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Abstract 

This paper describes a novel exemplar-based spectral conver-
sion (SC) system developed by the AST (Academia Sinica, 
Taipei) team for the 2016 voice conversion challenge 
(vcc2016). The key feature of our system is that it integrates 
the locally linear embedding (LLE) algorithm, a manifold 
learning algorithm that has been successfully applied for the 
super-resolution task in image processing, with the conven-
tional exemplar-based SC method. To further improve the 
quality of the converted speech, our system also incorporates 
(1) the maximum likelihood parameter generation (MLPG) 
algorithm, (2) the postfiltering-based global variance (GV) 
compensation method, and (3) a high-resolution feature ex-
traction process. The results of subjective evaluation conduct-
ed by the vcc2016 organizer show that our LLE-exemplar-
based SC system notably outperforms the baseline GMM-
based system (implemented by the vcc2016 organizer). More-
over, our own internal evaluation results confirm the effec-
tiveness of the major LLE-exemplar-based SC method and the 
three additional approaches with improved speech quality. 
Index Terms: voice conversion, exemplar, locally linear em-
bedding, voice conversion challenge. 

1. Introduction 

Voice conversion (VC) is a technique that transforms a source 
speaker’s voice to that of a specific target speaker [1-13]. A 
VC system includes two parts, namely spectral and prosody 
conversions. This study focuses on spectral conversion (SC). 
Numerous VC approaches have been proposed, such as Gauss-
ian mixture model (GMM)-based [1-4], frequency warping-
based [5, 6], neural networks (NN)-based [7-10], and exem-
plar-based [11-13] approaches. In this study, we investigate 
the manifold learning algorithm for the exemplar-based SC. 

Manifold learning is a popular method playing an essential 
role in the development of various algorithms, such as nonlin-
ear dimensionality reduction [14], representation learning [15], 
and data visualization [16]. It attempts to discover underlying 
manifolds (or the intrinsic geometry of the data distribution) in 
high-dimensional data spaces and embed them onto low-
dimensional embedding spaces. Many manifold learning 
methods have been proposed, including isometric feature 
mapping (Isomap) [17], Laplacian eigenmap (LE) [18], and 
locally linear embedding (LLE) [19]. We integrate LLE with 
the conventional exemplar-based SC, which is inspired by the 
success of applying LLE in the super-resolution task in image 
processing [20]. 

The proposed SC method is based on the assumption that 
the source and target feature vectors form manifolds with simi-
lar local geometry in two distinct feature spaces. As a result, 
we characterize the local geometry of the locally linear patches 

in the source spectral feature space. Given a source feature 
vector, we estimate the reconstruction weights using the LLE 
algorithm. Then, the reconstruction weights are applied to the 
corresponding target exemplars to construct the converted fea-
ture vector. To further improve the quality of the converted 
speech, the maximum likelihood parameter generation (MLPG) 
algorithm [2, 21] and the postfiltering-based global variance 
(GV) compensation method [22] are adopted. Experimental 
results demonstrate the effectiveness of the proposed SC 
method.  

The remainder of this paper is organized as follows.  Sec-
tion 2 describes the proposed LLE-exemplar-based SC system. 
Section 3 presents the experimental results. Finally, Section 4 
gives the conclusions. 

2. LLE-exemplar-based SC 

Figure 1 illustrates the block diagram of the proposed LLE-
exemplar-based SC system. From figure 1, it can be seen that 
there are mainly two stages, namely offline and online stages. 
In this section, we describe the proposed SC system in detail. 

2.1. The Offline Stage 

As shown in Figure 1, a set of paired dictionaries is composed 
by the source and target dictionaries in advance, same as the 
conventional exemplar-based VC systems [11, 12]. Specifical-
ly, a parallel speech corpus consisting of the source and target 
speakers’ speeches is needed. After spectral feature extraction, 
a dynamic time warping (DTW) algorithm is used to time-
align the spectral feature sequences of the source and target 
speech utterances. Accordingly, the paired dictionaries can be 
constructed from the aligned joint spectral feature vectors. 
Additionally, some statistics to be used in the MLPG algo-
rithm and the postfiltering-based GV conversion, such as mean 
and precision/variance of the target spectral features, are esti-
mated according to the maximum likelihood (ML) criterion. 

Let the source and target dictionaries be composed by the 
source and target spectral feature vectors (called exemplars 

hereafter) as 1, , , ,n N   X X X X   and 1, , , ,n N   Y Y Y Y  , 

respectively. The total number of both exemplars is N. nX  and 

nY  are the source and target exemplars at frame n, respective-

ly. In order to take into account temporal information for 
achieving better conversion performance, both source and tar-
get exemplars are composed by their static, and dynamic fea-

tures as (1) (2), ,n n n n

      X x x x  and (1) (2), ,n n n n

      Y y y y , 

for n=1~N. The superscript  denotes transposition of the vec-

tor. nx , (1)
n x , and (2)

n x  are D-dimensional source static, 

delta and delta-delta features, respectively. Likewise, ny , 



(1)
n y , and (2)

n y  are D-dimensional target static, delta and 

delta-delta features, respectively.  

2.2. The Online Stage 

 From Figure 1, the online stage first applies feature extraction 
to convert the input utterance (source speech) into a sequence 
of spectral feature vectors. Then, the LLE-exemplar-based SC 
algorithm is performed to convert the source spectral features 
(composed by static and dynamic features). Finally, the MLPG 
and GV compensation methods are adopted to improve the 
quality of the converted speech. In the following subsections, 
we will review the LLE algorithm and describe each compo-
nent of the proposed SC system. 

2.2.1. The LLE algorithm 

The LLE algorithm is a manifold learning method that com-
putes the low-dimensional embeddings that best preserve the 
local geometry of each locally linear patch in the high-
dimensional space [19]. A manifold can be visualized as a col-
lection of overlapping locally linear patches if the neighbor-
hood size is small and the manifold is sufficiently smooth. In 
other words, each data point and its neighbors are expected to 
lie on or close to a locally linear patch of the manifold. Thus, 
the local geometry of these patches can be characterized by the 
reconstruction weights for reconstructing each data point from 
its neighbors. Moreover, the chart from the manifold to the 
low-dimensional feature space will be roughly linear on these 
small patches. Based on this idea, the LLE algorithm has three 
steps: 1) identifying the locally linear patch by finding a set of 
K nearest neighbors for each data point; 2) characterizing the 
local geometry of each locally linear patch by estimating the 
reconstruction weights of the corresponding neighbors that 
minimize the local reconstruction error; 3) computing the low-
dimensional embeddings by finding a mapping that best pre-
serves the local geometry and is nearly linear. 

2.2.2. The major LLE-exemplar-based SC 

As in steps 1 and 2 of the LLE algorithm, we characterize the 
local geometry of each locally linear patch in the source spec-
tral feature space first. Then, the converted feature vectors are 
estimated from the paired dictionaries by preserving the local 
geometry (as opposed to estimating the low-dimensional 

embeddings in step 3 of the LLE algorithm). Specifically, we 
identify K nearest neighbors (measured by the Euclidean dis-
tance) from the source dictionary for each source spectral fea-
ture vector. Then, we estimate the reconstruction weights by 
minimizing the local reconstruction error:  
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where tX  (a 3D-by-1 vector) denotes the source spectral fea-

ture vector (composed of static and first- and second-order dy-
namic features) at frame t; T is the total number of frames 
(source spectral feature vectors) of an input utterance for con-

version;  1, , ,t t tk tKA a a a   (a 3D-by-K matrix referred to 

as the sub-source dictionary) is the subset of the source dic-
tionary X  for tX ; tka (a 3D-by-1 vector) is the k-th exemplar 

(i.e., the k-th nearest neighbor of tX ) in the sub-source dic-

tionary; and tw  (a K-by-1 vector) is the reconstruction weight 

vector at frame t, subject to 1t
 1 w , where 1 is a K-by-1 

vector whose elements are all ones, for the purpose of transla-
tional invariance. Estimating the reconstruction weights by 
minimizing   subject to the constraint is a constrained least 
squares problem and can be solved separately for each frame. 
The closed-form solution is: 

1

1
ˆ t

t
t



 
G 1

w
1 G 1

,                                         (2) 

where tG  is the local Gram matrix (K-by-K) for tX : 

   t t t t t

   G A X 1 A X 1 .                   (3) 

 
A more efficient way is to solve the linear system of equations

t t G w 1 , and then rescale the weights to satisfy the con-

straint 1t
 1 w . The detailed derivations of the solution can 

be found in [23]. Finally, with the assumption that the source 
and target feature vector manifolds share a similar local geom-
etry in two distinct spectral feature spaces, the converted spec-
tral feature vector (composed of static and first- and second-
order dynamic features) hence can be obtained by applying the 
reconstruction weights obtained in the source spectral feature 
space to the corresponding sub-target dictionary as 

1

ˆ ( )
K

t t t t tk
k

k


  Y B w w b ,                          (4)  

where  1, , , ,t t tk tKB b b b  (a 3D-by-K matrix referred to 

as the sub-target dictionary) is the subset of the target diction-
ary Y  corresponding to the sub-source dictionary tA , in 

which each tkb (a 3D-by-1 vector) is the k-th exemplar (corre-

sponding to tka ) in the sub-target dictionary. 

2.2.3. Parameter generation 

Since the LLE-exemplar-based SC method is performed in a 
frame-by-frame manner with the aim of minimizing the recon-
struction error, two issues that are often encountered in other 
SC methods could also appear, namely, the discontinuity prob-
lem and the over-smoothing problem (which will be shown in 
section 3). In this study, we adopt the MLPG algorithm and 

 
Figure 1: The Proposed LLE-exemplar-based SC system. 



the postfiltering-based GV compensation method to handle 
these two problems. 

1) MLPG Algorithm: When incorporating the MLPG algo-
rithm in the LLE-exemplar-based SC system, we have 

 

  
1 ˆˆ ( )  y M UM M UY ,                           (5) 

 
where ŷ  (a DT-by-1 vector) is the concatenated vector of the 
converted static spectral feature vector sequence obtained by 
the MLPG algorithm; M  is a 3DT-by-DT weighting matrix 
used for appending the dynamic features to the static ones; 

1
ˆ ˆ ˆ ˆ[ , , , , ]t T

   Y Y Y Y   (a 3DT-by-1 vector) is the concate-

nated vector of the converted spectral feature vector sequence 

obtained by the LLE-exemplar-based SC system, i.e., ˆ
tY  (for 

t=1~T) in Ŷ  is given by (4); 1daig[ , , , , ]t T (Y) (Y) (Y)U Λ Λ Λ   

(a 3DT-by-3DT matrix) is the global precision matrix, where  

1 t T   (Y) (Y) (Y)Λ Λ Λ  , t
(Y)Λ  (a 3D-by-3D matrix) is as-

sumed to be diagonal and is estimated from the preci-
sion/variance of the training data of the target speaker. 

2) Postfiltering-based GV compensation: To overcome 
the over-smoothing problem, we further adopt the 
postfiltering-based GV compensation method. The converted 
static spectral feature vector ŷ given by (5) is processed by 
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ˆ ( )ty d  is the d-th element of the converted static spectral fea-

ture vector at frame t obtained from the converted spectral 

static feature sequence ŷ given by (5). ˆ( )y d  and ˆ( )v d  are 

the mean and variance of the converted static spectral feature 
vector. ( )v d  is the d-th element of the mean vector of the 

target GV, which is obtained using the GVs of the target fea-
ture sequences calculated from individual utterances in the 
training data as described in [2]. Note that this method has 
been used as the initialization for the maximum likelihood 
global variance (MLGV) algorithm [2]. However, it has also 
been used in VC and speech synthesis for reducing the compu-
tational cost of the MLGV algorithm [22]. 

3. Experiments 

3.1. Experimental Setup 

The proposed LLE-exemplar-based SC system was evaluated 
using a parallel English speech corpus provided by the 
vcc2016 organizer [26]. The corpus was divided to training 
and evaluation sets. The training set comprises 5 source (3 fe-
males and 2 males) and 5 target speakers (2 females and 3 
males), with 162 utterances for each speaker. The evaluation 
set comprises the same 5 source and 5 target speakers, with 54 
utterances for each speaker. Speech signals were recorded at 

16 kHz sampling rate, and the resolution per sample was 16 
bits. We used the entire training set to build our system.  

The STRAIGHT [24] toolkit was used for feature extraction 
and waveform generation. For SC, each frame of speech signal 
was converted to a static feature vector with 513-dimensional 
spectral envelopes (we used the logarithmic magnitude spectra, 
LMS). The delta and delta-delta feature vectors were then ap-
pending to the static one to form the final spectral feature vec-
tor. Accordingly, the dimension of each final spectral feature 
vector was 1539. The LMS features among all frames were 
normalized to the same energy. Additionally, the first through 
24-th Mel-cepstral coefficients (MCCs) (obtained by the 
FestVox toolkit [25]) extracted from the STRAIGHT spectral 
envelopes were used to align the source and target MCCs in 
order to obtain the source-target alignment. The paired dic-
tionaries of the proposed SC system (described in Section 2) 
were constructed by using this alignment information. Moreo-
ver, the number of nearest neighbors, namely K in (1), for the 
LLE algorithm was set to 1024 empirically. 

For prosodic conversion, we performed f0 (in log-scaled) 
conversion based on the liner transformation method, which is 
typically adopted in a conventional VC system [2]. Notably, 
the aperiodic components extracted by STRAIGHT are not 
converted in our VC system. Finally, the STRAIGHT synthe-
sis was performed to generate speech waveforms by using the 
converted spectral features, converted f0 features, and source 
aperiodic components. Because we did not conduct voice ac-
tivity detection (VAD) to exclude silence parts of speech ut-
terances, VC was performed on not only speech but also si-
lence parts of an input utterance. Moreover, the target statistics 
used for the MLPG and GV conversions (such as target GV) 
were all estimated from the target training utterances (includ-
ing silence and speech parts). 

3.2. Internal Evaluation Results 

In the internal experiments, we compare three SC systems, 
namely, the LLE-exemplar-based SC system described in Sec-
tion 2.2.2 (denoted as LLE_SC), LLE_SC with the MLPG 
algorithm (denoted as LLE_SC+MLPG), and 
LLE_SC+MLPG with the postfiltering-based GV compensa-
tion method (denoted as LLE_SC+MLPG+GV). A preference 
listening test was conducted to evaluate the naturalness of the 
converted speech. We performed the male to male (i.e., SM1 
to TM2) and female to male (i.e., SF1 to TM1) VC. The first 
25 test sentences were chosen from the test set. We conducted 
an AB test, i.e., each pair of converted speeches by methods A 
and B were presented in a random order to five subjects. Fig-
ure 2 shows the overall average results of the preference test. 
From Figure 2, we can see that LLE_SC+MLPG outperforms 
LLE_SC. The result confirms the effectiveness of employing 
the MLPG algorithm in LLE-based SC. We also observe that 
LLE_SC+MLPG+GV achieves a significant gain over  

 
Figure 2: Preference test results of naturalness. Error bars 

indicate 95% confidence intervals.



 
LLE_SC+MLPG. The result indicates that introducing the 
postfiltering-based GV compensation method further improves 
the quality of the converted speech. 

3.3. External Evaluation Results 

The external evaluation was conducted by the vcc2016 organ-
izer in terms of naturalness and similarity of the converted 
speech [26, 27]. We built a VC system for each pair of source 
and target speakers using the entire 162 parallel utterance pairs; 
therefore, 25 VC systems were constructed. The converted 
voice samples were submitted to the vcc2016 organizer for 
performance evaluation. For the naturalness evaluation, the 
standard 5-point mean opinion score (MOS) test was adopted, 
where 5 stands for “completely natural” and 1 for “completely 
unnatural”. For the similarity evaluation, a pairwise compari-
son between the converted speech and the natural speech from 
the reference (target) speaker was conducted, with 1 for 
“sounds like absolutely the same person” and 4 for “sounds 
like absolutely different person”. 200 (52 males and 148 fe-
males) subjects took part in the evaluation.  

3.3.1. MOS evaluation 

Table 1 shows the overall results of the MOS test for 18 
systems (including the baseline GMM-based system imple-
mented by the vcc2016 organizer). Our system is denoted as 
“B”. The median, median absolute deviation (MAD), mean, 
and standard deviation (SD) of MOS were given for each sys-
tem. Table 2 further shows Pairwise Wilcoxon signed rank 
tests (with alpha Bonferoni corrected) to determine the signifi-
cant of the differences between two systems in view of the 
MOS and similarity tests. “T” and “F” denote that significance 
at 1% level is true and false, respectively.  

In Table 1, our system “B” yields a notable gain in mean 
and median (mean: 2.67, and median: 3) over the baseline 
(mean: 1.48, and median: 1). From Table 2 (the MOS row), 
the result indicates that the difference between our system and 
the baseline system is significant. The results confirm that our 
system outperforms the baseline in terms of naturalness.  

Table 1 shows that eight systems yield higher mean scores 
than our system in the MOS test. However, Table 2 shows that 
there is no significant difference between our system and four 

systems, among which “F” and “G” give higher mean scores 
than ours while “A” and “Q” give equal and lower mean 
scores, respectively, than ours. In other words, six systems are 
significantly better than our system in terms of naturalness. 
These results indicate that the performance of our system in 
terms of naturalness is above average among 18 systems.  

3.3.2. Similarity evaluation    

Table 3 shows the results of the similarity test for 18 systems. 
“M2M”, “M2F”, “F2F”, “F2M” and “All” denotes “male to 
male VC”, “male to female VC”, “female to female VC”, “fe-
male to male VC”, and the overall performance, respectively. 
The similarity score is the percentage of converted samples 
judged to be the same as the corresponding target speaker. The 
higher the similarity score, the better the VC system achieves 
the target speaker identity. 

From Table 3 and Table 2 (the similarity row), we first ob-
serve that, although our system yields a higher overall score 
(i.e., 64.17%) than the baseline system (i.e., 59.67%), the gain 
is not significant. Seven systems yield higher overall scores 
than our system in the similarity test. Table 2 shows that there 
is no significant difference between our system and ten sys-
tems, among which seven systems give higher scores than ours 
(the highest score is 72% by “J”) while the remaining three 
systems give lower scores than ours (the lowest score is 53% 
by “Q”). Our system yields higher scores in the M2F and F2F 
cases than the F2M and M2M cases. The reason is worth fur-
ther study.  

4. Conclusions 

This paper has presented a novel exemplar-based SC system. 
The main contributions are threefold. First, we investigate the 
effectiveness of a manifold learning algorithm, i.e., the LLE 
algorithm, for the exemplar-based SC. Second, the MLPG al-
gorithm is employed in our LLE-exemplar-based SC system to 
address the discontinuity problem existing in exemplar-based 
SC systems. Third, a postfiltering-based GV compensation 
method is adopted to improve the quality of the converted 
speech. We participated in the vcc2016 evaluation. The evalu-
ation results provided by the vcc2016 organizer demonstrate 
that our VC system achieves satisfied results. In the future, we 
will study other spectral features, e.g., MCCs, and investigate 
whether the proposed spectral conversion framework is also 
effective in prosodic conversion. 

 Median MAD Mean SD # data points
Source 5 0.00 4.62 0.69 1600
Target 5 0.00 4.57 0.74 1600

Baseline 1 0.00 1.48 0.72 1600
A 3 1.00 2.67 0.97 1600
*B 3 1.00 2.67 0.96 1600
C 1 0.00 1.30 0.63 1600
D 2 1.00 2.27 0.94 1600
E 2 1.00 2.43 1.02 1600
F 3 1.00 2.78 0.99 1600
G 3 1.00 2.78 1.02 1600
H 2 1.00 2.36 1.07 1600
I 1 0.00 1.51 0.75 1600
J 3 1.00 3.03 0.99 1600
K 3 1.00 3.25 1.08 1600
L 3 1.00 2.98 0.99 1600
M 2 1.00 2.10 0.92 1600
N 3 1.00 3.29 1.20 1600
O 3 1.00 2.97 1.07 1600
P 3 1.00 2.85 0.96 1600
Q 3 1.00 2.60 1.05 1600

Table 1: Mean Opinion Score (MOS). 

Table 2: Pairwise Wilcoxon signed rank tests. 

M2M M2F F2F F2M All
Source 14.47 3.29 18.24 4.05 10.00
Target 92.76 93.42 93.24 90.54 92.50

Baseline 42.76 74.34 68.24 53.38 59.67
A 67.76 61.18 70.95 66.89 66.67
*B 52.63 74.34 76.35 53.38 64.17
C 24.34 25.66 20.95 36.49 26.83
D 58.55 82.24 74.32 61.49 69.17
E 27.63 30.26 35.81 35.81 32.33
F 48.03 52.63 43.92 48.65 48.33
G 63.16 75.66 68.24 69.59 69.17
H 46.05 7.89 60.14 4.73 29.67
I 31.58 42.11 41.22 37.16 38.00
J 68.42 79.61 80.41 61.49 72.50
K 48.03 55.92 45.95 47.3 49.33
L 59.21 74.34 71.62 56.76 65.50
M 44.08 69.74 56.76 52.03 55.67
N 21.71 16.45 16.89 22.30 19.33
O 59.87 75.00 66.22 62.16 65.83
P 57.24 74.34 80.41 66.89 69.67
Q 42.11 59.21 62.84 49.32 53.33

Table 3: Similarity score (%). 
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