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Abstract—As the size of data set in cloud increases rapidly,
how to process large amount of data efficiently has become a
critical issue. MapReduce provides a framework for large data
processing and is shown to be scalable and fault-tolerant on
commondity machines. However, it has higher learning curve
than SQL-like language and the codes are hard to maintain and
reuse. On the other hand, traditional SQL-based data processing
is familiar to user but is limited in scalability. In this paper, we
propose a hybrid approach to fill the gap between SQL-based
and MapReduce data processing.

We develop a data management system for cloud, named
SQLMR. SQLMR complies SQL-like queries to a sequence of
MapReduce jobs. Existing SQL-based applications are compat-
ible seamlessly with SQLMR and users can manage Tera to
PataByte scale of data with SQL-like queries instead of writing
MapReduce codes. We also devise a number of optimization tech-
niques to improve the performance of SQLMR. The experiment
results demonstrate both performance and scalability advantage
of SQLMR compared to MySQL and two NoSQL data processing
systems, Hive and HadoopDB.

Index Terms—cloud data management, NoSQL framework,
SQL to NoSQL translation and optimization, MapReduce

I. I NTRODUCTION

The advent of cloud computing and hosted software as
a service is creating a novel market for data management.
Cloud-based DB services are starting to appear, and have the
potential to attract customers from very diverse sectors of the
market, from small businesses aiming at reducing the total cost
of ownership, to very large enterprises seeking high-profile
solutions spanning on potentially thousands of machines.
At the same time, due to the ever increasing size of data

sets, traditional parallel database solution can be prohibitively
expensive. To be able to perform this type of analysis in
a cost-effective manner, several companies have developed
distributed data storage and processing systems on large clus-
ters of shared-nothing commodity servers, including Google
File System [1], BigTable [2], MapReduce [3], Hadoop [4],
Amazon’s Simple Storage Service (S3) [5], SimpleDB [6],
Microsoft’s SDS Cloud database [7]. There are also various
NoSQL databases used to manage large amounts of data, in-
cluding MongoDB [8], Apache CouchDB [9], Cassandra [10]
and Dynamo [11].

Many of these cloud databases are designed to run on a
cluster of hundreds to thousands of nodes, and are capable of
serving data ranging from hundreds of terabytes to petabytes.
Compared with traditional relational database servers, such
cloud databases may offer less querying capability and often
weaker consistency guarantees, but scale much better by
providing built-in support on availability, elasticity, and load
balancing.

On the other hand, data management tools are an important
part of relational and analytical data management business
since business analysts are often not technically advanced and
do not feel comfortable interfacing with low-level database
software directly. These tools typically interface with the
database using ODBC or JDBC, so database software that want
to work these products must accept SQL queries. Therefore,
a novel technology to combine DBMS capability with Cloud-
scale scalability is highly desirable.

In this paper, we propose a hybrid solution, called SQLMR,



that combines the programming advantage of SQL with the
fault tolerant, heterogeneous cluster, scalable capabilities of
MapReduce. Users of SQLMR can write data management
programs with familiar query language or to run existing
programs without modification. SQLMR provides a compiler
to translate a SQL program to a MapReduce program, and ex-
ecute it in a MapReduce system. To achieve high performance
in data processing, we also devise a number of optimization
techniques.

The major contributions of this work are summarized as
follows.

• A SQL to MapReduce compiler and runtime framework,
called SQLMR. Currently, SQLMR supports a subset
of SQL queries that, to our knowledge, are sufficient
to support various large-scale analytical data manage-
ment applications, such as on-line analytical processing
(OLAP), data mining, etc.

• A low-overhead data file construction technique that
enables fast dynamic conversion of SQL database files to
HDFS (Hadoop distributed file system) files that can be
accepted as input files by the MapReduce runtime engine.
This technique significantly reduces data conversion time
between SQL and MapReduce.

• Effective database partitioning and indexing techniques
for fast locating of queried data in HDFS and reducing
disk I/O for range queries.

• A query result caching mechanism that can avoid re-
processing of redundant queries.

• Optimization techniques for Hadoop’s MapReduce run-
time system to further reduce query processing time.

We conduct extensive experiments to evaluate the effective-
ness of SQLMR. The comparison withHive andHadoopDB,
two well-known MapReduce based NoSQL database managent
systems, and MySQL and MySQLcluster demonstrate the
performance and scalability advantage of SQLMR.

The rest of the paper is organized as follows, section II
describes the related data management systems, section III
presents the system architecture of SQLMR and the interaction
between the components of the system. Section IV presents
the optimization techniques we devise forSQLMR. Section V
reports our experiment results, and Section VI gives some
concluding remarks.

II. RELATED WORK

Current commercial Cloud DB products such as Amazon’s
Simple Storage Service (S3) [5], SimpleDB [6] and Relational
Database Service (RDS) [12], Microsoft’s SQL server [13] and
SDS [7] Cloud database, all claim to support SQL. However,
most of them do not satisfy many of the desirable properties
of Cloud DBMS. For example, Amazon’s SimpleDB only
supports a small subset of SQL queries. It does not support
aggregation and joins types of complex queries. Microsoft’s
SDS, although supports full SQL functionality, is far more
inferior to traditional SQL servers in both performance and
scalability.

Bigtable [2] is a share-nothing archtecture and it is column-
oriented, which is optimized for read. It is designed for
high availability and high performance for massive read and
write operations on a hundred-to-thousand machines cluster.
It provides low level API for data manipulation. It also
provides a self-managing policy to achieve load balancing and
dynamic addition/removal of servers. However, Bigtable does
not support SQL query. It only supports query by row key [14].
This makes it harder for users to deploy existing applica-
tions which work on transitional databases. Moreover, since
general-purpose applications may concurrently access a row
but different columns, supporting only single-row transaction
may degrade the performance. It may need a more fine-grain
lock rather than a single row lock to allow concurrent access
on a row but different columns. Since Bigtable is built on
Google File System, it can provide good scalability and fault
tolerance. However, it lacks support to interface with existing
data management tools.

S3 [5] provides a simple web service interface to store and
retrieve data. It gives developer the highly scalable, reliable
and fast data accessing. Unlike S3, SimpleDB does not store
raw data, it takes the data as input and expands it to create
indices across multiple dimensions, which enables fast query
of data. In addition, S3 uses dense storage device to store large
object and SimpleDB uses less dense device to store small bits
of data.

The structured data of SampleDB is organized in domains,
like a spreadsheet, in which user can insert data, retrieve
data and run queries. Each domain consist of items which
are described by attribute name-value pairs. An attribute can
have multiple values. SimpleDB keeps multiple copies of each
domain. When the data is updated, all copies of the data are
updated. However, it takes time for the update to propagate to
all storage locations. The data will eventually be consistent, but
an immediate read might not show the change. SimpleDB may
be suitable for application like shopping cart. For applications
which need strict consistency, SimpleDB is not a feasible
solution. Moreover, SimpleDB does not support aggregate
operations like join, group and sorting. The developers have
to implement these operations by themselves.

Amazon RDS [12] is a web service to set up, operate
and scale a relational database in the cloud. It provides
full capabilities of MySQL database (5.1). This means the
applications which work with existing MySQL databases can
work seamlessly with Amazon RDS.

Traditional DBMS like MySQL [15] has been widely used
in many domains. However, to statisfy ACID properties, it uses
locking mechanism to guarantee concurrent data processing,
which limits the scalability of such system. Cloud DBMS has
more relaxed ACID constraints, for example, many NoSQL
databases only guarantee eventually consistency and result in
greater scalability.

MySQL cluster [16] is a share-nothing, distributed real-
time database. It uses synchronous replication through a two-
phase commit mechanism and it guarantees data availability. It
claims the fast data accessing by storing the indexed columns



in main memory and the ability to service tens of thousands
of transactions per second. MySQLcluster provides support
to interface with current data management tools. However, its
scalability in both data size and machine size is not acceptable
for cloud computing.

Declarative language like SQL are often unnatural and
restrictive to programmers, in an other way, the code written
by procedural language like MapReduce is hard to maintain
and reuse. Several efforts have been devoted to combining the
DBMS capability and the scalability of MapReduce, including
Pig, Hive and HadoopDB, as described in the following.

Yahoo! develops a new language, Pig Latin [17] to fit a
sweet spot between these two sides. They also develop Pig
compiler to compile Pig Latin language to a plan of MapRe-
duce jobs. However, legacy SQL codes are not compliant with
Pig Latin, which limits the portability of existing applications
to Pig.

Similar to Pig, Hive [18] also provides a SQL-like query
language named HiveQL, which makes it easy to be compat-
ible with existing applications using SQL queries. Hive also
compiles HiveQL to map-reduce code. Compared with Pig,
Hive produces more efficient map-reduce code.

HadoopDB system [19] is a data management system that
combines DBMS capability and MapReduce techniques. It
targets analytical workloads on structured data and is designed
to run on commodity machines. HadoopDB inherits the scal-
ability of Hadoop and the authors claim it achieves superior
perofomance compared with current parallel DBMS.

The major differences between these hybrid data man-
agement systems (SQLMR, Pig, Hive and HadoopDB) can
be summarized as follows. We devise a number of novel
optimization techniques to improve performance of query
processing in SQLMR: (1) a low-overhead data file construc-
tion technique that enables fast dynamic conversion of SQL
database files to HDFS (Hadoop distributed file system) files
that can be accepted as input files by the MapReduce runtime
engine. This technique significantly reduces data conversion
time between SQL and MapReduce, (2) a set of effective
database partitioning and indexing techniques for fast locating
of queried data in HDFS and reducing disk I/O for range
queries, (3) a query result caching mechanism that can avoid
re-processing of redundant queries, and (4) optimization tech-
niques for Hadoop’s MapReduce runtime system to further
reduce query processing time. Our experiment results in later
section demonstrate the performance and scalability advantage
of SQLMR against these three systems.

III. SYSTEM ARCHITECTURE

In this section, we describe the SQLMR system architecture.
Since most users are familiar with SQL-like languages, the
goal of the SQLMR system is to design a framework that
combines the programming advantage of SQL and the scala-
bility and fault tolerance of MapReduce. Figure 1 illustrates
the concept of SQLMR. The system accepts SQL queries as
input and translates them to a sequence of MapReduce jobs.

When the MapReduce jobs are completed, the system returns
the query results to the user in SQL form.

Figure 1 depicts the system architecture of SQLMR. There
are four main components in SQLMR:SQL-to-MapReduce
Compiler, Query Result Manager, Database Partitioning and
Indexing Manager, and theOptimized Hadoopsystem. The
database partitioning/indexing manager maintains the infor-
mation of table scheme, indexed files and metadata. The other
three components interact with database partitioning/indexing
manager for acquiring necessary information when processing
a query. For simplicity, we did not draw arrows between
database partitioning/indexing manager and the other three
components in Figure 1. We describe each component in the
following paragraphs.

Fig. 1. System architecture of SQLMR.

a) SQL-to-MapReduce Compiler:. The compiler takes
SQL queries as input and translates them to a sequence of
map-reduce jobs. In the following example, let studenthw
be a database table containing 3 columns (id, hw, score). The
following SQL query counts the number of students who’s hw
1 score is higher than 80:

SELECT COUNT(s.id)
FROM student_hw as s
WHERE s.score > 80 AND s.hw=1

The SQL query is translated to a pair of map-reduce job.
First, the map phase reads records from the studenthw table
and produces an output record with two parts. The first part
is called the ”key”, which is populated with student id(s.id)
who’s hw1 score is higher than 80. The second is the ”value”,
which simply contains ”1”. The reduce phase then reads the
key-value pairs and adds all the ”1”s to obtain the total count.
The query result returned by SQLMR is a value that represents
the total count. Note that the number of mappers and reducers
to execute a query are decided by the underlying Hadoop



runtime system. In the future, we may provide the functionality
for users to decide the number of mappers and reducers for
processing a query.

Table I outlines the set of query operations currently sup-
ported in SQLMR. Note that these query operations are read-
only. This is because, unlike transactional data processing,
analytical data processing (such as OLAP) usually reads
and processes large input data sets without modifying them.
Currently, SQLMR connects with multiple SQL servers to
form a hybrid data management system, in which smaller-
size queries and write operations are processed by the SQL
servers, while large-size read operations are processed by
SQLMR. The management of transactional data processing on
the multiple SQL servers and the interaction between SQLMR
and SQL servers in the hybrid system is out of the scope of
this paper due to page limit.

TABLE I
THE QUERY OPERATIONS CURRENTLY SUPPORTED INSQLMR

Type Supported Functions

Basic Operations
SELECT
WHERE
ATTRIBUTES (Single, Multiple, *)

Computing Operations

SUM
DISTINCT
JOIN
COUNT
JOIN MULTI-TABLE
SUB-QUERY

Condition Operations

GROUP BY
BETWEEN-AND
MULTI-CONDITION
ORDER BY (DESC, ASC)
DATA OPERATION

b) Query Result Manager:. The query result runtime
system caches the result for each query. When a new query
enters SQLMR, the compiler first passes the query to Query
Result Manager to compare the query with previous ones in
the log. If there are valid cached result for that query, the result
is returned to user without re-processing the query. Otherwise,
the compiler will parse the query and generates optimized
MapReduce code. The cached results will be invalid when
a user updates or deletes data from the database.

c) Database Partitioning and Indexing Manager
(DPIM).: This system component manages data files and
indexing. When new data is added into the system, DPIM
partitions the new data and creates index for the new data.
With smart partitioning and indexing, SQLMR can do fast
locating of queried data blocks as well as identifying exact
data blocks that need be accessed in range query in order to
reduce disk I/O. The partitioning and indexing techniques are
what distinguish our work from other related efforts, which
typically export the entire data file to the MapReduce runtime
system.

d) Optimized Hadoop.:Hadoop system is a software
framework for distributed processing of large data sets on
compute clusters. Our Compiler generates optimized map-
reduce jobs and execute the jobs on the Hadoop system. We

devise a set of optimizations, such as cross-rack communica-
tion optimization, to improve the performance of the Hadoop
system.

IV. PERFORMANCEOPTIMIZATION

A. Data Partitioning and Pre-processing

In this section, we describe SQLMR’s approch to transfer-
ring data from traditional RDBMS to the Hadoop MapReduce
system. We also give an overview of HadoopDB’s approach,
which will be used as a basis for comparison in our ex-
periments. Figure 2 is the flowchart of HadoopDB. At the
beginning, the user needs to export all data from PostgreSQL
to a comma-separated value (CSV) text file and put the file
in HDFS for subsequent hash-partitioning pre-processing. The
purpose of hash-partitioning is to push more query logic into
databases (e.g. joins). This can be done in two phases. First,
the data file needs to be loaded into HDFS. Then, a HadoopDB
custom-made Hadoop job, named GlobalHasher, re-partitions
data into a specified number of partitions (e.g. number of nodes
in a cluster). The next step is to download all partitioned data
from HDFS to the local disk and import the split data to
local PostgreSQL server on each node. In contrast, in our
SQLMR framework, all database files are stored in HDFS
directly without having to pre-process them. This design can
reduce the pre-processing time significantly.

Although the hybrid design of HadoopDB allows users to
access PostgreSQL database directly, there are two problems
that need be overcome. First, in HadoopDB each PostgreSQL
server only stores a partition of the database. Therefore, the
user has to merge all partial query results returned from
each database partition to get the final result. Second, users
need to recovery the system manually should a PostgreSQL
Server crashes. In comparison with HadoopDB, our SQLMR
framework stores all data in HDFS, which saves the user the
burden of gathering the partial query results. The process of
recovery can also be done by Hadoop MapReduce System
automatically. Furthermore, storing data in HDFS inherits the
fault-tolerant capability provided by HDFS. HDFS replicates
the data remotely to ensure data availability if machines
crash. SQLMR relies on HDFS for data replication, and the
replication level of data is also decided by HDFS.

In order to further reduce the time for data loading and speed
up data processing, we develop a number of optimizations
in the SQLMR framework, as shows in Figure 3. At the
beginning, SQLMR analyzes the table schema to get the data
size of one record. Next, SQLMR reads all data from database
server and partitions the data according to the analyzed schema
and block size of HDFS. Finally, the hashed and partitioned
table data is stored in HDFS. The details of partition will be
described in next subsection.

HadoopDB implements a hybrid database system by devel-
oping a Database Connector to retrieve data from traditional
PostgreSQL database. The Database Connector in HadoopDB
is similar to a normal database client implemented in JDBC
(Java Database Connectivity). During the HadoopDB experi-
ment, we found that HadoopDB takes a lot of time to retrieve



data from PostgreSQL and causes very heavy I/O loading. In
order to overcome the issue, we also develop a low-overhead
data file construction technique that enables fast dynamic
conversion of SQL database files to the format that can be
accepted as input files by the MapReduce runtime engine.
The file construction technique implements the InputFormat
interface of Hadoop MapReduce system. The interface is
called by Mapper function to read the needed data from
HDFS and can be designed to read any data in any format.
In SQLMR, we implements a custom InputFormat Java class,
labeled as Data Connector in Figure 4, which can read MySQL
database files directly without having to export database as text
files. This technique significantly reduces data conversion time
between SQL and MapReduce.

The data connector assigns one mapper per SQL DB,
because assigning too many mappers to one host will result
in too heavy disk I/O access and decrease the throughput.
In addition, the data connector balances the workload on
the mappers using the following strategy. First, each mapper
connects to every SQL DB and issues ”SELECT COUNT” to
get the total number of needed data stored in each server. Next,
each mapper randomly selects the SQL DB it will retrieve data
from. Finally, each mapper retrieves approximately the same
amount of partial data from its selected SQL DB using the
”SELECT LIMIT” command.

Fig. 2. The SQL to HDFS data loading process in HadoopDB.

Fig. 3. The SQL to HDFS data loading process in SQLMR.

B. Data Indexing

Index is a data structure to facilitate and improve the
performance of data retrieving and searching in traditional
DBMS. For cloud DBMS, it becomes even critical since the

Fig. 4. The Data Connector that enables reading data from database files.

stored data is numerous and we need to identify the data we are
interested in very soon. In SQLMR, we employ two indexing
techniques to accelerate data searching. SQLMR chooses a
suitable index technique depending on the characteristics of
the database. We next introduce the two index techniques.

1) Partition Index: In this approach, the files storing
database tables are split into fixed length files. The size can
be determained by the size of block in HDFS, such that a
file would be completely contained in one block. Each file
contains the records with a range of series keys. The range
of keys is decided by the schema of table and the size of
a file. For example, in Figure 5, there are 4 columns in a
table. After table schema analysis, a record is 2KB and a
file is 64MB. Then, SQLMR will partition one table data file
into multiple partitioned table data files. A file will contain a
series of data rows in which the keys range from 1 to 32,768.
The next file will contain data rows with keys ranging from
32,769 to 65,537, and so on. The insertion, deletion and search
operation for a key are all constant timeO(1), because the file
contains the corresponding record and the offset in a file can
be calculated by the key of the target record. This approach is
suitable for data with dense key space, since we pre-allocate
the space for a record in a file. For general cases, we use B+
tree index.

Fig. 5. Illustration of data partitioning in SQLMR.



2) B+ tree Index: B+ tree index are extensively and
commonly used in database indexing. Many open-source and
commercial database product, like Oracle [20] and MySQL,
apply B+ tree to index the data. It is a general approach and
applicable to various applications. In SQLMR, the B+ tree
structure is maintained by the HDFS master, and we modify
the DFSClient module in Hadoop such that we can query the
block loaction by a key through the tree. The search, deletion,
and insertion are all logarithmic amortized timeO(logN)
whereN is the number of nodes in the tree. In order to build
the index tree, we need to query the master node for the block
information. The master node returns all the locations of a
block, including the master copy and its replicas. Our B+ tree
node stores all the replicated blocks information to maintain
high availability of data blocks information.

The query process is as follows. SQLMR reveives a query
of a search key and finds the corresponding block through the
tree. The internal node of the tree only stores the information
of key for seaching, and the leaf node of the tree stores the
data of block information, including the block ID and location.
Figure 6 illustrates the structure of the B+ tree. To facilitate
block mergence and split, the keys in a block have to be sorted.
We sort the key in a block when the blocks is merged or split
to reduce the extra overhead of sorting and since the number
of keys in a block is bound by a constantC, where

C =
the size of block

the size of a record
Therefore, the extra time complexity of sorting isO(1).

Fig. 6. The structure of B+ tree.

C. Hadoop Optimization

User query is compiled as MapReduce jobs and run on
Hadoop, therefore, the performance of Hadoop framework is
critical to SQLMR perofrmance. We employ ours previous
work on cross-rack optimization in Hadoop framework to im-
prove the performance of Hadoop. We give a brief introduction
to this optimization technique in the following.

MapReduce employs all-to-all communication model be-
tween mappers and reducers. This results in saturation of
network bandwidth of top-of-rack switch in shuffle phase and

straggles some reducers and increases job execution time. In
current Hadoop implementation, the placement of reducers
is random which may result in network load unbalancing
and make the reducers on a busy rack become stragglers.
In our previous work, we model the traffics in shuffle phase
and give two optimal algorithms to balance the network load
among racks by placing the reducers to racks properly. The
experiment shows the improvement achieves 32% in PageRank
application.

In [21], we propose aReducer Placement Problem (RPP)
which is defined as follows. Give the number of racks, the
number of mappers on each rack and the number of reducers
to schedule, how do we determine the number of reducers run
on each rack? We give a simplified traffics model and derive an
objective funtion to represent the amount of traffics of a rack.
In this model, the traffics of a rack is a function of number
of reducers (ri) run on it and we formulateRPPas a minmax
optimization problem.

Formally, suppose we haveN racks, M mappers and
R reducers, the number of mapppers on each rack
{m1,m2, . . . ,mN} are known. The traffics of racki is
fi(ri), we want to find the number of reducers on each rack
{r1, r2, . . . , rN} such that

min{ argmax
ri,i∈{1,··· ,N},

∑
i
ri=R

{f1(r1), · · · , fN (rN )} }

One of our optimal algorithm is in greedy manner. It places
one reducer to a rack at a time. The main idea is that, always
place the reducer on the rack with minimum traffics currently.
Algorithm 1 demonstrates the pseudo code of our greedy
algorithm. Note that we use an arraystate tuple to store the
number of reducers on each rack. For example, if we have
four racks and ten reducers to schedule, our greedy algorithm
reutrnsstate tuple = [1, 2, 3, 4], whcih means placing one
reducer in rack 1, two in rack 2, three in rack 3 and four in
rack 4.

We choose five popular and representative applications as
our benchmark suite and conduct the experiment in a four-rack
cluster. The evaluation metric is the speedup rate compared
with un-optimized Hadoop. Table II shows the speedup of
each application. The best improvement is PageRank which
achieves 32% and FPM does not have significant improve-
ment. This is because FPM has a very skewed distribution in
intermediate data size and our traffic model assumes the size of
intermediate data is a constant. In constrast, other applications
have approximately the same size of intermediate data.

Benchmark Speedup (%)
Grep 9.35
WordCount 12.37
PageRank 32.84
K-mean 14.7
FPM 1.76

TABLE II
SPEEDUP OFBENCHMARKS



Algorithm 1 Greedy Algorithm for RPP
Require: The number of mappers on each rack :
{m1,m2, . . . ,mN}

Ensure: A reducer state tuple: {r1, r2, . . . , rN}
N ← number of racks
M ← number of total mappers
R ← number of total reducers
state tuple[N ] ← {0, 0, . . . , 0}
for i = 1 to R do
minimal ← ∞
for j = 1 to N do
traffic = (M − 2mj) · (state tuple[j] + 1) +mjR
if traffic < minimal then
candidate = j

end if
end for
state tuple[candidate] + +

end for
return state tuple

V. EXPERIMENT

A. Experiment Setting

In the experiment, we use SysBench as database benchmark
and compare SQLMR with other database systems, including
standalone MySQLon Ceph, in which data files are stored
on the Ceph distributed file system, MySQLcluster, and two
MapReduce-based systems: Hive and HadoopDB. SysBench is
a modular, cross-platform and multi-threaded benchmark tool
for evaluating OS parameters that are important for a system
running a database application under intensive load. We use
the OLTP module of SysBench to benchmark a real database
performance. OLTP can generate a lot number of sequential
data indexed by column id. It can also generate transactional
queries.

Since Hive and HadoopDB only handle read operations
with the MapReduce framework, in our experiments, we only
compare performance of read operations, including range
sum and join queries. We use Ceph DFS as the underlying
distributed file system for MySQL in order to allow MySQL
to accommodate large dataset. MySQL cluster loads all data
into memory to achieve fast response time. However, the
total size of memory limits its scalability. Hive is a data
warehouse infrastructure built on top of Hadoop. Hive defines
a simple SQL-like query language that enables users familiar
with SQL to query the data without writing MapReduce
codes. HadoopDB is an architectural hybrid of MapReduce
and DBMS technologies for analytical workloads.

The experiment contains two parts: data scalability and
system scalability. The former is to show the scalability w.r.t.
increase in data size while the number of nodes is fixed at
10 and the latter to show the scalability w.r.t. increase in
system size with fixed 10GB data size per node and totally
64 nodes. Each node contains 2 CPU cores rated at 2.27GHz,
4GB memory, 200GB disk space and all of them are connected

by one Gigabit Ethernet switch. The result time of each
experiment is measured by the ’time’ command and each data
point is the average of 10 runs.

B. Experiment results

1) Effect of Data Size:This set of experiments compare
the scalability w.r.t. increase in data size. The number of nodes
is fixed at 10, and the data size varies from 512MB to 1TB.

Figure 7 shows the execution time of MySQL,
MySQL cluster, Hive, HadoopDB and SQLMR onSELECT
operation with different data sizes. Figure 8 and Figure 9
give graphical illustrations of the performance comparison.
The SQL query is as follows.

SELECT sum(id) FROM table
WHERE id >= max(id)/2 and id <= max(id)

For small data size (Figure 8), we found that MySQL and
MySQL cluster outperform MapReduce-based systems when
the data size is smaller than 4GB. When the data size increases
beyond 8GB, both of them are outperformed by MapRedue-
based systems. The reason is that MySQL does not paral-
lelize processing of single query. MySQLcluster employs in-
memory database technique, which writes all data to memory
before starting database operation and thus is limited by the
size of the physical memory. In our experiment environment,
MySQL cluster would crash due to out of memory when the
data size reaches 64GB.

In Figure 9, MySQL crashes when the data size reaches
772GB. The reason is that a MySQL data table can only
accommodate232 data records. 772GB is the maximum data
size that can be generated by theSysbench benchmark
because of such constraint. For MapReduce-based systems,
we found that the execution time of HadoopDB increases
dramatically with the increase in data size. The reason is
that HadoopDB incurs higher I/O workload caused by the
multi-phase data pre-processing described in Section IV-A.
SQLMR consistently outperforms HadoopDB because of the
performance improvement by various optimizations described
in Section IV. SQLMR is 2.82 times faster than HadoopDB
with 32GB data size and 13.35 times faster than HadoopDB
with 1TB data size. Furthermore, SQLMR is 1.41 times faster
than Hive on average.

Figure 10 shows the execution time of Hive, HadoopDB
and SQLMR onJOIN operation with different data sizes.
Figure 11 and Figure 12 give graphical illustrations of the
performance comparison. The SQL query is as follows.

SELECT sum(tabl1.id) FROM table1 JOIN table2
ON (table1.id = table2.id)
WHERE table2.id >= max(table2.id)/2 and

table1.id <= max(table1.id)

For small data size (Figure 11), we found that the execution
time of HadoopDB increases dramatically with the increase
in data size. The reason is that HadoopDB incurs higher
I/O workload caused by the multi-phase data pre-processing
described in Section IV-A. SQLMR is 1.47 times faster than
HadoopDB with 1GB data size and 3.55 times faster than



Fig. 7. Comparison of execution time between different database systems
on SELECT query with different query sizes.

Fig. 8. Comparison of execution time of SELECT query between different
database systems with small data sizes.

HadoopDB with 16GB data size. Furthermore, SQLMR is 1.18
times faster than Hive on average.

For large data size (Figure 12), the speed-up factors of
SQLMR against HadoopDB and Hive are even more signifi-
cant. SQLMR is 8.23 times faster than HadoopDB with 32GB
data size and 28.11 times faster with 1TB data size. SQLMR
is 1.29 times faster than Hive on average.

Fig. 9. Comparison of execution time of SELECT query between different
database systems with large query sizes.

Fig. 10. Comparison of execution time between different database systems
on JOIN query with different query sizes.

Fig. 11. Comparison of execution time between different database systems
on JOIN query with small data sizes

2) Effect of System Size :This set of experiments compare
the scalability of different database systems w.r.t. increase in
system size. The number of physcial nodes varies from 1 to
16. Each physical node runs four virtual machines (i.e., virtual
nodes). The data size per virtual node is fixed at 10GB. Figure
13 compares the result of SELECT (range sum) query, and
Figure 14 shows the result of JOIN query.

As shown in Figure 13, HadoopDB exhibits unstable system
scalability while SQLMR and Hive behave similarly and both

Fig. 12. Comparison of execution time between different database systems
on JOIN query with large data sizes.



exhibit more stable scalability than HadoopDB. All of the
systems perform worst when the number of virtual nodes
(i.e. virtual machines) is four. This is because the four virtual
machines residing on the same physical node saturate source
utilization on that node. When the number of virtual machines
increases from 4 to 16, the workload is shared between mul-
tiple physical nodes, which increases parallelism and results
in decrease of execution time. When the number of virtual
machines increases to 32, the network becomes the bottleneck
and causes increase in the execution time.

From Figure 13, we can see that the performance improve-
ment ratio of SQLMR against HadoopDB ranges from 4.16 (1
node) to 4.95 (64 nodes). The performance improvement ratio
of SQLMR against Hive ranges from 1.67 to 2.05.

Fig. 13. Comparison of execution time between different database systems
on SELECT query, with fixed data size per node and varied number of nodes.

Figure 14 also shows that HadoopDB exhibits unstable
system scalability while SQLMR and Hive behave similarly
and both exhibit more stable scalability than HadoopDB. The
main reason for HadoopDB’s poor system scalability is that,
HadoopDB uses PostgreSQL server on each local node as the
database storage without the support of distributed storage
system. HadoopDB uses theMap function to collect all the
queried data and send the whole set of data to the reducer for
computation of the final result. From Figure 13, we can see
that the performance improvement ratio of SQLMR against
HadoopDB ranges from 6.03 (2 nodes) to 10.57 (64 nodes).
The performance improvement ratio of SQLMR against Hive
ranges from 1.65 to 2.24.

3) Comparison of Data Preprocessing:Figure 15 com-
pares the breakdown of data pre-processing overhead between
SQLMR and HadoopDB. Recall that HadoopDB requires four
phases of data pre-processing (Section IV-A), while SQLMR
only requires two phases. For the partition phase, SQLMR
uses thesplit function in the Linux OS to partition database
table data into small files.

As shown in Figure 16, HadoopDB requires 140.44 times
more partitioning time than SQLMR with 512MB data size.
This is because HadoopDB relies on theMap function in

Fig. 14. Comparison of system scalability between different database systems
on JOIN query, with fixed data size per node and varied number of nodes.

the MapReduce system for the data partitioning phase. This
approach benefits from large parallelism provided by the
MapReduce system. However, it suffers large overhead when
partitioning small data file. On the other hand, the performance
advantage of SQLMR decreases when the data size increases.
At 1TB data size, HadoopDB requires 70% partitioning time
of SQLMR (Figure 17). The reason is that thesplit function
is not parallelized, hence the partitioning time of SQLMR
increases with the increase in data size. We expect the par-
titioning phase of SQLMR to be improved when a parallel
partitioning function is available.

In terms of total pre-processing time, SQLMR is 11.48 times
faster than HadoopDB with 512MB data size and 2.68 times
faster than HadoopDB with 1TB data size. The average speed
up factor of SQLMR against HadoopDB over various data
sizes is 3.94.

Fig. 15. Comparison of Data Preprocessing time between HadoopDB and
SQLMR

VI. CONCLUSION

In this paper, we have proposed a hybrid solution, called
SQLMR, that combines the programming advantage of SQL



Fig. 16. Comparison of Data Preprocessing time between HadoopDB and
SQLMR with small data sizes

Fig. 17. Comparison of Data Preprocessing time between HadoopDB and
SQLMR with large data sizes

with the fault tolerant, heterogeneous cluster, scalable ca-
pabilities of MapReduce. Users of SQLMR can write data
management programs with familiar query language or to
run existing programs without modification. SQLMR pro-
vides a compiler to translate a SQL program to a MapRe-
duce program, and execute it in a MapReduce system. To
achieve high performance in data processing, we also devise
a number of optimization techniques, including efficient data
pre-processing, data partitioning, data indexing, query result
caching, and optimization of the Hadoop runtime system.

We conducted experiments using the widely used Sys-
bench benchmark to evaluate both data scalability and system
scalability of SQLMR. We compare SQLMR with MySQL,
MySQL cluster and two MapReduce-based database system:
Hive and HadoopDB. Our experiment results demonstrate that
SQLMR achieves significant improvement in query processing
time, with improvement ratio of 13.35 against HadoopDB
and 1.41 against Hive for range SELECT queries, and 28.11
against HadoopDB and 1.29 against Hive for JOIN queries.
Our experiments also show that SQLMR has good scalability
w.r.t. increase in system size.
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