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ABSTRACT

Due to the presence of distortion, most of the single-channel
frequency-domain speech enhancement (SE) approaches are
still challenging for downstream automatic speech
recognition (ASR) tasks, even with satisfactory
improvements in enhancing speech quality and intelligibility.
Recently, transformer-based models have shown better
performance in speech processing tasks. Therefore, we
intend to explore a transformer-based SE model, which is
fine-tuned through a two-stage training scheme. Pre-training
is performed using a feature-level optimization criterion
through SE loss, and then a pre-trained end-to-end ASR
model is used to fine-tune the SE model using an ASR-
oriented optimization criterion through SE and ASR losses.
We evaluate the proposed approach on low-resourced
Bengali language, which has not received as much attention
as resource-rich English or Mandarin languages in both SE
and ASR fields. Experimental results show that it can
improve the performance of SE and ASR under severe
unseen noisy conditions and its performance is reasonably
good compared with other state-of-the-art SE methods.

Index Terms— automatic speech recognition, Bengali,
speech enhancement.

1. INTRODUCTION

Despite the continuous progress on speech processing
research for resource-rich languages such as English,
Mandarin, and some European languages, related research
for Bengali, the world’s seventh largest spoken language, is

still in its early stages due to various challenges, such as
insufficient resources. Over the years, limited work was
done to develop Bengali ASR systems [1, 2]. Hence, in this
study, we first developed an end-to-end (E2E) ASR backend
system, and then we explored our SE approach to estimate
the performance of SE and downstream ASR tasks.

There have been much many studies on single-channel
and multi-channel SE. As reported in [3, 4], multi-channel
SE is helpful to build a robust ASR system, but the research
on single-channel SE is still far behind, especially when SE
is implemented in the frequency domain. Most single-
channel SE approaches tend to introduce distortion, leading
to a mismatch with the ASR back-end. Therefore, single-
channel SE approaches limit their effectiveness for ASR. To
solve this issue, several multi-tasking and joint-training
methods of SE and ASR have been proposed [5-7]. In [5], a
multi-tasking model was reported to improve the
performance of SE and ASR. It has two output layers: one
for SE and the other for ASR. However, they were
optimized separately by a single multi-tasking model. A
deep neural network (DNN)-based joint-training mechanism
was proposed in [6]. The acoustic model needs to be
retrained with the enhanced features before implementing
the joint-training approach. Moreover, the larger the dataset,
the higher is the computational cost. In [7], a method based
on direct masking and a parametric Wiener filter [8] was
used to reduce distortion, and thus is beneficial to ASR.

In this work, we intend to explore a multi-tasking SE
model based on supervised mapping. The goal is to obtain
enhanced speech with higher quality and intelligibility and
good ASR accuracy without the need to retrain the ASR
system with enhanced features. In this vein, we apply a



transformer-based SE model that works in the frequency
domain and is trained by a two-stage training scheme. The
SE model is first trained through a feature level optimization
criterion with the SE loss (L1 loss), and then fine-tuned
through an ASR-oriented optimization criterion with the SE
and ASR losses using a pre-trained E2E speech recognition
model. Therefore, in this work, 1) we first built an E2E
Bengali ASR system on a relatively large dataset, and then,
2) we implemented a new variant of transformer-based SE
model on a smaller dataset, which aims to minimize both SE
and ASR losses. The remainder of this paper is organized as
follows. Section 2 presents the proposed approach. Section 3
presents the experimental setup, results and discussion.
Finally, Section 4 provides the concluding remarks of this
study.

2. THE PROPOSED APPROACH
2.1. ASR model

Recently, E2E ASR [9-13] systems have received
considerable attention due to the elimination of the necessity
of training several disjoint components (e.g., the acoustic
model, pronunciation model, and language model) of the
traditional style ASR, making it more suitable for the ASR
systems for low-resourced languages. In [14], it is reported
that the DNN-based complex modular ASR system is
difficult to guide a multii-tasking SE model optimization.

Our E2E ASR system was developed based on the
hybrid CTC/Attention model [11] of the Espnet toolkit [15].
A multi-objective learning criterion that combines the CTC
loss losscrc and the attention-based cross entropy loss lossarr
was used to train the model parameters:

Losstow = (I — a) % lossarr + o % losscrc, (1

where o is a tunable parameter. It was set to 0.3 in this study.
The CTC and Attention models share the same BLSTM
encoder and LSTM decoder.

Let Pcrc(c) and Parr(c) be the probabilities of the
output label ¢; at position ¢ for the CTC and Attention
models, respectively, the combined posterior score is:

log(P(c) = (1 = p) * log(Parr(c) + p * log(Pcrc(cy). (2)

In this study, f was set to 0.3. All the hyper-parameters
were set following [12] except that the BLSTM encoder was
formed by layers=6, layer size=320, projection layer
size=320, and the LSTM decoder was formed by layers=1
and layer size =300. Besides, we set batch size=24, CTC
weight=0.3, beam size=20, maximum epoch=20, patience=3,
and optimizer=AdaDelta for training the ASR model. 83-
dimensional fbank-pitch features extracted by the Kaldi
toolkit [16] built on Espnet were used as the acoustic
features. In addition, we applied the recently well-known
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Fig. 1 The SE model used in this study.

data augmentation technique SpecAugment [17], which
makes any ASR system more robust and eliminates the
overfitting problem of the E2E model. For SpecAugment,
we used the default parameter settings in Espnet.

Moreover, we used an RNN-based language model [18],
which was fused with our E2E acoustic model to generate
the final recognition output. The language model was
formed by an LSTM with a single hidden layer and 1000
hidden units. To train this language model, the most
frequently used 53,000 Bengali words from the
transcriptions of the original clean training set were selected
to form the vocabulary set. The stochastic gradient descent
(SGD) algorithm was used to train the language model, with
the following settings: maximum epoch=20, batch size=300,
and patience=3.

2.2. SE model

We adopted the transformer-based SE model in [19, 20] to
implement our SE system. Unlike previous work, the
objective function used to train our SE model consisted of
two parts, and the training process was divided into two
stages. As shown in Fig. 1, our SE system was trained with
the SE loss /ossse and the ASR loss /ossasz

Losstoa = (1 —7) X lossse +y X losSasr, 3)

where y is a tunable parameter. Note that if y is set to 0, the
SE model is trained in the conventional manner with only
the SE loss.

Transformer was originally proposed for machine
translation [21], and some research has also been conducted
in the SE field, such as [19, 20, 22, 23]. For sequence-to-
sequence learning, the transformer comprises an encoder and
a decoder. When applied to SE, since the input sequence



(noisy speech) and the output sequence (enhanced speech)
have the same length, decoder learning is omitted. The
transformer used in this study consists of four convolutional
layers for encoding the input spectrogram with its location
information and eight attention blocks, each consisting of
eight heads (64 neurons for each head) and two fully
connected feedforward layers. Both sublayers contain
residual connection and layer normalization [24]. Leaky
ReLU was used as the activation function. To reduce the
size of training parameters, we trained our SE system based
on a teacher-student scheme [25], where the ASR model acts
as a larger teacher model, and the SE model as a smaller
student model.

2.2.1 Two-stage training
In this study, all SE and ASR models were trained on a
single 12GB GPU in a Linux environment. As our SE model
training is completed through a two-stage scheme, we call
the first stage SE-part and the second stage as ASR-part. In
SE-part, the SE loss was optimized at the feature level for
pre-training. After that, in ASR-part, ASR-oriented
optimization was conducted by the weighted sum of the SE
loss and the ASR loss given by the pre-trained E2E ASR
model. The pre-trained E2E ASR model was trained using
clean training data with transcripts in a fully E2E manner. It
should be noted that during SE-part, the ASR loss was
ignored by setting y = 0.0, i.e., it had no effect on model
optimization. Even so, we found that the ASR loss was
reduced to a certain extent. In ASR-part, the ASR loss began
to affect the total loss through a certain weight factor, which
can balance between the ASR and SE losses. During training,
we fixed the parameters of the ASR model and only updated
the parameters of the SE model, because our goal is to get
better enhanced data, aiming to obtain better SE and ASR
evaluation performance. This approach is different from that
in [5], which updated the parameters based on two losses of
two output layers. On the contrary, we only focused on the
SE model, thus fixing the parameters of the ASR model. We
performed a total of 150 epochs in the training, including 70
epochs in SE-part and 80 epochs in ASR-part. The batch
size was set to 2. In our experiments, we found that y =
0.000009 in ASR-part could strike a good balance between
the SE and ASR losses to yield better performance.
Generally, the ASR model and the SE model are in
completely different domains, and different types of features
are used in the training process. It has been observed in our
experiments that the ASR loss has a much higher impact on
the total loss function than the SE loss. For this reason, we
used such a low weight value for the ASR loss. However,
this setting may need to be adjusted with the dataset,
because different datasets have different ASR performance.
In our experiments, we also evaluated single-stage
training. The SE model was trained by 150 epochs using
both SE and ASR losses with y = 0.000009 from the
beginning.

Table 1: The division of the dataset in this paper.

Split No. of utterances No. of speakers
Train 213,496 495
Development 3,000 8
Test 2,206 5(3 male, 2 female)
Total 218,702 508
3. EXPERIMENTS

3.1. Experimental setup

We evaluated the proposed approach on the Bengali set in
the OpenSlr corpus [26]. Since the dataset does not have a
standard train/development/test split, we divided it by
ourselves. The details are shown in Table 1. We picked up
the first 3,000 utterances after sorting by the Espnet toolkit,
including 8 speakers (6 males and 2 females), to form the
development set, 2,206 utterances from 5 speakers (3 males
and 2 females) to form the test set, and the rest were used as
the training data. We carried out such a split to reasonably
match the previous state-of-the-art work on this dataset [2].
However, in [2], the identities of the test speakers were not
revealed, so we randomly selected 5 speakers to obtain a
similar number of test utterances.

To train our SE models, we randomly selected 10,000
utterances (5 to 15 seconds in length) from the training data
of the ASR model. This subset covers 404 speakers. Then,
we synthesized the corresponding 10,000 noisy utterances
by artificially adding noise to the clean training utterances.
For the training data, 100 types of environmental noises in
[27] were used, and 14 signal-to-noise ratio (SNR) levels
ranging from —6 to 20 dB, with an interval of 2dB, were
applied. For the evaluation data, the 2206 noisy test
utterances were synthesized from the corresponding same
clean utterances used for ASR evaluation. Four unseen types
of noise were used, namely car, siren, street, and cafeteria
babble, from the other resource [28] at low SNR levels (-7
to 5dB), with an interval of 2dB. The speakers, noise types
and SNR levels between the training and test sets do not
overlap. It should be noted that the original speech
utterances in the corpus are not completely clean, which
makes our mapping-based SE systems more challenging.

To implement our SE model, first, the entire original
clean training set was used to pre-train our Teacher ASR
model. Then, the Student SE model was trained though the
two-stage training process described in Section 2.2.1. Here,
short-time Fourier transform (STFT) was performed with a
Hamming window size of 25ms and a hop size of 10ms to
extract the spectral features.

For comparison, we also implemented several
conventional SE models, such as Karhunen-Loeve transform
(KLT) [29], deep denoising auto encoder (DDAE) [30],
Wave-U-Net [31], and fully convolutional neural network
(FCNN). KLT is a filtering-based traditional SE method that
does not need any model training, while the latter three are



DNN-based models. In our preliminary experiments, we
observed that less contextual frames did not work well for
our FCNN model, because Bengali is spoken differently
from English, and the clean data in this dataset are not
purely clean. After we used wider contextual information
from the neighboring frames in the input features and deeper
hidden layers, a considerable improvement was obtained.
We used the same number of contextual frames in DDAE.
Five contextual frames were used in the original DDAE, so
the size of the input features was 257*(2*2+1) =1,285. In
this study, nine contextual frames were used, resulting in the
257*(4*2+1)=2,313-dimensional features. The FCNN model
consists of 15 convolutional layers. After each layer, batch
normalization was used to avoid the overfitting problem
during training. Each convolutional layer contained five
channels {16, 32, 64, 128, 256}. Each channel used three
types of strides {1, 1, 3}. The source codes are available'.
Wave-U-Net is a time-domain SE model, which was first
proposed in image processing and later applied to speech
enhancement. For DDAE and FCNN, we performed 200
epochs, and for Wave-U-Net, we performed 1000 epochs.

We also implemented a more robust ASR model by
combining SpecAugment augmentation. In this work, we
built several E2E ASR systems to evaluate the performance
of our SE model in the ASR domain. The ASR models were
trained using only clean training data or using clean training
data and augmented data by SpecAugment. In addition, the
ASR systems were evaluated with language model rescoring
or without any language model.

3.2. Experimental results

We used four standardized objective metrics to evaluate the
SE performance, including perceptual evaluation of speech
quality (PESQ) [32], short-time objective intelligibility
(STOI) [33], speech distortion index (SDI) [34], and
segmental signal-to-noise ratio improvement (SSNRI) [35].
PESQ, with a score ranging from -0.5 to 4.5, is used to
evaluate the quality of processed speech. STOI, with a score
ranging from 0 to 1, is used to evaluate the intelligibility of
processed speech. The higher the PESQ, STOI, and SSNRI
scores, the better is the SE performance. On the contrary, the
lower the SDI score, the less distortion occurs in the
enhanced speech. For ASR performance evaluation,
character error rate (CER) and word error rate (WER) were
used.

We first intend to investigate the influence of the weight
of the ASR loss in Eq. 3 on the performance of our proposed
SE model (SET-SE*ASR)) The results are shown in Table 2.
The results show that y=0.000009 achieves the best
performance. Using higher weights, the training process
seems to be overfitting, resulting in a drop in SE
performance. When the weight is increased to 0.001,

! https://github.com/mahbubnoor/E2E

Table 2: SE performance (PESQ, STOI, SDI and SSNRI) with
respect to different weights of the ASR loss in Eq.3.

Y PESQ?T | STOIT | SDI| | SSNRIt
0.001 NaN 0.217 1.392 14.919
0.0001 2.379 0.601 0.429 12.361
0.00001 2.395 0.614 | 0414 12.382
0.000009 2.412 0.618 | 0.375 12.677
0.000009 (single- | 2.386 0.613 0.426 12.292
stage training)
0.000001 2.305 0.605 0.421 12.210
0.0 (using only 2.367 0.612 0.415 12.486
SE loss)

Table 3: SE performance (PESQ, STOI, SDI and SSNRI) of

different SE models.

Test set PESQ? | STOIt | SDI| [ SSNRI{
Noisy 2.005 0.545 0.711 0.000
SE®XLT) 1.649 0.542 0.391 14.741

SE(DDAE) 2.150 0.549 0.461 13.344

SE(Wave-U-net) 2.233 0.581 0.430 12.580

SEFCNN) 2.293 0.614 0.474 13.989

SE(T_SE+ASR) 2.412 0.618 0.375 12.677

although the SSNRI score is good, the quality of the
enhanced speech deteriorates to the point that the evaluation
tool cannot measure the PESQ value. From Table 2, we can
see that our proposed SE model achieves better performance
than the SE model trained with only SE loss (cf. 0.0 (using
only SE loss)) and the SE model trained by the single-stage
training scheme (cf. 0.000009 (single-stage training)).

Table 3 shows the performance of different SE models.
Obviously, our proposed SE(T-SE*ASR) model outperforms all
other SE models in terms of PESQ, STOI, and SDI,
although its SSNRI score is worse than that of some models.
Interestingly, the conventional KLT model achieves the best
SSNRI score, although it performs worse than all other
neural network-based models in the PESQ and STOI metrics.
In Fig. 2, the spectrograms of different versions of a sample
speech are depicted. It can be seen from the figure that the
KLT and Wave-U-Net SE models can remove a reasonable
amount of original background noise, which is prominent in
the clean spectrogram. However, they failed to remove the
artificially additive noise. This is why their performance is
not good in Table 3. Among all SE models, it is clear that
the spectrogram of the enhanced speech by our model
SE(T-SE*ASR) 5 the closest to that of the clean speech. It is
worth noting that the clean utterance is not completely clean,
because this is a crowdsourced data, which makes this
dataset far more challenging for mapping-based speech
enhancement. However, our SE model can still achieve
satisfactory improvements in SE and ASR performance,
which is a remarkable contribution of this work. In the future,
we will study SE techniques that do not require any clean
ground truth, because it is difficult to collect completely
clean speech data, especially for low-resourced languages.
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Fig. 2 Spectrograms of different versions of a sample utterance in the synthetic test set: (a) clean speech, (b) noisy speech (fast siren wail
noise at -5dB), (c) enhanced speech by KLT, (d) enhanced speech by DDAE, (e) enhanced speech by Wave-U-Net, (f) enhanced speech by
FCNN, (g) enhanced speech by transformer-based model trained with only SE loss, (h) enhanced speech by our model SE(T-SE*ASR),

Table 4: ASR results of different test scenarios (e.g., clean, noisy, enhanced by different SE models).

ASR without any language model ASR with a language model
Test utterance
condition Clean Clean+SpecAug Clean Clean+SpecAug
CER WER CER WER CER WER CER WER
Clean 10.7 32.9 10.4 31.5 5.6 14.6 7.2 16.5
Noisy 48.7 77.3 41.5 68.3 44 .8 60.6 42.1 57.8
SEKLT) 64.2 92.0 52.6 83.8 55.0 73.1 50.8 69.2
SE(DDAE) 51.9 86.5 45.7 76.5 46.6 67.3 45.3 63.9
SE(Wave-U-net) 99.0 100.0 94.1 99.7 96.5 99.6 94 .4 99.9
SE(FCNN) 41.3 73.1 36.2 64.2 36.2 53.1 35.0 50.5
SE(T_SE) 40.3 71.9 35.2 63.3 35.2 52.0 33.5 48.4
QR(T_SEASR)
. 41.0 72.3 34.5 62.6 35.6 51.9 33.1 48.7
Single-stage
SE(T_SE+ASR)
39.0 70.3 33.7 61.4 33.5 50.0 32.2 47.5
Two-stage

Table 4 shows the downstream ASR results of different
ASR models (ASR model with/without a language model
trained with only clean training data or clean training data
plus augmented data by SpecAugment) evaluated under
different test utterance conditions (such as clean, noisy, and
enhanced speech by different SE models). The best CER of
5.6% and WER of 14.6% on the clean test speech can be
obtained by the ASR model that is trained with only clean
training data and equipped with language model rescoring. It
is worth noting that that the CER and WER of the noisy test
speech are very high, even when the ASR model was trained
with clean training data and augmented data by
SpecAugment. Because the original test speech is not
completely clean, added noise to it at low SNR levels makes
the test set even more challenging. Among all SE models,
we can see that the enhanced speech by SEFCNN_ SE(T SE)
(only SE loss), SE(T-SEASR) (gingle-stage), and SE(T-SEFASR)
(two-stage) always yields better ASR performances than the
unprocessed noisy speech. On the other hand, SEX'D and
SEWave-Unet) show worse ASR performances. It was obvious
because they removed the original background noises which
were prominent in clean data and thus feature level
mismatch occurs with the ASR models. Obviously, the
proposed SET-SE*ASR) (two-stage) model outperforms all
other models. The CER was reduced from 42.1% (noisy) to

32.2%, and the WER was reduced from 57.8% (noisy) to
47.5%.

4. CONCLUSION

In this paper, we have confirmed that a transformer-based
SE model trained through a two-stage training scheme can
improve both SE and downstream ASR performance. The
contribution of this paper is four-fold: First, we confirmed
the effectiveness of the proposed SE model in speech
enhancement evaluation metrics and downstream ASR
evaluation metrics. Second, we showed that the two-stage
training scheme for the SE model is more effective than the
single-stage training method. Third, we showed that ASR
performance can be improved by a single-channel
frequency-domain SE system without the need to retrain the
ASR system with the enhanced features by the SE system.
Fourth, we benchmarked new ASR performance on the clean
and noisy test speech in the Bengali set of the OpenSlr
corpus. In our future work, we will explore multi-condition
training to include different types of training data, such as
noisy speech with various noises and enhanced speech by
different representative SE models, to improve the
robustness of the ASR system. In addition, we will also
apply our approach to other languages.



5. REFERENCES

[1] B. Das, S. Mandal, and P. Mitra, “Bengali speech corpus for
continuous automatic speech recognition system,” in Proc.
Oriental COCOSDA, 2011, pp. 51-55.

[2] N. Sadeq, N. T. Chowdhury, F. T. Utshaw, S. Ahmed, and M.
A. Adnan, “Improving End-to-End Bangla Speech
Recognition with Semi-supervised Training,” in Proc.
EMNLP, 2020, pp. 1875-1883.

[3] M. Fujimoto, and H. Kawai, “One-Pass Single-Channel Noisy
Speech Recognition Using a Combination of Noisy and
Enhanced Features,” in Proc. INTERSPEECH, 2019, pp. 486-
490.

[4] K. Kinoshita, T. Ochiai, M. Delcroix, and T. Nakatani,
“Improving noise robust automatic speech recognition with
single-channel time-domain enhancement network,” in Proc.
ICASSP, 2020, pp. 7009-7013.

[5] Z.Chen, S. Watanabe, H. Erdogan and J. R. Hershey, “Speech
enhancement and recognition using multi-task learning of
long short-term memory recurrent neural networks,” in Proc.
INTERSPEECH, 2015, pp. 3274-3278.

[6] T. Gao, J. Du, L.-R. Dai, and C.-H. Lee, “Joint training of
frontend and back-end deep neural networks for robust speech
recognition,” in Proc. ICASSP, 2015, pp. 4375-4379.

[7] T. Menne, R. Schliiter, and H. Ney, “Investigation into joint
optimization of single channel speech enhancement and
acoustic modeling for robust ASR,” in Proc. ICASSP, 2019,
pp. 6660-6664.

[8] J. Benesty, M. M. Sondhi, and Y. Huang, Springer handbook

of speech processing, SpringerVerlag Berlin Heidelberg, 2008.

[9] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y.
Bengio, “Attention-based models for speech recognition,” in
Proc. NIPS, 2015, pp. 577-585.

[10] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and
spell: A neural network for large vocabulary conversational
speech recognition,” in Proc. ICASSP, 2016, pp. 4960-4964.

[11]S. Watanabe, T. Hori, S. Kim, J. R., Hershey and T. Hayashi,
“Hybrid CTC/attention architecture for end-to-end speech
recognition,” [EEE Journal of Selected Topics in Signal
Processing, vol. 11, no. 8, pp. 1240-1253, 2017.

[12]A. Graves, A.-R. Mohamed, and G. Hinton, “Speech
recognition with deep recurrent neural networks,” in Proc.
ICASSP, 2013, pp. 6645-6649.

[13]S. Karita, N. Chen, T. Hayashi, T. Hori, H. Inaguma, Z. Jiang
et al., “A comparative study on transformer vs RNN in speech
applications,” in Proc. ASRU, 2019, pp. 449-456.

[14] L. Chai, J. Du, Q.-F. Liu, and C.-H. Lee, “A Cross-Entropy-
Guided Measure (CEGM) for Assessing Speech Recognition
Performance and  Optimizing DNN-Based  Speech
Enhancement,” IEEE/ACM Trans. on Audio, Speech, and
Language Processing, vol. 29, pp. 106-117, 2020.

[15]S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y.
Unno et al. “Espnet: End-to-end speech processing toolkit,” in
Proc. INTERSPEECH, 2018, pp. 2207-2211.

[16] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel et al. “The Kaldi speech recognition toolkit,” in Proc.
ASRU, 2011.

[17]1D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.
Cubuk et al, “SpecAugment: A simple data augmentation
method for automatic speech recognition,” in Proc.
INTERSPEECH, 2019, pp. 2613-2617.

[18] T. Hori, S. Watanabe, Y. Zhang, and W. Chan, “Advances in
joint CTC-attention based end-to-end speech recognition with
a deep CNN encoder and RNN-LM.” in Proc.
INTERSPEECH, 2017, pp. 949-953.

[19]1Y.-J. Lu, C.-F. Liao, X. Lu, J.-W. Hung, and Y. Tsao,
“Incorporating broad phonetic information for speech
enhancement,” in Proc. INTERSPEECH, 2020, pp. 2417-
2421.

[20] S.-W. Fu, C.-F. Liao, T.-A. Hsieh, K.-H. Hung, S.-S. Wang, C.
Yu et al. “Boosting Objective Scores of a Speech
Enhancement Model by MetricGAN Post-processing,” in
Proc. APSIPA ASC, 2020, pp. 455-459.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.
N. Gomez et al., “Attention is all you need,” in Proc. NeurlPS,
2017, pp. 1-11.

[22] X. Hao, C. Shan, Y. Xu, S. Sun, and L. Xie, “An attention-
based neural network approach for single channel speech
enhancement,” in Proc. ICASSP, 2019, pp. 6895-6899.

[23]Y. Koizumi, K. Yaiabe, M. Delcroix, Y. Maxuxama, and D.
Takeuchi, “Speech enhancement using self-adaptation and
multi-head selfattention,” in Proc. ICASSP, 2020, pp. 181-185.

[24]J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,”
arXiv preprint arXiv:1607.06450, 2016.

[25]S. Abbasi, M. Hajabdollahi, N. Karimi, and S. Samavi,
“Modeling teacher-student techniques in deep neural networks
for knowledge distillation,” in Proc. MVIP, 2020, pp. 1-6.

[26] O. Kjartansson, S. Sarin, K. Pipatsrisawat, M. Jansche and L.
Ha, “Crowd-sourced speech corpora for Javanese, Sundanese,
Sinhala, Nepali, and Bangladeshi Bengali,” in Proc. SLTU,
2018, pp. 52-55.

[27] G. Hu and D. Wang, “A tandem algorithm for pitch estimation
and voiced speech segregation,” IEEE/ACM Trans. on Audio,
Speech, and Language Processing, vol. 18, no. 8, pp. 2067—
2079, 2010.

[28]P. C. Loizou, Speech enhancement: theory and practice. CRC
press, 2013.

[29] A. Rezayee, and S. Gazor. “An adaptive KLT approach for
speech enhancement,” IEEE Trans. on Speech and Audio
Processing, vol. 9, no. 2, pp. 87-95, 2001.

[30]X. Lu, Y. Tsao, S. Matsuda, and C. Hori, “Speech
enhancement based on deep denoising autoencoder,” in Proc.
INTERSPEECH, 2013, pp. 436—-440.

[31] C. Macartney, and T. Weyde, “Improved speech enhancement
with the wave-u-net,” arXiv preprint arXiv:1811.11307, 2018.

[32] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra,
“Perceptual evaluation of speech quality (PESQ)-a new
method for speech quality assessment of telephone networks
and codecs,” in Proc. ICASSP, 2001, pp. 749-752.

[33]C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “An
algorithm for intelligibility prediction of time—frequency
weighted noisy speech,” IEEE Trans. on Audio, Speech, and
Language Processing, vol. 19, no. 7, pp. 2125-2136, 2011.

[34]7J. Chen, J. Benesty, Y. Huang, and S. Doclo, “New insights
into the noise reduction Wiener filter,” IEEE/ACM Trans. on
Audio, Speech, and Language Processing, vol. 14, pp. 1218—
1234, 2006.

[35]). Chen, Fundamentals of Noise Reduction in Spring
Handbook of Speech Processing, Chapter 43, Springer, 2008.



	Investigation of a single-channel frequency-domain speech enhancement network to improve End-to-End Bengali Automatic Speech Recognition under unseen noisy conditionS
	Abstract


