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ABSTRACT 

 
Due to the presence of distortion, most of the single-channel 
frequency-domain speech enhancement (SE) approaches are 
still challenging for downstream automatic speech 
recognition (ASR) tasks, even with satisfactory 
improvements in enhancing speech quality and intelligibility. 
Recently, transformer-based models have shown better 
performance in speech processing tasks. Therefore, we 
intend to explore a transformer-based SE model, which is 
fine-tuned through a two-stage training scheme. Pre-training 
is performed using a feature-level optimization criterion 
through SE loss, and then a pre-trained end-to-end ASR 
model is used to fine-tune the SE model using an ASR-
oriented optimization criterion through SE and ASR losses. 
We evaluate the proposed approach on low-resourced 
Bengali language, which has not received as much attention 
as resource-rich English or Mandarin languages in both SE 
and ASR fields. Experimental results show that it can 
improve the performance of SE and ASR under severe 
unseen noisy conditions and its performance is reasonably 
good compared with other state-of-the-art SE methods. 
 

Index Terms— automatic speech recognition, Bengali, 
speech enhancement. 
 

1. INTRODUCTION 
 
Despite the continuous progress on speech processing 
research for resource-rich languages such as English, 
Mandarin, and some European languages, related research 
for Bengali, the world’s seventh largest spoken language, is 

still in its early stages due to various challenges, such as 
insufficient resources. Over the years, limited work was 
done to develop Bengali ASR systems [1, 2]. Hence, in this 
study, we first developed an end-to-end (E2E) ASR backend 
system, and then we explored our SE approach to estimate 
the performance of SE and downstream ASR tasks. 

There have been much many studies on single-channel 
and multi-channel SE. As reported in [3, 4], multi-channel 
SE is helpful to build a robust ASR system, but the research 
on single-channel SE is still far behind, especially when SE 
is implemented in the frequency domain. Most single-
channel SE approaches tend to introduce distortion, leading 
to a mismatch with the ASR back-end. Therefore, single-
channel SE approaches limit their effectiveness for ASR. To 
solve this issue, several multi-tasking and joint-training 
methods of SE and ASR have been proposed [5–7]. In [5], a 
multi-tasking model was reported to improve the 
performance of SE and ASR. It has two output layers: one 
for SE and the other for ASR. However, they were 
optimized separately by a single multi-tasking model. A 
deep neural network (DNN)-based joint-training mechanism 
was proposed in [6]. The acoustic model needs to be 
retrained with the enhanced features before implementing 
the joint-training approach. Moreover, the larger the dataset, 
the higher is the computational cost. In [7], a method based 
on direct masking and a parametric Wiener filter [8] was 
used to reduce distortion, and thus is beneficial to ASR.  

In this work, we intend to explore a multi-tasking SE 
model based on supervised mapping. The goal is to obtain 
enhanced speech with higher quality and intelligibility and 
good ASR accuracy without the need to retrain the ASR 
system with enhanced features. In this vein, we apply a 



transformer-based SE model that works in the frequency 
domain and is trained by a two-stage training scheme. The 
SE model is first trained through a feature level optimization 
criterion with the SE loss (L1 loss), and then fine-tuned 
through an ASR-oriented optimization criterion with the SE 
and ASR losses using a pre-trained E2E speech recognition 
model. Therefore, in this work, 1) we first built an E2E 
Bengali ASR system on a relatively large dataset, and then, 
2) we implemented a new variant of transformer-based SE 
model on a smaller dataset, which aims to minimize both SE 
and ASR losses. The remainder of this paper is organized as 
follows. Section 2 presents the proposed approach. Section 3 
presents the experimental setup, results and discussion. 
Finally, Section 4 provides the concluding remarks of this 
study. 

 
2. THE PROPOSED APPROACH 

 
2.1. ASR model 
 
Recently, E2E ASR [9-13] systems have received 
considerable attention due to the elimination of the necessity 
of training several disjoint components (e.g., the acoustic 
model, pronunciation model, and language model) of the 
traditional style ASR, making it more suitable for the ASR 
systems for low-resourced languages. In [14], it is reported 
that the DNN-based complex modular ASR system is 
difficult to guide a multii-tasking SE model optimization. 

Our E2E ASR system was developed based on the 
hybrid CTC/Attention model [11] of the Espnet toolkit [15]. 
A multi-objective learning criterion that combines the CTC 
loss lossCTC and the attention-based cross entropy loss lossATT 
was used to train the model parameters:  

 
          LossTotal = (1 – α) × lossATT + α × lossCTC,         (1) 

 
where α is a tunable parameter. It was set to 0.3 in this study. 
The CTC and Attention models share the same BLSTM 
encoder and LSTM decoder. 

Let PCTC(ct) and PATT(ct) be the probabilities of the 
output label ct at position t for the CTC and Attention 
models, respectively, the combined posterior score is: 

 
  log(P(ct)) = (1 – β) × log(PATT(ct)) + β × log(PCTC(ct)).   (2) 
 

In this study, β was set to 0.3. All the hyper-parameters 
were set following [12] except that the BLSTM encoder was 
formed by layers=6, layer size=320, projection layer 
size=320, and the LSTM decoder was formed by layers=1 
and layer size =300. Besides, we set batch size=24, CTC 
weight=0.3, beam size=20, maximum epoch=20, patience=3, 
and optimizer=AdaDelta for training the ASR model. 83-
dimensional fbank-pitch features extracted by the Kaldi 
toolkit [16] built on Espnet were used as the acoustic 
features.  In  addition,  we  applied  the  recently well-known 

 
Fig. 1 The SE model used in this study. 

 
data augmentation technique SpecAugment [17], which 
makes any ASR system more robust and eliminates the 
overfitting problem of the E2E model. For SpecAugment, 
we used the default parameter settings in Espnet. 

Moreover, we used an RNN-based language model [18], 
which was fused with our E2E acoustic model to generate 
the final recognition output. The language model was 
formed by an LSTM with a single hidden layer and 1000 
hidden units. To train this language model, the most 
frequently used 53,000 Bengali words from the 
transcriptions of the original clean training set were selected 
to form the vocabulary set. The stochastic gradient descent 
(SGD) algorithm was used to train the language model, with 
the following settings: maximum epoch=20, batch size=300, 
and patience=3. 

 
2.2. SE model 
 
We adopted the transformer-based SE model in [19, 20] to 
implement our SE system. Unlike previous work, the 
objective function used to train our SE model consisted of 
two parts, and the training process was divided into two 
stages. As shown in Fig. 1, our SE system was trained with 
the SE loss lossSE and the ASR loss lossASR 
 
             LossTotal = (1 – γ) × lossSE + γ × lossASR,                (3) 
 
where γ is a tunable parameter. Note that if γ is set to 0, the 
SE model is trained in the conventional manner with only 
the SE loss. 

Transformer was originally proposed for machine 
translation [21], and some research has also been conducted 
in the SE field, such as [19, 20, 22, 23]. For sequence-to-
sequence learning, the transformer comprises an encoder and 
a decoder. When applied to SE, since the input sequence 



(noisy speech) and the output sequence (enhanced speech) 
have the same length, decoder learning is omitted. The 
transformer used in this study consists of four convolutional 
layers for encoding the input spectrogram with its location 
information and eight attention blocks, each consisting of 
eight heads (64 neurons for each head) and two fully 
connected feedforward layers. Both sublayers contain 
residual connection and layer normalization [24]. Leaky 
ReLU was used as the activation function. To reduce the 
size of training parameters, we trained our SE system based 
on a teacher-student scheme [25], where the ASR model acts 
as a larger teacher model, and the SE model as a smaller 
student model. 
 
2.2.1 Two-stage training 
In this study, all SE and ASR models were trained on a 
single 12GB GPU in a Linux environment. As our SE model 
training is completed through a two-stage scheme, we call 
the first stage SE-part and the second stage as ASR-part. In 
SE-part, the SE loss was optimized at the feature level for 
pre-training. After that, in ASR-part, ASR-oriented 
optimization was conducted by the weighted sum of the SE 
loss and the ASR loss given by the pre-trained E2E ASR 
model. The pre-trained E2E ASR model was trained using 
clean training data with transcripts in a fully E2E manner. It 
should be noted that during SE-part, the ASR loss was 
ignored by setting γ = 0.0, i.e., it had no effect on model 
optimization. Even so, we found that the ASR loss was 
reduced to a certain extent. In ASR-part, the ASR loss began 
to affect the total loss through a certain weight factor, which 
can balance between the ASR and SE losses. During training, 
we fixed the parameters of the ASR model and only updated 
the parameters of the SE model, because our goal is to get 
better enhanced data, aiming to obtain better SE and ASR 
evaluation performance. This approach is different from that 
in [5], which updated the parameters based on two losses of 
two output layers. On the contrary, we only focused on the 
SE model, thus fixing the parameters of the ASR model. We 
performed a total of 150 epochs in the training, including 70 
epochs in SE-part and 80 epochs in ASR-part. The batch 
size was set to 2. In our experiments, we found that γ = 
0.000009 in ASR-part could strike a good balance between 
the SE and ASR losses to yield better performance. 
Generally, the ASR model and the SE model are in 
completely different domains, and different types of features 
are used in the training process. It has been observed in our 
experiments that the ASR loss has a much higher impact on 
the total loss function than the SE loss. For this reason, we 
used such a low weight value for the ASR loss. However, 
this setting may need to be adjusted with the dataset, 
because different datasets have different ASR performance. 

In our experiments, we also evaluated single-stage 
training. The SE model was trained by 150 epochs using 
both SE and ASR losses with γ = 0.000009 from the 
beginning. 

Table 1: The division of the dataset in this paper. 
Split No. of utterances No. of speakers 
Train 213,496 495 

Development 3,000 8 
Test 2,206 5(3 male, 2 female) 
Total 218,702 508 

 
3. EXPERIMENTS 

 
3.1. Experimental setup 
 
We evaluated the proposed approach on the Bengali set in 
the OpenSlr corpus [26]. Since the dataset does not have a 
standard train/development/test split, we divided it by 
ourselves. The details are shown in Table 1. We picked up 
the first 3,000 utterances after sorting by the Espnet toolkit, 
including 8 speakers (6 males and 2 females), to form the 
development set, 2,206 utterances from 5 speakers (3 males 
and 2 females) to form the test set, and the rest were used as 
the training data. We carried out such a split to reasonably 
match the previous state-of-the-art work on this dataset [2]. 
However, in [2], the identities of the test speakers were not 
revealed, so we randomly selected 5 speakers to obtain a 
similar number of test utterances.  

To train our SE models, we randomly selected 10,000 
utterances (5 to 15 seconds in length) from the training data 
of the ASR model. This subset covers 404 speakers. Then, 
we synthesized the corresponding 10,000 noisy utterances 
by artificially adding noise to the clean training utterances. 
For the training data, 100 types of environmental noises in 
[27] were used, and 14 signal-to-noise ratio (SNR) levels 
ranging from –6 to 20 dB, with an interval of 2dB, were 
applied. For the evaluation data, the 2206 noisy test 
utterances were synthesized from the corresponding same 
clean utterances used for ASR evaluation. Four unseen types 
of noise were used, namely car, siren, street, and cafeteria 
babble, from the other resource [28] at low SNR levels (–7 
to 5dB), with an interval of 2dB. The speakers, noise types 
and SNR levels between the training and test sets do not 
overlap. It should be noted that the original speech 
utterances in the corpus are not completely clean, which 
makes our mapping-based SE systems more challenging. 

To implement our SE model, first, the entire original 
clean training set was used to pre-train our Teacher ASR 
model. Then, the Student SE model was trained though the 
two-stage training process described in Section 2.2.1. Here, 
short-time Fourier transform (STFT) was performed with a 
Hamming window size of 25ms and a hop size of 10ms to 
extract the spectral features.  

For comparison, we also implemented several 
conventional SE models, such as Karhunen-Loeve transform 
(KLT) [29], deep denoising auto encoder (DDAE) [30], 
Wave-U-Net [31], and fully convolutional neural network 
(FCNN). KLT is a filtering-based traditional SE method that 
does not need any model training, while the latter three are 



DNN-based models. In our preliminary experiments, we 
observed that less contextual frames did not work well for 
our FCNN model, because Bengali is spoken differently 
from English, and the clean data in this dataset are not 
purely clean. After we used wider contextual information 
from the neighboring frames in the input features and deeper 
hidden layers, a considerable improvement was obtained. 
We used the same number of contextual frames in DDAE. 
Five contextual frames were used in the original DDAE, so 
the size of the input features was 257*(2*2+1) =1,285. In 
this study, nine contextual frames were used, resulting in the 
257*(4*2+1)=2,313-dimensional features. The FCNN model 
consists of 15 convolutional layers. After each layer, batch 
normalization was used to avoid the overfitting problem 
during training. Each convolutional layer contained five 
channels {16, 32, 64, 128, 256}. Each channel used three 
types of strides {1, 1, 3}. The source codes are available1. 
Wave-U-Net is a time-domain SE model, which was first 
proposed in image processing and later applied to speech 
enhancement. For DDAE and FCNN, we performed 200 
epochs, and for Wave-U-Net, we performed 1000 epochs.  

We also implemented a more robust ASR model by 
combining SpecAugment augmentation. In this work, we 
built several E2E ASR systems to evaluate the performance 
of our SE model in the ASR domain. The ASR models were 
trained using only clean training data or using clean training 
data and augmented data by SpecAugment. In addition, the 
ASR systems were evaluated with language model rescoring 
or without any language model.  

 
3.2. Experimental results 
 
We used four standardized objective metrics to evaluate the 
SE performance, including perceptual evaluation of speech 
quality (PESQ) [32], short-time objective intelligibility 
(STOI) [33], speech distortion index (SDI) [34], and 
segmental signal-to-noise ratio improvement (SSNRI) [35]. 
PESQ, with a score ranging from -0.5 to 4.5, is used to 
evaluate the quality of processed speech. STOI, with a score 
ranging from 0 to 1, is used to evaluate the intelligibility of 
processed speech. The higher the PESQ, STOI, and SSNRI 
scores, the better is the SE performance. On the contrary, the 
lower the SDI score, the less distortion occurs in the 
enhanced speech. For ASR performance evaluation, 
character error rate (CER) and word error rate (WER) were 
used. 

We first intend to investigate the influence of the weight 
of the ASR loss in Eq. 3 on the performance of our proposed 
SE model (SE(T_SE+ASR)). The results are shown in Table 2. 
The results show that γ=0.000009 achieves the best 
performance. Using higher weights, the training process 
seems to be overfitting, resulting in a drop in SE 
performance.   When   the   weight   is   increased   to   0.001,  

                                                 
1 https://github.com/mahbubnoor/E2E 

Table 2: SE performance (PESQ, STOI, SDI and SSNRI) with 
respect to different weights of the ASR loss in Eq.3. 

γ PESQ↑ STOI↑ SDI↓ SSNRI↑ 
0.001 NaN 0.217 1.392 14.919 

0.0001 2.379 0.601 0.429 12.361 
0.00001 2.395 0.614 0.414 12.382 

0.000009 2.412 0.618 0.375 12.677 
0.000009 (single-

stage training) 
2.386 0.613 0.426 12.292 

0.000001 2.305 0.605 0.421 12.210 
0.0 (using only 

SE loss) 
2.367 0.612 0.415 12.486 

 
Table 3: SE performance (PESQ, STOI, SDI and SSNRI) of 

different SE models. 
Test set PESQ↑ STOI↑ SDI↓ SSNRI↑ 
Noisy 2.005 0.545 0.711 0.000 

SE(KLT) 1.649 0.542 0.391 14.741 
SE(DDAE) 2.150 0.549 0.461 13.344 

SE(Wave-U-net) 2.233 0.581 0.430 12.580 
SE(FCNN) 2.293 0.614 0.474 13.989 

SE(T_SE+ASR) 2.412 0.618 0.375 12.677 
 
although   the   SSNRI  score  is  good,   the  quality  of   the 
enhanced speech deteriorates to the point that the evaluation 
tool cannot measure the PESQ value. From Table 2, we can 
see that our proposed SE model achieves better performance 
than the SE model trained with only SE loss (cf. 0.0 (using 
only SE loss)) and the SE model trained by the single-stage 
training scheme (cf. 0.000009 (single-stage training)).  

Table 3 shows the performance of different SE models. 
Obviously, our proposed SE(T_SE+ASR) model outperforms all 
other SE models in terms of PESQ, STOI, and SDI, 
although its SSNRI score is worse than that of some models. 
Interestingly, the conventional KLT model achieves the best 
SSNRI score, although it performs worse than all other 
neural network-based models in the PESQ and STOI metrics. 
In Fig. 2, the spectrograms of different versions of a sample 
speech are depicted. It can be seen from the figure that the 
KLT and Wave-U-Net SE models can remove a reasonable 
amount of original background noise, which is prominent in 
the clean spectrogram. However, they failed to remove the 
artificially additive noise. This is why their performance is 
not good in Table 3. Among all SE models, it is clear that 
the spectrogram of the enhanced speech by our model 
SE(T_SE+ASR) is the closest to that of the clean speech. It is 
worth noting that the clean utterance is not completely clean, 
because this is a crowdsourced data, which makes this 
dataset far more challenging for mapping-based speech 
enhancement. However, our SE model can still achieve 
satisfactory improvements in SE and ASR performance, 
which is a remarkable contribution of this work. In the future, 
we will study SE techniques that do not require any clean 
ground truth, because it is difficult to collect completely 
clean speech data, especially for low-resourced languages.  



 
Fig. 2   Spectrograms of different versions of a sample utterance in the synthetic test set: (a) clean speech, (b) noisy speech (fast siren wail 
noise at -5dB), (c) enhanced speech by KLT, (d) enhanced speech by DDAE, (e) enhanced speech by Wave-U-Net, (f) enhanced speech by 

FCNN, (g) enhanced speech by transformer-based model trained with only SE loss, (h) enhanced speech by our model SE(T_SE+ASR). 
 

Table 4: ASR results of different test scenarios (e.g., clean, noisy, enhanced by different SE models). 

Test utterance 
condition 

ASR without any language model ASR with a language model 
Clean Clean+SpecAug Clean Clean+SpecAug 

CER WER CER WER CER WER CER WER 
Clean 10.7 32.9 10.4 31.5 5.6 14.6 7.2 16.5 

     

Noisy 48.7 77.3 41.5 68.3 44.8 60.6 42.1 57.8 
SE(KLT) 64.2 92.0 52.6 83.8 55.0 73.1 50.8 69.2 

SE(DDAE) 51.9 86.5 45.7 76.5 46.6 67.3 45.3 63.9 
SE(Wave-U-net) 99.0 100.0 94.1 99.7 96.5 99.6 94.4 99.9 

SE(FCNN) 41.3 73.1 36.2 64.2 36.2 53.1 35.0 50.5 
SE(T_SE) 40.3 71.9 35.2 63.3 35.2 52.0 33.5 48.4 

SE(T_SE+ASR)  
Single-stage 41.0 72.3 34.5 62.6 35.6 51.9 33.1 48.7 

SE(T_SE+ASR)  
Two-stage 39.0 70.3 33.7 61.4 33.5 50.0 32.2 47.5 

 
Table 4 shows the downstream ASR results of different 

ASR models (ASR model with/without a language model 
trained with only clean training data or clean training data 
plus augmented data by SpecAugment) evaluated under 
different test utterance conditions (such as clean, noisy, and 
enhanced speech by different SE models). The best CER of 
5.6% and WER of 14.6% on the clean test speech can be 
obtained by the ASR model that is trained with only clean 
training data and equipped with language model rescoring. It 
is worth noting that that the CER and WER of the noisy test 
speech are very high, even when the ASR model was trained 
with clean training data and augmented data by 
SpecAugment. Because the original test speech is not 
completely clean, added noise to it at low SNR levels makes 
the test set even more challenging. Among all SE models, 
we can see that the enhanced speech by SE(FCNN), SE(T_SE) 
(only SE loss), SE(T_SE+ASR) (single-stage), and SE(T_SE+ASR) 
(two-stage) always yields better ASR performances than the 
unprocessed noisy speech. On the other hand, SE(KLT) and 
SE(Wave-U-net) show worse ASR performances. It was obvious 
because they removed the original background noises which 
were prominent in clean data and thus feature level 
mismatch occurs with the ASR models. Obviously, the 
proposed SE(T_SE+ASR) (two-stage) model outperforms all 
other  models.  The CER was reduced from 42.1% (noisy) to 
 

 
32.2%, and the WER was reduced from 57.8% (noisy) to 
47.5%. 

 
4. CONCLUSION 

 
In this paper, we have confirmed that a transformer-based 
SE model trained through a two-stage training scheme can 
improve both SE and downstream ASR performance. The 
contribution of this paper is four-fold: First, we confirmed 
the effectiveness of the proposed SE model in speech 
enhancement evaluation metrics and downstream ASR 
evaluation metrics. Second, we showed that the two-stage 
training scheme for the SE model is more effective than the 
single-stage training method. Third, we showed that ASR 
performance can be improved by a single-channel 
frequency-domain SE system without the need to retrain the 
ASR system with the enhanced features by the SE system. 
Fourth, we benchmarked new ASR performance on the clean 
and noisy test speech in the Bengali set of the OpenSlr 
corpus. In our future work, we will explore multi-condition 
training to include different types of training data, such as 
noisy speech with various noises and enhanced speech by 
different representative SE models, to improve the 
robustness of the ASR system. In addition, we will also 
apply our approach to other languages. 
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