SQLMR : A Scalable Database Management
System for Cloud Computing

Meng-Ju Hsieh Chao-Rui Chang Li-Yung Ho
Institute of Information Science Institute of Information Science Institute of Information Science
Academia Sinica, Academia Sinica, Academia Sinica,
Taipei, Taiwan Department of Computer Science and Department of Computer Science and
Email: eric7428@gmail.com Information Engineering Information Engineering
National Taiwan University National Taiwan University
Taipei, Taiwan Taipei, Taiwan
Email: crchang@iis.sinica.edu.tw Email: lyho@iis.sinica.edu.tw
Jan-Jan Wu Pangfeng Liu
Institute of Information Science, Department of Computer Science
Research Center for Information Technology Innovation and Information Engineering,
Academia Sinica Graduate Institute of
Taipei, Taiwan Networking and Multimedia,
Email: wuj@iis.sinica.edu.tw National Taiwan University

Taipei, Taiwan
Email: pangfeng@csie.ntu.edu.tw

Abstract—As the size of data set in cloud increases rapidly, sets, traditional parallel database solution can be prohibitively
how to process large amount of data efficiently has become aexpensive. To be able to perform this type of analysis in
critical issue. MapReduce provides a framework for large data a cost-effective manner, several companies have developed

processing and is shown to be scalable and fault-tolerant on distributed data st d . ¢ | |
commondity machines. However, it has higher learning curve @'St1buted data storage and processing systeéms on large clus-

than SQL-like language and the codes are hard to maintain and t€rs of shared-nothing commodity servers, including Google
reuse. On the other hand, traditional SQL-based data processing File System [1], BigTable [2], MapReduce [3], Hadoop [4],

is familiar to user but is limited in scalability. In this paper, we Amazon’s Simple Storage Service (S3) [5], SimpleDB [6],
propose a hybrid approach to fill the gap between SQL-based \jicrosoft's SDS Cloud database [7]. There are also various

and MapReduce data processing.)
We develop a data management system for cloud, named NoSQL databases used to manage large amounts of data, in-

SQLMR. SQLMR complies SQL-like queries to a sequence of cluding MongoDB [8], Apache CouchDB [9], Cassandra [10]
MapReduce jobs. Existing SQL-based applications are compat- and Dynamo [11].
ible seamlessly with SQLMR and users can manage Tera to Many of these cloud databases are designed to run on a
PataByte scale of data with SQL-like queries instead of writing cjyster of hundreds to thousands of nodes, and are capable of
MapReduce codes. We also devise a number of optimization tech- . -
niques to improve the performance of SQLMR. The experiment serving data ranglng.f.rom hundr,eds of terabytes to petabytes.
results demonstrate both performance and scalability advantage Compared with traditional relational database servers, such
of SQLMR compared to MySQL and two NoSQL data processing cloud databases may offer less querying capability and often
systems, Hive and HadoopDB. weaker consistency guarantees, but scale much better by
Index Terms—cloud data management, NoSQL framework, nroviding built-in support on availability, elasticity, and load
SQL to NoSQL translation and optimization, MapReduce balancing.
On the other hand, data management tools are an important
part of relational and analytical data management business
The advent of cloud computing and hosted software asce business analysts are often not technically advanced and
a service is creating a novel market for data managemead. not feel comfortable interfacing with low-level database
Cloud-based DB services are starting to appear, and have sbé&ware directly. These tools typically interface with the
potential to attract customers from very diverse sectors of tHatabase using ODBC or JDBC, so database software that want
market, from small businesses aiming at reducing the total céstwork these products must accept SQL queries. Therefore,
of ownership, to very large enterprises seeking high-profilenovel technology to combine DBMS capability with Cloud-
solutions spanning on potentially thousands of machinesale scalability is highly desirable.
At the same time, due to the ever increasing size of dataln this paper, we propose a hybrid solution, called SQLMR,

I. INTRODUCTION

that combines the programming advantage of SQL with theBigtable [2] is a share-nothing archtecture and it is column-
fault tolerant, heterogeneous cluster, scalable capabilitiesasfented, which is optimized for read. It is designed for
MapReduce. Users of SQLMR can write data manageméngh availability and high performance for massive read and
programs with familiar query language or to run existingrite operations on a hundred-to-thousand machines cluster.
programs without modification. SQLMR provides a compilelt provides low level API for data manipulation. It also
to translate a SQL program to a MapReduce program, and exevides a self-managing policy to achieve load balancing and
ecute it in a MapReduce system. To achieve high performartynamic addition/removal of servers. However, Bigtable does
in data processing, we also devise a number of optimizatiaot support SQL query. It only supports query by row key [14].

techniques. This makes it harder for users to deploy existing applica-
The major contributions of this work are summarized a#®ns which work on transitional databases. Moreover, since
follows. general-purpose applications may concurrently access a row

« A SQL to MapReduce compiler and runtime frameworkoUt different columns, supporting only single-row transaction
called SQLMR. Currently, SQLMR supports a subse'@y degrade the performance. It may need a more fine-grain
of SQL queries that, to our knowledge, are sufficiedPCK rather than a single row lock to allow concurrent access
to support various large-scale analytical data managd? @ row but different columns. Since Bigtable is built on
ment applications, such as on-line analytical processir‘f@foqle File System, it can provide good scalability and fault
(OLAP), data mining, etc. tolerance. However, it lacks support to interface with existing

« A low-overhead data file construction technique th&tatd management tools. o
enables fast dynamic conversion of SQL database files tg>3 [3] provides a simple web service interface to store and
HDFS (Hadoop distributed file system) files that can gtrieve data. It gives develo'per the hlghly scalable, reliable
accepted as input files by the MapReduce runtime engid@d fast data accessing. Unlike S3, SimpleDB does not store

This technique significantly reduces data conversion tiriéW data, it takes the data as input and expands it to create
between SQL and MapReduce. indices across multiple dimensions, which enables fast query

. Effective database partitioning and indexing techniquc9§ data. In addition, S3 uses dense storage device to store large
for fast locating of queried data in HDFS and reducin@bjeCt and SimpleDB uses less dense device to store small bits

disk 1/0 for range queries. of data. _ o _
A query result caching mechanism that can avoid re- The structured data of SampleDB is organized in domains,
processing of redundant queries. like a spreadsheet, in which user can insert data, retrieve
. Optimization techniques for Hadoop's MapReduce rurfata and run queries. Each domain consist of items which
time system to further reduce query processing time. are described by attribute name-value pairs. An attribute can
We conduct extensive experiments to evaluate the effectivha}ve muiltiple values. SimpleDB keeps multiple copies of each
omain. When the data is updated, all copies of the data are

tness oﬁISkQLMRMThgc%mpagson(\jN’ﬁh \ée La gdrf;doopDB, uFlgated. However, it takes time for the update to propagate to
wo well-known MapReduce based NoSQL database managgy, torage locations. The data will eventually be consistent, but
systems, and MySQL gnd MySQeluster demonstrate thean immediate read might not show the change. SimpleDB may
performance and scalab|I|Fy advan.tage of SQLMR. . e suitable for application like shopping cart. For applications

The rest of the paper is organized as follows, section hich need strict consistency, SimpleDB is not a feasible

describes the related data management systems, sectio A”J :
. . tion. Moreover, SimpleDB does not support aggregate
presents the system architecture of SQLMR and the mterac{%){g P PP gareg

. erations like join, group and sorting. The developers have
between the components of the system. Section IV presefbsfmplement these operations by themselves
the optimization technigques we devise ®QLMR Section V :

) : t it 4 Section VI ai Amazon RDS [12] is a web service to set up, operate
reports our experiment results, and section gIVES SOMBY scale a relational database in the cloud. It provides

concluding remarks. full capabilities of MySQL database (5.1). This means the
applications which work with existing MySQL databases can
work seamlessly with Amazon RDS.

Current commercial Cloud DB products such as Amazon’s Traditional DBMS like MySQL [15] has been widely used
Simple Storage Service (S3) [5], SimpleDB [6] and Relationa many domains. However, to statisfy ACID properties, it uses
Database Service (RDS) [12], Microsoft’s SQL server [13] arldcking mechanism to guarantee concurrent data processing,
SDS [7] Cloud database, all claim to support SQL. Howeverhich limits the scalability of such system. Cloud DBMS has
most of them do not satisfy many of the desirable propertiesore relaxed ACID constraints, for example, many NoSQL
of Cloud DBMS. For example, Amazon’s SimpleDB onlydatabases only guarantee eventually consistency and result in
supports a small subset of SQL queries. It does not suppgreater scalability.
aggregation and joins types of complex queries. Microsoft's MySQL_cluster [16] is a share-nothing, distributed real-
SDS, although supports full SQL functionality, is far moréime database. It uses synchronous replication through a two-
inferior to traditional SQL servers in both performance anpghase commit mechanism and it guarantees data availability. It
scalability. claims the fast data accessing by storing the indexed columns

Il. RELATED WORK

in main memory and the ability to service tens of thousand8hen the MapReduce jobs are completed, the system returns
of transactions per second. MySQtluster provides support the query results to the user in SQL form.
to interface with current data management tools. However, itsFigure 1 depicts the system architecture of SQLMR. There
scalability in both data size and machine size is not acceptable four main components in SQLMRSQL-to-MapReduce
for cloud computing. Compiler, Query Result ManageiDatabase Partitioning and
Declarative language like SQL are often unnatural arlddexing Managerand theOptimized Hadoopsystem. The
restrictive to programmers, in an other way, the code writtelatabase partitioning/indexing manager maintains the infor-
by procedural language like MapReduce is hard to maintaimation of table scheme, indexed files and metadata. The other
and reuse. Several efforts have been devoted to combining thkee components interact with database partitioning/indexing
DBMS capability and the scalability of MapReduce, includingnanager for acquiring necessary information when processing
Pig, Hive and HadoopDB, as described in the following. @ query. For simplicity, we did not draw arrows between
Yahoo! develops a new language, Pig Latin [17] to fit database partitioning/indexing manager and the other three
sweet spot between these two sides. They also develop Panponents in Figure 1. We describe each component in the
compiler to compile Pig Latin language to a plan of MapRdollowing paragraphs.
duce jobs. However, legacy SQL codes are not compliant with
Pig Latin, which limits the portability of existing applications

to Pig. SQL Query o% Query Results
Similar to Pig, Hive [18] also provides a SQL-like query ®

language named HiveQL, which makes it easy to be compat- Users !
ible with existing applications using SQL queries. Hive also _£MR : DB Management System (Ron Time

compiles HiveQL to map-reduce code. Compared with Pig, ompl'ler System
Hive produces more efficient map-reduce code. Parser Query Cache
HadoopDB system [19] is a data management system that Q
o A
O Engine

combines DBMS capability and MapReduce techniques. It
Map Reduce
[Hive Engine]

Result
- Manager

targets analytical workloads on structured data and is designed

to run on commodity machines. HadoopDB inherits the scal- b
ability of Hadoop and the authors claim it achieves superior
perofomance compared with current parallel DBMS.

The major differences between these hybrid data man-
agement systems (SQLMR, Pig, Hive and HadoopDB) can
be summarized as follows. We devise a number of novel
optimization techniques to improve performance of query
processing in SQLMR: (1) a low-overhead data file construc-
tion technique that enables fast dynamic conversion of SQL
database files to HDFS (Hadoop distributed file system) files Fig. 1. System architecture of SQLMR.
that can be accepted as input files by the MapReduce runtime] .
engine. This technique significantly reduces data conversion & SQL-to-MapReduce Compiler: The compiler takes
time between SQL and MapReduce, (2) a set of effectivel queries as input and tran_slates them to a sequence of
database partitioning and indexing techniques for fast locatifttP-reduce jobs. In the following example, let student
of queried data in HDFS and reducing disk /O for rang@e a Qatabase table containing 3 columns (id, hw, score). The
queries, (3) a query result caching mechanism that can avé#owing SQL query counts the number of students who’s hw
re-processing of redundant queries, and (4) optimization techScore is higher than 80:
niques for Hadoop’s MapReduce runtime system to furthefe| ECT COUNT(s.id)
reduce query processing time. Our experiment results in lalgROM student_hw as s
section demonstrate the performance and scalability advant@ggERE s.score > 80 AND s.hw=1
of SQLMR against these three systems.

Database &
Indexing Manager

Map Reduce
Opt. Job

Map Reduce
Exec. Result

The SQL query is translated to a pair of map-reduce job.
First, the map phase reads records from the stutientable
and produces an output record with two parts. The first part

In this section, we describe the SQLMR system architectuiis. called the "key”, which is populated with student id(s.id)
Since most users are familiar with SQL-like languages, tlveho’s hwl score is higher than 80. The second is the "value”,
goal of the SQLMR system is to design a framework thathich simply contains "1". The reduce phase then reads the
combines the programming advantage of SQL and the scatay-value pairs and adds all the "1"s to obtain the total count.
bility and fault tolerance of MapReduce. Figure 1 illustrateEhe query result returned by SQLMR is a value that represents
the concept of SQLMR. The system accepts SQL queriestag total count. Note that the number of mappers and reducers
input and translates them to a sequence of MapReduce jdiosexecute a query are decided by the underlying Hadoop

IIl. SYSTEM ARCHITECTURE

runtime system. In the future, we may provide the functionalityevise a set of optimizations, such as cross-rack communica-
for users to decide the number of mappers and reducers tion optimization, to improve the performance of the Hadoop
processing a query. system.
Table | outlines the set of query operations currently sup-

ported in SQLMR. Note that these query operations are read- o]
only. This is because, unlike transactional data processify, Data Partitioning and Pre-processing

analytical data processing (such as OLAP) usually readsln this section, we describe SQLMR'’s approch to transfer-
and processes large input data sets without modifying thering data from traditional RDBMS to the Hadoop MapReduce
Currently, SQLMR connects with multiple SQL servers taystem. We also give an overview of HadoopDB'’s approach,
form a hybrid data management system, in which smallexhich will be used as a basis for comparison in our ex-
size queries and write operations are processed by the S@driments. Figure 2 is the flowchart of HadoopDB. At the
servers, while large-size read operations are processedbleginning, the user needs to export all data from PostgreSQL
SQLMR. The management of transactional data processingtona comma-separated value (CSV) text file and put the file
the multiple SQL servers and the interaction between SQLMR HDFS for subsequent hash-partitioning pre-processing. The
and SQL servers in the hybrid system is out of the scope dirpose of hash-partitioning is to push more query logic into

IV. PERFORMANCEOPTIMIZATION

this paper due to page limit. databases (e.g. joins). This can be done in two phases. First,
the data file needs to be loaded into HDFS. Then, a HadoopDB
TABLE | custom-made Hadoop job, named GlobalHasher, re-partitions
THE QUERY OPERATIONS CURRENTLY SUPPORTED ISQLMR R e ..
data into a specified number of partitions (e.g. number of nodes
Type Supported Functions in a cluster). The next step is to download all partitioned data
SELECT from HDFS to the local disk and import the split data to
Basic Operations WHERE .
ATTRIBUTES (Single, Multiple, *) local PostgreSQL server on each _node. In contrast, in our
SUM SQLMR framework, all database files are stored in HDFS
DISTINCT directly without having to pre-process them. This design can
Computing Operationg JC%'B‘NT reduce the pre-processing time significantly.
JOIN MULTI-TABLE Although the hybrid design of HadoopDB allows users to
SUB-QUERY access PostgreSQL database directly, there are two problems
GROUP BY that need be overcome. First, in HadoopDB each PostgreSQL
BETWEEN-AND "
Condition Operations | MULTI-CONDITION server only stores a partition of the database. Therefore, the
ORDER BY (DESC, ASC) user has to merge all partial query results returned from
DATA OPERATION each database partition to get the final result. Second, users

need to recovery the system manually should a PostgreSQL

b) Query Result Manager. The query result runtime Server crashes. In comparison with HadoopDB, our SQLMR
system caches the result for each query. When a new qugtgmework stores all data in HDFS, which saves the user the
enters SQLMR, the compiler first passes the query to QuesMrden of gathering the partial query results. The process of
Result Manager to compare the query with previous onesrigcovery can also be done by Hadoop MapReduce System
the log. If there are valid cached result for that query, the resullitomatically. Furthermore, storing data in HDFS inherits the
is returned to user without re-processing the query. Otherwisgult-tolerant capability provided by HDFS. HDFS replicates
the compiler will parse the query and generates optimizéide data remotely to ensure data availability if machines
MapReduce code. The cached results will be invalid wheash. SQLMR relies on HDFS for data replication, and the
a user updates or deletes data from the database. replication level of data is also decided by HDFS.

c) Database Partitioning and Indexing Manager In order to further reduce the time for data loading and speed
(DPIM).: This system component manages data files ao@ data processing, we develop a number of optimizations
indexing. When new data is added into the system, DPIM the SQLMR framework, as shows in Figure 3. At the
partitions the new data and creates index for the new daiteginning, SQLMR analyzes the table schema to get the data
With smart partitioning and indexing, SQLMR can do fastize of one record. Next, SQLMR reads all data from database
locating of queried data blocks as well as identifying exaeerver and partitions the data according to the analyzed schema
data blocks that need be accessed in range query in ordeata block size of HDFS. Finally, the hashed and partitioned
reduce disk I/O. The partitioning and indexing techniques ata&ble data is stored in HDFS. The details of partition will be
what distinguish our work from other related efforts, whichiescribed in next subsection.
typically export the entire data file to the MapReduce runtime HadoopDB implements a hybrid database system by devel-
system. oping a Database Connector to retrieve data from traditional

d) Optimized Hadoop.:Hadoop system is a softwarePostgreSQL database. The Database Connector in HadoopDB
framework for distributed processing of large data sets @ similar to a normal database client implemented in JDBC
compute clusters. Our Compiler generates optimized mggdava Database Connectivity). During the HadoopDB experi-
reduce jobs and execute the jobs on the Hadoop system. ient, we found that HadoopDB takes a lot of time to retrieve

Distributed
File System &%

Index
Users
Table
nd Schema
U

Data Connector

data from PostgreSQL and causes very heavy I/O loading. In
order to overcome the issue, we also develop a low-overhead
data file construction technique that enables fast dynamic
conversion of SQL database files to the format that can be
accepted as input files by the MapReduce runtime engine.
The file construction technique implements the InputFormat
interface of Hadoop MapReduce system. The interface is
called by Mapper function to read the needed data from

HDFS and can be designed to read any data in any format. ¢ "@"
In SQLMR, we implements a custom InputFormat Java class, sqp servers Table Data
labeled as Data Connector in Figure 4, which can read MySQL

qatabas,e files d!reCtIy_Wlt,h_OUt having to export databas_e as_t?i(t. 4. The Data Connector that enables reading data from database files.
files. This technique significantly reduces data conversion time

between SQL and MapReduce.

The data connector assigns one mapper per SQL D&ored data is numerous and we need to identify the data we are

pecause assignjng too many mappers to one host wil reqH[rested in very soon. In SQLMR, we employ two indexing
N tog d.h_eavy hdlsz /O access anctj) (Ijecreaseh the thlzlou%hqgtthniques to accelerate data searching. SQLMR chooses a
In addition, the data connector balances the workloa Witable index technique depending on the characteristics of

the mappers using the foIIowing strategy. First, each mapRgL jatahase. We next introduce the two index techniques.
connects to every SQL DB and issues "SELECT COUNT" to) Partition Index: In this approach, the files storing

get the total number of needed data stored in each server. NEX

Lo . atabase tables are split into fixed length files. The size can
each mapper randomly selects the SQL DB it will retrieve daae determained by thg size of block i?\ HDES. such that a
from. Finally, each mapper retrieves approximately the SaR would be completely contained in one bloék Each file
amount of partial data from its selected SQL DB using the pletety |

"SELECT LIMIT" command. contains the records with a range of series keys. The range
Local
e
N\

of keys is decided by the schema of table and the size of
Hashed &
(==
Data Loader

a file. For example, in Figure 5, there are 4 columns in a
table. After table schema analysis, a record is 2KB and a
Hash-Partitioning
(By Map Function)

file is 64MB. Then, SQLMR will partition one table data file
into multiple partitioned table data files. A file will contain a
series of data rows in which the keys range from 1 to 32,768.
£ The next file will contain data rows with keys ranging from
32,769 to 65,537, and so on. The insertion, deletion and search
Servers operation for a key are all constant tirié1), because the file

contains the corresponding record and the offset in a file can
be calculated by the key of the target record. This approach is
suitable for data with dense key space, since we pre-allocate
the space for a record in a file. For general cases, we use B+

Database Output
Table Data

Fig. 2. The SQL to HDFS data loading process in HadoopDB.

tree index.
prmmmmasessans |
[OneRecord iy . !
Data Size Partitioning Pa I"tltlonlng } }
. . ¥
MRreSIR s e (By Schema & Block Size) | . |
I
< 4 ! y I
Table Schema ‘ r } Table_1-32768 }
Analysis One Record i
Length : 2KB \;‘ > | |
Hashed & Partitioned _,‘ f ‘ 2 ‘ 3 o 5537 }
Table Dat: |
Table Schema S /T‘ | Table_32769-65537 }
Schema Analysis } . }
TableData) e | |
L | !
id int(11), 67108863 I 67076097 | - |
i | 67108864 |
Fig. 3. The SQL to HDFS data loading process in SQLMR. o 67108864 | i
y\» _/\ } Table_67076097-67108864 }
B. Data Indexing Table Schema Table Data Partitioned Table Data

Index is a data structure to facilitate and improve the _ ' o
performance of data retrieving and searching in traditional Fig. 5. lllustration of data partitioning in SQLMR.
DBMS. For cloud DBMS, it becomes even critical since the

2) B+ tree Index: B+ tree index are extensively andstraggles some reducers and increases job execution time. In
commonly used in database indexing. Many open-source andrent Hadoop implementation, the placement of reducers
commercial database product, like Oracle [20] and MySQIls random which may result in network load unbalancing
apply B+ tree to index the data. It is a general approach aadd make the reducers on a busy rack become stragglers.
applicable to various applications. In SQLMR, the B+ tret our previous work, we model the traffics in shuffle phase
structure is maintained by the HDFS master, and we modiénd give two optimal algorithms to balance the network load
the DFSClient module in Hadoop such that we can query thenong racks by placing the reducers to racks properly. The
block loaction by a key through the tree. The search, deletiaxperiment shows the improvement achieves 32% in PageRank
and insertion are all logarithmic amortized tim@(logN) application.
where N is the number of nodes in the tree. In order to build In [21], we propose &Reducer Placement Problem (RPP)
the index tree, we need to query the master node for the blagkich is defined as follows. Give the number of racks, the
information. The master node returns all the locations of mumber of mappers on each rack and the number of reducers
block, including the master copy and its replicas. Our B+ traée schedule, how do we determine the number of reducers run
node stores all the replicated blocks information to maintaon each rack? We give a simplified traffics model and derive an
high availability of data blocks information. objective funtion to represent the amount of traffics of a rack.

The query process is as follows. SQLMR reveives a quehy this model, the traffics of a rack is a function of number
of a search key and finds the corresponding block through thereducers«;) run on it and we formulatRPPas a minmax
tree. The internal node of the tree only stores the informati@ptimization problem.
of key for seaching, and the leaf node of the tree stores theFormally, suppose we havéV racks, M mappers and
data of block information, including the block ID and locationk reducers, the number of mapppers on each rack
Figure 6 illustrates the structure of the B+ tree. To facilitatemn,, m,,...,my} are known. The traffics of rack is
block mergence and split, the keys in a block have to be sortgdlr;), we want to find the number of reducers on each rack
We sort the key in a block when the blocks is merged or split, 5, ..., 75} such that
to reduce the extra overhead of sorting and since the number
of keys in a block is bound by a constafit where min{ argmax {filre), - fn(rn)})

the size of block oAl Ny iR

~ the size of a record One of our optimal algorithm is in greedy manner. It places
Therefore, the extra time complexity of sortingGx1). one reducer to a rack at a time. The main idea is that, always
place the reducer on the rack with minimum traffics currently.
Algorithm 1 demonstrates the pseudo code of our greedy
algorithm. Note that we use an arragtte_tuple to store the
number of reducers on each rack. For example, if we have
four racks and ten reducers to schedule, our greedy algorithm
reutrns state_tuple = [1,2,3,4], whcih means placing one
reducer in rack 1, two in rack 2, three in rack 3 and four in

rack 4.
\ 1 \ 2 \ H 3 \ 4 \ H 5 \ 6 \ 7 \ We choose five popular and representative applications as
‘ l =/ l ‘ l — l — our benchmark suite and conduct the experiment in a four-rack

i cluster. The evaluation metric is the speedup rate compared

with un-optimized Hadoop. Table Il shows the speedup of
each application. The best improvement is PageRank which

achieves 32% and FPM does not have significant improve-

ment. This is because FPM has a very skewed distribution in
Fig. 6. The structure of B+ tree. intermediate data size and our traffic model assumes the size of
intermediate data is a constant. In constrast, other applications

C. Hadoop Optimization have approximately the same size of intermediate data.

User query is compiled as MapReduce jobs and run on Benchmark]| Speedup (%)
Hadoop, therefore, the performance of Hadoop framework is Grep 9.35
critical to SQLMR perofrmance. We employ ours previous WordCOUEt 12.37
work on cross-rack optimization in Hadoop framework to im- E‘:ﬁzz;’?n 334
prove the performance of Hadoop. We give a brief introduction FPM 1.76
to this optimization technique in the following. TABLE II

MapReduce employs all-to-all communication model be- SPEEDUP OFBENCHMARKS

tween mappers and reducers. This results in saturation of
network bandwidth of top-of-rack switch in shuffle phase and

Algorithm 1 Greedy Algorithm for RPP by one Gigabit Ethernet switch. The result time of each

Require: The number of mappers on each rack : experiment is measured by the 'time’ command and each data
{my,ma,...,mn} point is the average of 10 runs.
Ensure: A reducer state tuple{r;,ro,...,7n} _
N < number of racks B. Experiment results
M <+ number of total mappers 1) Effect of Data SizeThis set of experiments compare
R + number of total reducers the scalability w.r.t. increase in data size. The number of nodes
state_tuple[N] < {0,0,...,0} is fixed at 10, and the data size varies from 512MB to 1TB.
for i =1to R do Figure 7 shows the execution time of MySQL,
minimal < 0o MySQL_cluster, Hive, HadoopDB and SQLMR dBELECT
for j =1to N do operation with different data sizes. Figure 8 and Figure 9
traf fic= (M — 2m;) - (state_tuple[j] + 1) + m;R give graphical illustrations of the performance comparison.
if traffic < minimal then The SQL query is as follows.
candidate = j SELECT sum(id) FROM table
end if WHERE id >= max(id)/2 and id <= max(id)
end for) .
state_tuple[candidate] + + For small data size (Figure 8), we found that MySQL and
end for MySQL_cluster outperform MapReduce-based systems when

the data size is smaller than 4GB. When the data size increases
beyond 8GB, both of them are outperformed by MapRedue-
based systems. The reason is that MySQL does not paral-
lelize processing of single query. MySQtluster employs in-
memory database technique, which writes all data to memory
A. Experiment Setting before starting database operation and thus is limited by the

In the experiment, we use SysBench as database benchniik Of the physical memory. In our experiment environment,
and compare SQLMR with other database systems, includiflySQL_cluster would crash due to out of memory when the
standalone MySQLon Ceph, in which data files are storediat@ Size reaches 64GB. .
on the Ceph distributed file system, MySQiluster, and two __!n Figure 9, MySQL crashes when the data size reaches
MapReduce-based systems: Hive and HadoopDB. SysBencl {€CB. The reason is that a MySQL data table can only
a modular, cross-platform and multi-threaded benchmark t(ﬁﬁcommodat@w data records. 772GB is the maximum data
for evaluating OS parameters that are important for a syst&fg€ that can be generated by tBgsbench benchmark
running a database application under intensive load. We ([gFause of such constraint. For MapReduce-based systems,
the OLTP module of SysBench to benchmark a real databd¥ég found that the execution time of HadoopDB increases
performance. OLTP can generate a lot number of sequenﬁé@mat'ca"y with the increase in data size. The reason is

data indexed by column id. It can also generate transactioff# HadoopDB incurs higher I/O workload caused by the
queries. multi-phase data pre-processing described in Section IV-A.

Since Hive and HadoopDB only handle read operatior%QLMR consistently outperforms HadoopDB because of the

with the MapReduce framework, in our experiments, we Oanrformance improvement by various optimizations described

compare performance of read operations, including ranfjeSection IV. SQLMR is 2.82 times faster than HadoopDB

sum and join queries. We use Ceph DFS as the underlin' h 32GB data size and 13.35 times faster than HadoopDB

distributed file system for MySQL in order to allow MySQLW' h 1TB data size. Furthermore, SQLMR is 1.41 times faster

to accommodate large dataset. MySQL cluster loads all d48an Hive on average. o ,
into memory to achieve fast response time. However, theFigure 10 shows the execution time of Hive, HadoopDB

total size of memory limits its scalability. Hive is a daté?"d SQLMR onJOIN operation with different data sizes.
warehouse infrastructure built on top of Hadoop. Hive definédgure 11 and Figure 12 give graphical illustrations of the
a simple SQL-like query language that enables users familRfrformance comparison. The SQL query is as follows.
with SQL to query the data without writing MapReduceSELECT sum(tabll.id) FROM tablel JOIN table2
codes. HadoopDB is an architectural hybrid of MapRedué¥N (tablel.id = table2.id) _
and DBMS technologies for analytical workloads. WHERE table2.id >= max(table2.id)/2 and

. . . - tablel.id <= max(tablel.id)

The experiment contains two parts: data scalability and

system scalability. The former is to show the scalability w.r.t. For small data size (Figure 11), we found that the execution
increase in data size while the number of nodes is fixed tathe of HadoopDB increases dramatically with the increase
10 and the latter to show the scalability w.r.t. increase in data size. The reason is that HadoopDB incurs higher
system size with fixed 10GB data size per node and totalfD workload caused by the multi-phase data pre-processing
64 nodes. Each node contains 2 CPU cores rated at 2.27Gthzscribed in Section IV-A. SQLMR is 1.47 times faster than
4GB memory, 200GB disk space and all of them are connectdddoopDB with 1GB data size and 3.55 times faster than

return state_tuple

V. EXPERIMENT

MySQL | MySQL(C) | Hive |HadoopDB| SQLMR Hive HadoopDB SQLMR
512MB 7.56 3.32 34.34 38.38 32.14 1GB 62.07 81.39 55.30
1GB 11.69 6.02 33.27 41.35 31.64 2GB 67.66 97.58 58.86
2GB 20.32 12.11 34.24 43.36 33.37 4GB 87.44 119.87 66.01
4GB 42.58 23.98 34.27 38.28 33.41 8GB 90.67 189.43 84.35
8GB 84.66 47.15 40.08 40.48 37.29 16GB 107.76 308.99 86.93
16GB 165.25 94.72 49.53 70.17 41.89 32GB 117.67 790.35 96.01
32GB 334.14 188.98 58.11 136.03 48.23 64GB 145.74 1,524.20 128.54
64GB 659.07 378.50 91.50 281.37 70.39 128GB 182.68 2,698.23 175.86
128GB | 1,305.01 157.43 706.50 122.19 256GB| 310.41 4,475.29 231.81
256GB |2,578.99 295.79| 1,955.53 209.22 512GB| 601.65 9,381.90 397.94
512GB |5,180.53 586.70, 4,070.14 387.56 1TB 1,130.28 21,292.22 757.55
772GB |7,058.54 866.25| 6,820.45 552.35
1TB 1,145.80| 9,570.77 717.15

Fig. 10. Comparison of execution time between different database systems
on JOIN query with different query sizes.

Fig. 7. Comparison of execution time between different database systems

on SELECT query with different query sizes. 350
—— Hive
300 |
180 HadoopDB
160 | —e— MysaL » 250
/ —&— SQLMR
140 - —f— MysaL(c) 200

120 A Hive /

——3—— HadoopDB

1 —=— saLMR //>< _.W—.

0 T T T T 1
Data Size 1GB 2GB 4GB 8GB 16GB

=
u
o

=

(=3

o
1

Execution Time (Sec.)

[
(=]
=]

D

o
u
(=)

Execution Time (Sec
=<
o

Y
o

N
o

0
Data Size512MB 1GB 2GB 4GB 8GB 16GB

Fig. 11. Comparison of execution time between different database systems
on JOIN query with small data sizes

Fig. 8. Comparison of execution time of SELECT query between different
database systems with small data sizes.
2) Effect of System SizeThis set of experiments compare
the scalability of different database systems w.r.t. increase in

HadoopDB with 16GB data size. Furthermore, SQLMR is 1.18/stem size. The number of physcial nodes varies from 1 to
times faster than Hive on average. 16. Each physical node runs four virtual machines (i.e., virtual

For large data size (Figure 12), the speed-up factors rddes). The data size per virtual node is fixed at 10GB. Figure
SQLMR against HadoopDB and Hive are even more signifl3 compares the result of SELECT (range sum) query, and
cant. SQLMR is 8.23 times faster than HadoopDB with 32GBigure 14 shows the result of JOIN query.
data size and 28.11 times faster with 1TB data size. SQLMRASs shown in Figure 13, HadoopDB exhibits unstable system

is 1.29 times faster than Hive on average. scalability while SQLMR and Hive behave similarly and both
10,000 22,000
9,000 | —o— MysQL ,x 20,000 +— —&— Hive
8,000 | —m@— MysQL(C) / 18,000 71— HadoopDB
2000 — 16,000 |
- Hive & 14000 || % SAUMR
@ 6,000 | <
a —— HadoopDB / g 12,000
g >000 1 £ 10,000
E ——#—— SQLMR / 5
g 4000 A £ 8,000
) // 3
S 3,000 g / Z 6,000
2 2,000 /.//% 4,000 -
1,000 — — 2,000
o _M o - ——a——a—a—
DataSize 32GB 64GB 128GB 256GB 512GB 772GB 1TB DataSize 3)GB 64GB 128GB 256GB 512GB 1TB

Fig. 9. Comparison of execution time of SELECT query between differefiig. 12. Comparison of execution time between different database systems
database systems with large query sizes. on JOIN query with large data sizes.

20,000
18,000 —— Hive

exhibit more stable scalability than HadoopDB. All of the
systems perform worst when the number of virtual node)(
(i.e. virtual machines) is four. This is because the four virtu¢ 16,000 | —s— HadoopDB

machines residing on the same physical node saturate Sou — 14 ggo /
utilization on that node. When the number of virtual machine§
) . 12,000
increases from 4 to 16, the workload is shared between mi /‘
tiple physical nodes, which increases parallelism and resu & 10:000 X

in decrease of execution time. When the number of virtui § 8000

machines increases to 32, the network becomes the bottleni 3 6,000 M

and causes increase in the execution time. 4,000

From Figure 13, we can see that the performance improv />(
ment ratio of SQLMR against HadoopDB ranges from 4.16 (2,000
node) to 4.95 (64 nodes). The performance improvement ra g

of SQLMR against Hive ranges from 1.67 to 2.05. #ofNode 1 2 4 8 16 32 6

et SQLMR /
AV

Execution Time (

6,000

Fig. 14. Comparison of system scalability between different database systems
on JOIN query, with fixed data size per node and varied number of nodes.

—@— Hive
5000 —|
HadoopDB

E 4,000 —| SQLMR the MapReduce'system for the data pgrtitioning phase. This
“ approach benefits from large parallelism provided by the
g 2,000 MapReduce system. However, it suffers large overhead when
= partitioning small data file. On the other hand, the performance
-§ 2000 advantage of SQLMR decreases when the data size increases.
g At 1TB data size, HadoopDB requires 70% partitioning time
=« L 000 pf SQLMR (Figure 17). The reason ?s that t!aplit function

' is not parallelized, hence the partitioning time of SQLMR

increases with the increase in data size. We expect the par-

of Noge 1) A g 16 . 6 titioning phase of SQLMR to be improved when a parallel

partitioning function is available.
In terms of total pre-processing time, SQLMR is 11.48 times
Fig. 13. Comparison of execution time between different database systefgster than HadoopDB with 512MB data size and 2.68 times
on SELECT query, with fixed data size per node and varied number of nOdﬁgSter than HadoopDB with 1TB data size. The averz.ige speed

Figure 14 also shows that HadoopDB exhibits unstabt® factor of SQLMR against HadoopDB over various data
system scalability while SQLMR and Hive behave similarly'Z€S 1S 3-94.

and both exhibit more stable Scalability than HadOOpDB. TP‘
main reason for HadoopDB's poor system scalability is théjpata | Upload Download | Upload to | Upload

HadoopDB uses PostgreSQL server on each local node as|size to HDFS | Partition | from HDFS | PostgreSQL | to HDFS | Partition
database storage without the support of distributed storg>12MB | 442 | 41.34 | 317 o 4 |

. 1GB 11.05 | 7867 9.12 9.08 11.05 | 1.13

system. HadoopDB uses thdap function to collect all the |gg 1346 | 8489 10.24 15.96 1346 | 1224
gueried data and send the whole set of data to the reducer|4cB 2361 | 98.71 21.30 30.19 2361 | 28.03
; ; ; «(8GB 4720 | 15325 | 42382 5887 4720 | 5829
computation of the flngl result. From F_lgure 13, we can StieeE | otss |2 | @k ey TR
that the performance improvement ratio of SQLMR againfzage | 210.84 | 356.71 | 20422 312.21 | 210.84 | 246.09

HadoopDB ranges from 6.03 (2 nodes) to 10.57 (64 node|e4GB | 444.87 | 558.89 | 436.46 656.03 | 444.87 | 518.50

- - : 1128GB | 029.78 | 729.02 | 911.44 | 140093 | 929.78 | 917.87
The performance improvement ratio of SQLMR against Hiv 2 o ot 55005 | 308437 |1.980.44| 1.376.80

ranges from 1.65 to 2.24. 512GB [3,962.86|2152901| 3088428 | 6,77158 |3,962.86]2,06520
3) Comparison of Data Preprocessingzigure 15 com- |772GB |5980.25|2,510.42| 5910.74 | 9,885.89 |5,980.25|3,097.80
pares the breakdown of data pre-processing overhead betw!1TB___18.:399.89]3,237.01] 8266.74 | 1505564 |8,399.89] 4,646.70
SQLMR and HadoopDB. Recall that HadoopDB requires four
phases of data pre-processing (Section IV-A), while SQLMRg. 15. Comparison of Data Preprocessing time between HadoopDB and
only requires two phases. For the partition phase, SQLMfRLMR
uses thesplit function in the Linux OS to partition database
table data into small files.
As shown in Figure 16, HadoopDB requires 140.44 times
more partitioning time than SQLMR with 512MB data size. In this paper, we have proposed a hybrid solution, called

This is because HadoopDB relies on thMap function in SQLMR, that combines the programming advantage of SQL

VI. CONCLUSION

Data Pre-Process (small data size)

600 | mUpload to HDFS
o £ Partition

VIlI. ACKNOWLEDGEMENTS

This work is supported in part by National Science Council
of Taiwan under grant number NSC-99-2218-E-001-009. We
would also like to thank the Academia Sinica Computing

E Download from HDFS

400
%m [Upload to PostgreSQL

wuv
[=]
o
o
Im

(1]

Execution Time (Sec.)
w
o
o

-y
<€ sq

[y
o
o

0
Data Size 512MB 1GB 2GB 4GB 8GB

16GB 2]

Fig. 16. Comparison of Data Preprocessing time between HadoopDB and
SQLMR with small data sizes
[3]

Data Pre-Process (large data size) [4]
(5]
35,000 m Upload to HDFS [6]
30,000 Partition [7]
S 25.000 & Download from HDFS [8]
g 25,
.‘;_’_ 20,000 /‘Qn. & Upload to PostgreSQL - []F?)]]
£ . R..
15,000 /-§ £ [11]
=2
'§ 10,000 oz 3
]
X 5,000

0

Data Size 32GB 64GB 128GB 256GB 512GB 772GB 118 [12]

[13]

[14]

Fig. 17. Comparison of Data Preprocessing time between HadoopDB da8]
SQLMR with large data sizes [16]
[17]

with the fault tolerant, heterogeneous cluster, scalable G
pabilities of MapReduce. Users of SQLMR can write data

management programs with familiar query language or to
run existing programs without modification. SQLMR pro-

vides a compiler to translate a SQL program to a MapRg9]
duce program, and execute it in a MapReduce system. To
achieve high performance in data processing, we also devise
a number of optimization techniques, including efficient data

pre-processing, data partitioning, data indexing, query resifl
caching, and optimization of the Hadoop runtime system. 21]

We conducted experiments using the widely used Sys-
bench benchmark to evaluate both data scalability and system
scalability of SQLMR. We compare SQLMR with MySQL,
MySQL_cluster and two MapReduce-based database system:
Hive and HadoopDB. Our experiment results demonstrate that
SQLMR achieves significant improvement in query processing
time, with improvement ratio of 13.35 against HadoopDB
and 1.41 against Hive for range SELECT queries, and 28.11
against HadoopDB and 1.29 against Hive for JOIN queries.
Our experiments also show that SQLMR has good scalability
W.r.t. increase in system size.

Center for providing computing and storage facilities.

REFERENCES

S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in Proceedings of the nineteenth ACM symposium on Operating systems
principles ser. SOSP '03. New York, NY, USA: ACM, 2003, pp.
29-43. [Online]. Available: http://doi.acm.org/10.1145/945445.945450
F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable:
A distributed storage system for structured dat®)CM Trans.
Comput. Syst.vol. 26, pp. 4:1-4:26, June 2008. [Online]. Available:
http://doi.acm.org/10.1145/1365815.1365816

J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” inProceedings of the 6th conference on Symposium on
Opearting Systems Design and Implementater. OSDI 04, vol. 6.
Berkeley, CA, USA: USENIX Association, 2004, pp. 10-10.

“Hadoop,” http://hadoop.apache.org/.

“Amazon simple storage service,” http://aws.amazon.com/s3/.
“Amazon simpledb,” http://aws.amazon.com/simpledb/.

“Microsoft sql azure,” http://msdn.microsoft.com/en-
us/windowsazure/sglazure/default.aspx.

“Mongodb,” http://www.mongodb.org/.

“Couchdb,” http://couchdb.apache.org/.

“Cassandra,” http://cassandra.apache.org/.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” Rroceedings of twenty-
first ACM SIGOPS symposium on Operating systems pringigies
SOSP '07. New York, NY, USA: ACM, 2007, pp. 205-220. [Online].
Available: http://doi.acm.org/10.1145/1294261.1294281

“Amazon relational database service,” http://aws.amazon.com/rds/.
“Microsoft sql server,” http://www.microsoft.com/sglserver/en/us/default.aspx.
“Nchc bigtable,” http://trac.nchc.org.tw/cloud/wiki/BigTable.

“Mysql database,” http://lwww.mysql.com/.

“Mysql cluster,” http://www.mysql.com/products/cluster/.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig latin:
a not-so-foreign language for data processing,Pioceedings of the
2008 ACM SIGMOD international conference on Management of,data
ser. SIGMOD '08. New York, NY, USA: ACM, 2008, pp. 1099-1110.
[Online]. Available: http://doi.acm.org/10.1145/1376616.1376726

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy, “Hive: a
warehousing solution over a map-reduce framewoiRibc. VLDB
Endow, vol. 2, pp. 1626-1629, August 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1687553.1687609

A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz,
and A. Rasin, “Hadoopdb: an architectural hybrid of mapreduce
and dbms technologies for analytical workloads?roc. VLDB
Endow, vol. 2, pp. 922-933, August 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1687627.1687731

“Oracle database,” http://www.oracle.com/us/products/database/index.html.
L.-Y. Ho, J.-J. Wu, and P. Liu, “Optimal algorithms for cross-rack
communication optimization in mapreduce framework,” In press.

