
Processor-Tracing Guided Region Formation
in Dynamic Binary Translation

Ding-Yong Hong, Jan-Jan Wu, Yu-Ping Liu, Sheng-Yu Fu, and Wei-Chung Hsu

Academia Sinica

National Taiwan University

 Background and Motivation
 Region formation

 Processor tracing

 Design
 Region formation guided by processor tracing

 Evaluation Results

 Conclusion

Outline

1/22

 Region formation is an important step in dynamic
binary translation (DBT)
 Find hot execution codes for translation/optimization

 Two reasons to select hot regions
 Avoid compiling cold code so as to reduce system overhead

 Gain the most benefits from the optimization

Motivation

2/22

 Region formation has two steps:
 Profiling code segments to verify the “hotness” of regions

 Selecting code segments to form regions

 A dual issue in designing region formation algorithm
 How to effectively detect hot regions and remain low

overhead?

Motivation

3/22

 Instrumentation is a common way to find hot regions
 Basic block profiling

 Edge profiling

 Path profiling

 NET (next executing tail)

 NETPlus

 MRET2

 LEI (last execution iteration)

Region Formation with Instrumentation

Insert profiling code in
all blocks or edges

Selectively insert profiling
code, e.g. loop headers

4/22

Motivation

(high)

(high)

Region formation overhead

Region quality

Basic block profiling

Edge profiling

LEI

??

NET
NETPlus
MRET2

5/22

Motivation

(high)

(high)

Region formation overhead

Region quality

Basic block profiling

Edge profiling

NET
NETPlus
MRET2

LEI

Processor tracing

5/22

 A hardware function that can track program
execution flows, e.g.
 Source and target addresses of branches

 Execution mode transition

 Processor power state changes

 Transactional memory commit/abort path

Processor Tracing

Itanium BTB Intel BTS
Intel LBR

Intel PT

ARM CoreSightPowerPC BHRB

* BTB (branch target buffer), LBR (last branch record), BTS (branch trace store)
* BHRB (branch history rolling buffer) 6/22

Example: Intel PT

PSB (0x100) # start from 0x100

TNT (1) # taken

TNT (1) # taken

TNT (1) # taken

TNT (0) # not taken

IntelPT packets:

0x100: add

add

0x200: jne 0x100

a loop runs 4 iterations

7/22

Example: Intel PT

packet decodingbinary disassembling

jne: 0x200 0x100

jne: 0x200 0x100

jne: 0x200 0x100

jne: 0x200 0x205

0x100: add

add

0x200: jne 0x100

a loop runs 4 iterations

branch history

PSB (0x100) # start from 0x100

TNT (1) # taken

TNT (1) # taken

TNT (1) # taken

TNT (0) # not taken

IntelPT packets:

7/22

 Processor-tracing guided region formation
 Leverage branch history to help form regions

 No instrumentation

 High-quality region formation

Our Solution

8/22

 Processor-tracing guided region formation
 Leverage branch history to help form regions

 No instrumentation

 High-quality region formation

 Challenges
 How to decide which blocks to be selected in a region

 When to start processor tracing

 Overhead of binary disassembling and packet decoding

Our Solution

8/22

Processor-Tracing Guided Region Formation

8/22

 Region formation conducted by a helper thread

Overall Architecture

Dispatcher

Translator / Optimizer

Block

Code Cache

Region

Code Cache

Dynamic Binary Translator

HPM

Sampling

Processor

Tracing

Execution

Flow

Graph

Region

Selector

(region formation thread)

(DBT thread)

9/22

 Step 1: build CFG according to the branch history

Region Selection Algorithm

0

1 2

3 4

jne: 0x200 0x100

jne: 0x200 0x100

jne: 0x200 0x100

…

jmp: 0x800 0x900

branch historyexecution flow graph

10/22

50 50

50 49
1

N=50

N=100

N=50

N=99 N=1

 Step 1: build CFG according to the branch history

 Step 2: compute node/edge frequency and set loop headers

Region Selection Algorithm

0

1 2

3 4

10/22

 Step 1: build CFG according to the branch history

 Step 2: compute node/edge frequency and set loop headers

 Step 3: select nodes with high reaching probability

Region Selection Algorithm

P=.5

P=1

P=.5

P=.5 P=.01

0

1 2

3 4

10/22

 Step 1: build CFG according to the branch history

 Step 2: compute node/edge frequency and set loop headers

 Step 3: select nodes with high reaching probability

Region Selection Algorithm

P=.5

P=1

P=.5

P=.5 P=.01

0

1 2

3 4

Select blocks of reaching probability (P) > hot threshold (T)

 execution is likely to stay in the formed region
10/22

 Problem: processor tracing has overhead
 Hardware tracing overhead (low)

 Software overhead of decoding binary and packets (high)

 Two solutions
 Demand-based processor tracing

 Branch instruction decode cache

Processor-Tracing Overhead

11/22

 Not enable processor tracing permanently
 Disable processor tracing when (1) running in cold codes, (2)

all hot regions have been built

 Enable processor tracing only when running in hot regions

 Challenge:
 How to know the program is running in the hot regions?

 Solution:

 lightweight HPM sampling

Demand-Based Processor Tracing

* HPM (hardware performance monitor)
12/22

 HPM sampling to collect program counters (PCs)
 Idea: most PCs are in a few basic blocks hot regions

Demand-Based Processor Tracing

yes

no

no

yes

HPM

Sampling

region is hot?

Processor

Tracing

new regions?

13/22

 Significant overhead from decoding the binary
 Produce one branch may require tens of instruction execution

Software Decoding Overhead

0x100: add

…...

0x200: jne 0x100

PSB (0x100)

TNT (1)

TNT (1)

TNT (1)

TNT (0)

…...

jne: 0x200 0x100

jne: 0x200 0x100

jne: 0x200 0x100

jne: 0x200 0x205

……

jmp: 0x800 0x900

branch history:

14/22

 Solution: branch instruction decode cache
 Cache walked instruction ranges with <start address, branch_info>

 Upon cache hit, fast generating branch instructions

Branch Instruction Decode Cache

0x100: add
…...

0x200: jne 0x100

jne: 0x200 0x100

jne: 0x200 0x100

jne: 0x200 0x100

jne: 0x200 0x205

……

jmp: 0x800 0x900

branch instruction decode cache

0x100
jne: 0x200 0x100 (TNT=1)

0x205 (TNT=0)

instruction

range

15/22

Evaluation and Conclusion

15/22

 HQEMU, a cross-ISA DBT

 Integrate QEMU and LLVM

 Regions are compiled by LLVM with O2 optimization

 Cross-ISA binary translation

Evaluation Setup

Type Host CPU Processor-tracing

ARMv8 to x64 Intel Core i7 (Skylake) Intel PT

16/22

 Benchmarks
 SPEC CPU2006 benchmarks with reference inputs

 Comparison
 NET (baseline)

 NETPlus

Evaluation Setup

17/22

 On average, our approach achieves
 1.2x speedup over NET, and 1.1x over NETPlus

 Significant improvement for benchmarks with complex CFG, e.g., gcc

Speedup of Integer Benchmarks

1.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S
p
e
e
d
u
p

NET NETPlus IntelPT

18/22

Speedup of Floating-Point Benchmarks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S
p
e
e
d
u
p

NET NETPlus IntelPT 1.16

 On average, our approach achieves
 1.16x speedup over NET, and 1.07x speedup over NETPlus

19/22

 Our approach achieves the lowest compilation overhead
 1/3 NET overhead, and 1/4 NETPlus overhead, on average
 Generate much fewer number of regions

LLVM Optimization Overhead

IntelPT

20/22

 Processor tracing only: 58% on average
 HPM sampling: < 8%
 HPM sampling + branch instruction decode cache: < 3%

Region Formation Overhead

21/22

 Processor-tracing guided region formation
 High-quality region formation

 No instrumentation is required

 Region selection algorithm based on reaching probability

 Minimize processor-tracing overhead
 Lightweight HPM sampling

 Branch instruction decode cache

 Achieve significant improvements
 The best performance and lowest compilation overhead, compared

to NET and NETPlus

Conclusion

22/22

Thank you for your attention

Q & A

22/22

Backup

22/22

 1. Compute reaching probabilities (P) from node/edge frequencies

 2. P (loop header) = 1

 3. P (child) = P (parent) * Edge’s Probability

 4. Select max P if multiple incoming edges

Region Selection Algorithm

23/22

 Instruction range: the range between the last branch target and
next branch instruction

Example: Branch Instruction Decode Cache

23/22

 x86/x64 to ARMv8 translation on Cortex A57, with ARM CoreSight

 On average, our approach achieves 1.1x speedup over NET

Speedup with x86-to-ARM64 Translation

23/22

 Comparison with LBR, BTS and IntelPT

 Our approach achieves a speedup of 1.13x over NET with CINT2006

Speedup with ARM32-to-x64 Translation

23/22

 Comparison with LBR, BTS and IntelPT

 Our approach achieves a speedup of 1.08x over NET with CFP2006

Speedup with ARM32-to-x64 Translation

23/22

 20% the number of NET regions

Number of Regions

23/22

 LBR and BTS: < 1%

 Intel PT: < 3%

Region Formation Overhead

23/22

