
Processor-Tracing Guided Region Formation 
in Dynamic Binary Translation

Ding-Yong Hong, Jan-Jan Wu, Yu-Ping Liu, Sheng-Yu Fu, and Wei-Chung Hsu

Academia Sinica

National Taiwan University



 Background and Motivation
 Region formation

 Processor tracing

 Design
 Region formation guided by processor tracing

 Evaluation Results

 Conclusion

Outline

1/22



 Region formation is an important step in dynamic 
binary translation (DBT)
 Find hot execution codes for translation/optimization

 Two reasons to select hot regions
 Avoid compiling cold code so as to reduce system overhead

 Gain the most benefits from the optimization

Motivation

2/22



 Region formation has two steps:
 Profiling code segments to verify the “hotness” of regions

 Selecting code segments to form regions

 A dual issue in designing region formation algorithm
 How to effectively detect hot regions and remain low 

overhead?

Motivation

3/22



 Instrumentation is a common way to find hot regions
 Basic block profiling

 Edge profiling

 Path profiling

 NET (next executing tail)

 NETPlus

 MRET2

 LEI (last execution iteration)

Region Formation with Instrumentation

Insert profiling code in
all blocks or edges 

Selectively insert profiling
code, e.g. loop headers

4/22



Motivation

(high)

(high)

Region formation overhead

Region quality

Basic block profiling

Edge profiling

LEI

??

NET
NETPlus
MRET2

5/22



Motivation

(high)

(high)

Region formation overhead

Region quality

Basic block profiling

Edge profiling

NET
NETPlus
MRET2

LEI

Processor tracing

5/22



 A hardware function that can track program 
execution flows, e.g.
 Source and target addresses of branches

 Execution mode transition

 Processor power state changes

 Transactional memory commit/abort path

Processor Tracing

Itanium BTB Intel BTS
Intel LBR

Intel PT

ARM CoreSightPowerPC BHRB

* BTB (branch target buffer), LBR (last branch record), BTS (branch trace store)
* BHRB (branch history rolling buffer) 6/22



Example: Intel PT

PSB (0x100)   # start from 0x100

TNT (1)           # taken

TNT (1)           # taken

TNT (1)           # taken

TNT (0)           # not taken

IntelPT packets:

0x100:  add

add

0x200:  jne 0x100

a loop runs 4 iterations

7/22



Example: Intel PT

packet decodingbinary disassembling

jne: 0x200  0x100

jne: 0x200  0x100

jne: 0x200  0x100

jne: 0x200  0x205

0x100:  add

add

0x200:  jne 0x100

a loop runs 4 iterations

branch history

PSB (0x100)   # start from 0x100

TNT (1)           # taken

TNT (1)           # taken

TNT (1)           # taken

TNT (0)           # not taken

IntelPT packets:

7/22



 Processor-tracing guided region formation
 Leverage branch history to help form regions

 No instrumentation

 High-quality region formation

Our Solution

8/22



 Processor-tracing guided region formation
 Leverage branch history to help form regions

 No instrumentation

 High-quality region formation

 Challenges
 How to decide which blocks to be selected in a region

 When to start processor tracing

 Overhead of binary disassembling and packet decoding

Our Solution

8/22



Processor-Tracing Guided Region Formation 

8/22



 Region formation conducted by a helper thread

Overall Architecture

Dispatcher

Translator / Optimizer

Block

Code Cache

Region

Code Cache

Dynamic Binary Translator

HPM

Sampling

Processor

Tracing

Execution

Flow 

Graph

Region

Selector

(region formation thread)

(DBT thread)

9/22



 Step 1: build CFG according to the branch history

Region Selection Algorithm

0

1 2

3 4

jne: 0x200  0x100

jne: 0x200  0x100

jne: 0x200  0x100

…

jmp: 0x800  0x900

branch historyexecution flow graph

10/22



50 50

50 49
1

N=50

N=100

N=50

N=99 N=1

 Step 1: build CFG according to the branch history

 Step 2: compute node/edge frequency and set loop headers

Region Selection Algorithm

0

1 2

3 4

10/22



 Step 1: build CFG according to the branch history

 Step 2: compute node/edge frequency and set loop headers 

 Step 3: select nodes with high reaching probability

Region Selection Algorithm

P=.5

P=1

P=.5

P=.5 P=.01

0

1 2

3 4

10/22



 Step 1: build CFG according to the branch history

 Step 2: compute node/edge frequency and set loop headers 

 Step 3: select nodes with high reaching probability

Region Selection Algorithm

P=.5

P=1

P=.5

P=.5 P=.01

0

1 2

3 4

Select blocks of reaching probability (P) > hot threshold (T)

 execution is likely to stay in the formed region
10/22



 Problem: processor tracing has overhead
 Hardware tracing overhead (low)

 Software overhead of decoding binary and packets (high)

 Two solutions
 Demand-based processor tracing

 Branch instruction decode cache

Processor-Tracing Overhead

11/22



 Not enable processor tracing permanently
 Disable processor tracing when (1) running in cold codes, (2) 

all hot regions have been built

 Enable processor tracing only when running in hot regions

 Challenge:
 How to know the program is running in the hot regions?

 Solution:

 lightweight HPM sampling

Demand-Based Processor Tracing

* HPM (hardware performance monitor)
12/22



 HPM sampling to collect program counters (PCs)
 Idea: most PCs are in a few basic blocks  hot regions

Demand-Based Processor Tracing

yes

no

no

yes

HPM

Sampling

region is hot?

Processor

Tracing

new regions?

13/22



 Significant overhead from decoding the binary
 Produce one branch may require tens of instruction execution

Software Decoding Overhead

0x100:  add

…...

0x200:  jne 0x100

PSB (0x100)

TNT (1)

TNT (1)

TNT (1)

TNT (0)

…...

jne: 0x200  0x100

jne: 0x200  0x100

jne: 0x200  0x100

jne: 0x200  0x205

……

jmp: 0x800  0x900

branch history:

14/22



 Solution: branch instruction decode cache
 Cache walked instruction ranges with <start address, branch_info>

 Upon cache hit, fast generating branch instructions

Branch Instruction Decode Cache

0x100:  add
…...

0x200:  jne 0x100

jne: 0x200  0x100

jne: 0x200  0x100

jne: 0x200  0x100

jne: 0x200  0x205

……

jmp: 0x800  0x900

branch instruction decode cache

0x100
jne: 0x200  0x100 (TNT=1)

0x205 (TNT=0)

instruction

range

15/22



Evaluation and Conclusion

15/22



 HQEMU, a cross-ISA DBT

 Integrate QEMU and LLVM

 Regions are compiled by LLVM with O2 optimization

 Cross-ISA binary translation

Evaluation Setup

Type Host CPU Processor-tracing

ARMv8 to x64 Intel Core i7 (Skylake) Intel PT

16/22



 Benchmarks
 SPEC CPU2006 benchmarks with reference inputs

 Comparison
 NET (baseline)

 NETPlus

Evaluation Setup

17/22



 On average, our approach achieves
 1.2x speedup over NET, and 1.1x over NETPlus

 Significant improvement for benchmarks with complex CFG, e.g., gcc

Speedup of Integer Benchmarks

1.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S
p
e
e
d
u
p

NET NETPlus IntelPT

18/22



Speedup of Floating-Point Benchmarks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S
p
e
e
d
u
p

NET NETPlus IntelPT 1.16

 On average, our approach achieves
 1.16x speedup over NET, and 1.07x speedup over NETPlus

19/22



 Our approach achieves the lowest compilation overhead
 1/3 NET overhead, and 1/4 NETPlus overhead, on average
 Generate much fewer number of regions

LLVM Optimization Overhead

IntelPT

20/22



 Processor tracing only: 58% on average
 HPM sampling: < 8%
 HPM sampling + branch instruction decode cache: < 3% 

Region Formation Overhead

21/22



 Processor-tracing guided region formation
 High-quality region formation

 No instrumentation is required

 Region selection algorithm based on reaching probability

 Minimize processor-tracing overhead
 Lightweight HPM sampling

 Branch instruction decode cache

 Achieve significant improvements
 The best performance and lowest compilation overhead, compared 

to NET and NETPlus

Conclusion

22/22



Thank you for your attention

Q & A

22/22



Backup

22/22



 1. Compute reaching probabilities (P) from node/edge frequencies

 2. P (loop header) = 1

 3. P (child) = P (parent) * Edge’s Probability

 4. Select max P if multiple incoming edges

Region Selection Algorithm

23/22



 Instruction range: the range between the last branch target and 
next branch instruction

Example: Branch Instruction Decode Cache

23/22



 x86/x64 to ARMv8 translation on Cortex A57, with ARM CoreSight

 On average, our approach achieves 1.1x speedup over NET

Speedup with x86-to-ARM64 Translation

23/22



 Comparison with LBR, BTS and IntelPT

 Our approach achieves a speedup of 1.13x over NET with CINT2006

Speedup with ARM32-to-x64 Translation

23/22



 Comparison with LBR, BTS and IntelPT

 Our approach achieves a speedup of 1.08x over NET with CFP2006

Speedup with ARM32-to-x64 Translation

23/22



 20% the number of NET regions

Number of Regions

23/22



 LBR and BTS: < 1%

 Intel PT: < 3%

Region Formation Overhead

23/22


