM, AND THE ORDINAL APPROACH WERE 12, 1, AND 0, RESPECTIVELY

Pre-learned
types of Testing Item Airplane | Baboon | Fruits Lena Peppers
attacks
v Convolution Filtering
(blur or sharp) * 2 S 2-2-2 2-1-2 2-1-1 2-2-2 222
v |[JPEG *14 14-14-14 | 14-14-14 | 14-14-14 | 14-14-14 | 14-14-14
Median Filtering * 4 4-4-4 4-4-4 4-4-4 4-4-4 4-4-4
v Noise * 12 12-12-10 | 12-12-11 | 11-12-10 | 12-12-11 | 12-12-10
Self-Similarities * 3 3-3-3 3-3-3 3-3-3 3-3-3 3-3-3
PSNR * 10 10-10-10| 10-10-10 | 10-10-10 | 10-10-10 | 10-10-10
\ Scaling * 10 10-10-10 | 10-10-10 | 10-10-10 | 10-10-10 | 10-10-10
\ Cropping * 13 10-9-2 9-11-2 10-8-2 11-8-3 11-12-2
v Rotation * 18 17-18-2 | 18-17-3 | 17-17-3 | 16-16-2 | 18-18-3
Affine * 8 8-7-6 8-8-7 8-6-6 8-8-7 8-7-6
Removing Lines * 10 10-10-8 | 10-10-8 | 10-10-9 | 10-10-8 | 10-10-9
Rotation+Rescaling * 10| 10-8-3 | 10-10-3 | 10-9-2 | 10-10-2 | 10-10-2
Rotation+Cropping * 10| 10-9-2 10-10-2 10-9-2 10-10-2 | 10-10-2
Recognition Rate
Ordinal 61.61%
SVM 96.94%
GMM 94.84%
performance can be improved considerably when SVM or Test Image

GMM is used. Hence, for situations where such an increase in
time is tolerable, our EFS framework can be used to construct
classifiers that are highly effective for image copy detection.

V. DETECTION CASCADE

The classification-based approaches presented in Sections III
and IV outperform the conventional approach for image copy de-
tection. Specifically, the multivariate Gaussian method is faster
with relatively less performance improvement, while SVM and
GMM are slower, but the performance improvement is more pro-
nounced. Because they are complementary, we are motivated to
develop a detection cascade for image copy detection. The idea
is that, the multivariate Gaussian classifier can serve as an ini-
tial-level copy detector in the detection cascade to filter out some
unrelated images quickly, and the SVM or GMM then acts as a
second-level detector to select final candidates.

Fig. 5 shows the block diagram of the proposed detection
cascade, which consists of two stages. To construct an efficient
detector, we apply the multivariate-Gaussian approach in the
first level, and SVM in the second level. We select SVM because
its detection speed is faster than that of GMM.

In the first stage, the intermediate threshold of the likelihood
ratio in (4) is set as 7 = 1. Note that this is just a setting to per-
form our experiments, and can be modified in practice by con-
sidering different precision/recall or false-detection/false-alarm
tradeoffs. Then, the input data that lies in a neighborhood of the
decision boundary of the first stage is sent to the second stage
for additional verification. The images whose likelihood ratios
are within the interval [1 — 7, 1 + ], where r is a positive value
specifying the ambiguous range, are sent to the second stage for
further examination; otherwise, the first-stage decisions serve as
the outputs directly.

To evaluate the performance of the 2-stage detection cascade,
the experiments described in Section III-B were also used for
the detection-cascade approach. The selection of an ambiguous

Detection Stage 1
(Multivariate Gaussian
Classifier)

Output detection
stage 1 decision

Detection Stage 2
(SVM)

Output detection
stage 2 decision

Fig. 5. Block diagram of the 2-stage detection cascade.

Avg. Detetion Time
[\®)

0 . . L .

06 07 08 09 1

Fig. 6. Average detection time of the 2-stage detection cascade obtained by
varying the ambiguous range r.

range 7 is a tradeoff between the detection accuracy and the
speed. A larger  leads to a better recognition rate, but results in
a slower detector. Fig. 6 shows the average detection time of the
2-stage detection cascade derived by applying different r values
to the training data. We observe that the detection time increases
sharply when r > 0.1. Hence, we choose r = (.1 to implement
the 2-stage detection-cascade approach.
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Fig. 7. PR curve for the 2-stage detection cascade/.

The results are summarized in the PR curves shown in Fig. 7.
The curve marked “2-Stage Detection Cascade” is obtained by
using a threshold that varies in the probability ratio (11) of the
second-stage classifier (i.e., SVM). The 2-stage detection cas-
cade achieves better detection accuracy than the multivariate-
Gaussian and the prototype-replacement approaches.

Table II shows the BEP performance of the 2-stage de-
tection cascade approach. The detection cascade approach
affords a suitable tradeoff between the discriminative ability
and computational efficiency. A simple model, such as the
multivariate Gaussian classifier is fast (1.28 ms), but it has less
discriminative ability (78.22% recall and 85.08% precision
at BEP). Multimodel approaches, such as SVM, are highly
accurate (96.77% recall and 99.27% precision at BEP), but
slower (2.2 ms). However, the detection cascade approach is
not only very accurate (91.2% recall and 91.93% precision at
BEP); it is also fast (1.35 ms).

In summary, our EFS framework can be used to construct var-
ious classifiers that are suitable for different accuracy and/or
speed requirements. These approaches can fulfill different ap-
plication needs and provide generally better detection accuracy
than the conventional approach.

VI. DISCUSSION

We now consider the rationale behind EFS. In fact, learning a
classifier based on precollected training data has been studied in
several general CBIR problems [10], [15]; however, to the best
of our knowledge, similar ideas have not been applied to image
copy detection previously. In this paper, we have demonstrated
that the learning-based approach is suitable for copy detection.
We believe the reason is that, unlike the general CBIR, copy
detection aims to find near-duplicates, instead of images that
have the same semantic meaning.

More specifically, from a user’s perspective, an ideal CBIR
system should be capable of semantic retrieval, but a copy de-
tector only identifies near duplicates that can tolerate some mod-
ification, without needing to include all the images that are sim-
ilar at the semantic level. Note that, for general CBIR, it is
almost impossible to collect all the relevant images for pre-
learning the general semantic meaning of the content. However,
for copy detection, the positive training examples can be ob-
tained in a “generative” manner, and, thus, a relatively more
thorough training set can be precollected. This makes the clas-

sification-based framework more suitable for solving the image
copy detection problem.

VII. CONCLUSION

In this paper, we have proposed a new and effective scheme
that can detect unauthorized copies of images by employing
learning techniques. We have presented a general framework
that exploits prior information (generated from prior simulated
attacks) so that the boundary between the copyrighted and unre-
lated images can be defined more accurately through classifier
learning. Although the image copy detection problem is essen-
tially a pattern classification problem, to the best of our knowl-
edge, no previous works have employed classifier training algo-
rithms to solve it. Experiment results obtained from benchmark
attacks confirm the efficacy of the proposed method.

Instead of dealing directly with the feature selection problem,
which is hard to solve and domain dependent, the proposed EFS
framework addresses the copy detection problem by using prior
simulated attacks. This technique enhances the detection accu-
racy by generating features with the necessary invariance to re-
sist various types of image manipulation. In addition, we con-
struct a 2-stage detection cascade to balance the detection time
and classification performance. Although we validate the effec-
tiveness of the proposed approach by using ordinal features and
multivariate-Gaussian/SVM/GMM methods, it is independent
of the feature types or the classifier learning methods selected.
Thus, it can be easily integrated into existing copy detectors to
improve their performance.

Extending the proposed approach to a detector that can iden-
tify different types of attack is a topic that merits further study.
We believe that such an extension could be achieved by re-
placing the two-class problem with a multiclass one. We will
address this issue in our future work.
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