Processor-Tracing Guided Region Formation in Dynamic
Binary Translation

DING-YONG HONG, Institute of Information Science, Academia Sinica

JAN-JAN WU, Institute of Information Science, Academia Sinica

YU-PING LIU, Department of Computer Science and Information Engineering, National Taiwan University
SHENG-YU FU, Department of Computer Science and Information Engineering, National Taiwan University
WEI-CHUNG HSU, Department of Computer Science and Information Engineering, National Taiwan

University

Region formation is an important step in dynamic binary translation to select hot code regions for translation
and optimization. The quality of the formed regions determines the extent of optimizations, and thus determines
the final execution performance. Moreover, the overall performance is very sensitive to the formation overhead
because region formation can have a non-trivial cost. For addressing the dual issues of region quality and
region formation overhead, this paper presents a lightweight region formation method guided by processor
tracing, e.g., Intel PT. We leverage the branch history information stored in the processor to reconstruct the
program execution profile and effectively form high-quality regions with low cost. Furthermore, we present
the designs of lightweight hardware performance monitoring sampling and the branch instruction decode
cache to minimize region formation overhead. Using ARM64 to x86-64 translations, the experiment results
show that our method achieves a performance speedup of up to 1.53x (1.16x on average) for SPEC CPU2006
benchmarks with reference inputs, compared to the well-known software-based trace formation method, Next
Executing Tail (NET). The performance results of x86-64 to ARM64 translations also show a speedup of up to
1.25x over NET for CINT2006 benchmarks with reference inputs. The comparison with a relaxed NETPlus
region formation method further demonstrates that our method achieves the best performance and lowest
compilation overhead.

Additional Key Words and Phrases: Dynamic binary translation, region formation, hardware performance

monitoring, processor tracing

1 INTRODUCTION

Dynamic binary translation (DBT) is a virtualization technique that can emulate application
binaries of one instruction set architecture (ISA) on a host machine with a different ISA. It operates
directly on binaries and stores the translated codes in the code cache to avoid re-translation. DBT
has been widely used in many important applications for different purposes, such as dynamic
re-optimization, binary instrumentation, security analysis, and cross-ISA application migration.
For example, Dynamo [4], ADORE [32], and StarDBT [39] recognize optimization opportunities
and improve the execution performance at runtime. Pin [33] and Valgrind [34] analyze program
behaviors with dynamic instrumentation. To migrate applications across ISAs, the IA-32 EL software
[7] translates legacy IA-32 binaries into Itanium codes, whereas the Android emulator allows ARM
applications to run on x86-based machines, which facilitate Android software development.

Region formation is the important first step in DBT to select frequently running code for trans-
lation and optimization. There are two major reasons for selecting hot regions. First, translation
and optimization incur overhead to program execution, and thus it avoids compiling cold codes so
as to reduce system overhead. Second, focusing on the frequently running codes ideally can gain
the most benefit from the optimization. A region can be a basic block, a trace (i.e., a single-entry
multiple-exit path, as known as superblock), or as large as a whole function.

Typically, region formation consists of two steps: (1) profiling code segments to detect the
“hotness” of regions and (2) selecting code segments to build regions. As regions are forming at
the same time the program is running, the overall performance is very sensitive to the formation
overhead because code profiling and selection can have a non-trivial cost. Moreover, the quality of
the formed regions determines the extent of optimizations, and thereby also determines the final
execution performance. Therefore, how to effectively select high-quality regions and maintain low
overhead is an important dual-issue in designing a region formation algorithm.

A common technique to capture the hot regions of a program is instrumentation. The methods
of basic block profiling and edge profiling [5] find hot execution paths by inserting monitoring
code in all basic blocks and control flow edges, respectively, whereas the path profiling method
[6] only instruments distinct execution paths. Though these approaches can accurately identify
program hotspots and select high-quality regions, they also result in significant profiling overhead.
Therefore, they are mostly applied in offline tools for profile-guided compilation and software
coverage testing [20, 35, 38].

In contrast to the heavy-instrumentation methods, Next Executing Tail (NET) [18] is a lightweight
region formation method used in many DBT systems [4, 9, 11, 14, 15, 24]. The NET algorithm only
profiles basic blocks of potential loop heads, and it captures hot execution paths by iteratively
forming traces that follow the potential loop heads (described in Section 2.2). With its simple
selection heuristic, the NET algorithm can minimize the profiling cost. However, it also causes
the critical problem of trace separation, where regions with complex control flows (e.g., nested
loops) are split into multiple traces. When trace exits occur frequently, not only the benefit of trace
optimization is lost, but extra compensation code needs to be executed. As a result, the region
quality decreases. A number of methods have been proposed to prevent early exits by using different
trace head candidates or changing the trace termination policies [13, 15, 21, 40]. However, these
methods still suffer the problem of trace separation.

The requirements of low overhead and high-quality region formation are often in conflict with
each other, and usually it is difficult to find the balance when designing a region formation method
based on instrumentation for DBT. In addressing the issues, this paper aims at providing a solution
that builds high-quality regions but exerts low overhead. To this end, we propose a non-intrusive
region formation method guided by processor tracing. Nowadays, many modern processors support
advanced tracing technology that can record program execution flows (e.g., sources/targets of
branches and changes of privilege levels) in processor registers or internal buffers at a low cost
and provide programming interfaces for software to retrieve such information. For example, Intel
processors support the tracing facilities of LBR, BTS and IPT, and CoreSight for ARM. Based on
this technology, we can leverage the branch history information recorded by the processor to assist
region formation instead of employing instrumentation.

With the help of processor tracing, our processor-tracing guided region formation method has
the following advantages compared to the instrumentation-based methods. (1) Program execution
profiles, such as hotness and control flows of code segments, can be rebuilt from the branch history.
Thus, instrumentation is no longer required for profiling and selecting code segments, and no
additional workload is imposed on the execution threads. (2) With the abundant information of
the branch history, high-quality regions can be produced. (3) The region formation process can be
off-loaded to other threads and does not interrupt the emulation.

The design of the proposed formation method faces several challenging issues. First, whether the
processor-tracing event and region formation should be permanently enabled or not? Although the
entire region formation workload can be migrated to other helper threads, it makes sense to activate
processor tracing and region formation only when they are beneficial, e.g., when code segments
become hot. To accomplish this, we design a lightweight hardware performance monitoring (HPM)

sampling mechanism that predicts execution phases and enables processor tracing on demand.
Second, some processor tracing facilities encode branch records into compressed formats, and a
software decoder is required to restore the branch history, which can be extremely expensive (e.g.,
IPT). To minimize the decoding overhead, we design a lookup table for caching the decoded branch
instructions to accelerate the restoration of repeated branches. The key contributions of this paper
are as follows:

e We design and implement the processor-tracing guided region formation method in HQEMU
[24], which is a trace-based cross-ISA DBT system. By forming high-quality regions, we
improve HQEMU by increasing the optimization opportunities for register mapping and
reducing the overhead of guest architecture state synchronization.

e We design the mechanism of lightweight HPM sampling and a branch instruction decode
cache, which effectively reduce the overall system overhead.

e We evaluate the translations on the x86-64 host by using three processor-tracing facilities:
Intel LBR, BTS and IPT. The ARM64 to x86-64 translation results indicate that compared
with the NET algorithm, a speedup of up to 1.53x (1.16x on average) is achieved through
IPT-guided region formation for the SPEC CPU2006 benchmarks with reference inputs.

e We evaluate the translations on the ARM64 host by using the ARM CoreSight tracing facility.
The x86-64 to ARM64 translation results show that compared with NET, our method achieves
a speedup of up to 1.25x (1.13x on average) for CINT2006 benchmarks with reference inputs.

e We compare our method with a relaxed version of the NETPlus region formation algorithm
[16]. The performance results indicate that our method achieves 1.06x speedup and takes
only 25% compilation time over the relaxed NETPlus method.

The remainder of this paper is organized as follows. Section 2 provides an overview of the
HQEMU framework and describes the NET selection algorithm and its problem. Section 3 presents
the processor-tracing guided region formation method. We report the evaluation results in Section
4. Section 5 describes related work and Section 6 concludes.

2 BACKGROUND AND MOTIVATION

Our region formation method is implemented in a NET-based DBT system called HQEMU. Because
HQEMU is used as the baseline platform in this work, we begin this section with an overview of
the DBT framework and then explain the NET algorithm and motivating problems.

2.1 DBT Infrastructure

HQEMU is a retargetable cross-ISA DBT system. It leverages the frameworks of QEMU [8] and
LLVM [29] as its frontend emulator and backend optimizer, and supports several major ISAs, such
as x86-32, x86-64, ARMv7 and ARMv8. To minimize the translation overhead, HQEMU runs stage
translation. The guest binary is first translated with moderate optimization by a fast translator (i.e.,
QEMU TCG). The hot execution codes identified using the NET algorithm are then aggressively
optimized through the LLVM optimization passes for better performance. TCG translates the guest
binary one basic block at a time and stores the translated codes in a basic block code cache, whereas
the LLVM optimizer deals with traces with a trace code cache. To reduce the optimization overhead,
HQEMU migrates the workload of LLVM optimizations to other helper threads.

HQEMU uses intermediate representation (IR) to achieve retargetable binary translation across
many guest and host ISAs. For guest instruction translations, trivial instructions are translated to IR
instructions, which are then translated to equivalent host instructions and stored in the code cache.
Complex instructions, such as ARM NEON instructions, are implemented using helper functions,
which are pre-compiled to the host binary. At runtime, complex instructions are emulated by calling
out the helper functions.

A B[|c » D ¢ D F
! tolC tolA /\4 E Jlor lD
B to
l :I A E F
¢ toB

(a) Nested loop (b) Formed traces (c) Two-cycle region (d) Formed traces

Fig. 1. Examples of NET trace formation. The NET selection algorithm causes the problem of trace separation,
where a region with a complex control flow graph is split into multiple sub-regions.

Similar to many cross-ISA DBTs, HQEMU maintains the guest architecture states (i.e., guest CPU)
in the host memory. To minimize memory access to the architecture states, frequently used guest
registers are mapped in IR virtual registers, which are in turn mapped to physical registers on the
host machine—a process called register mapping. If a virtual register is modified, its content is saved
back to the architecture state mapped in memory at the exit points—a process called architecture state
synchronization. The overhead of state synchronization can be mitigated by increasing translation
code granularity. Therefore, HQEMU forms NET traces to combine frequently executed basic blocks,
and unnecessary state synchronization is optimized out through guest state promotion.

2.2 NET

NET is a popular trace formation method, which was first developed in the Dynamo DBT system.
The NET algorithm is based on a simple concept: when a basic block becomes hot, the following
executed basic blocks are likely to be hot as well. Therefore, NET instruments counters for the
basic blocks of potential trace heads. When a counter reaches the hot threshold, NET begins trace
tail selection by recording the following executed basic blocks until a termination condition is
encountered. The basic blocks that can act as trace head candidates are the targets of backward
branches or the exit targets of existing traces. A trace tail is terminated if a backward branch is
encountered, the next block is a trace head, or maximum trace length is reached.

By using backward branches as indicators to start and stop trace formation, the NET algorithm
intends to select loops, which are often program hotspots. The instrumentation cost is minimized
because only a limited set of basic blocks is monitored. To further reduce the profiling overhead
and obtain traces as early as possible, the hot threshold is often set to a small value (e.g., 50 in
Dynamo).

Figure 1 illustrates two NET trace formation examples. Figure 1a shows a nested loop, where each
block represents a basic block. If, for example, the inner loop block B reaches the hot threshold first
and the execution continues in B’s loop iteration, then block B forms a loop trace with a backward
branch to itself. Since block C is an exit target of trace B, it becomes a potential trace head. As C
becomes hot later, a new trace selection begins by following block C. Because the next block, A, is
a backward branch target, the trace tail construction stops, and a straight-line trace C is formed.
Block A becomes another straight-line trace when it later reaches the hot threshold. In the end,
this nested loop produces three separate traces, and their execution flows are depicted in Figure 1b.

The nested-loop example indicates that the NET selection algorithm has one major flaw: trace
separation. Such a separation problem occurs because the NET heuristic forms only two trace
shapes: (1) simple loops with one backedge from the last block to the loop head block (i.e., O-shape
traces) and (2) straight-line code fragments (i.e., I-shape traces). Because of this restriction, a region

with a complex control flow graph (CFG) is split into multiple separate traces. This situation is also
illustrated in Figure 1c and 1d, in which the two-cycle region is split.

In cross-ISA DBT systems such as HQEMU, the problem of trace separation can cause critical
performance issues if trace exits occur frequently. For example, in Figure 1d, the execution may
often leave the trace DE due to unbiased branches. When early exits occur frequently, the benefits
of optimizations, such as register mapping for promoting guest states, are lost. Moreover, frequent
early exits also result in significant overhead because of the frequent synchronization of guest
architecture states.

These issues can be overcome if the complex region is formed in one translation code fragment
instead of being split (e.g., constructing the nested loop in one single region, as displayed in
Figure 1a). As the translation granularity increases from traces to regions, the performance can be
enhanced by eliminating the state synchronization overhead and creating additional optimization
opportunities in register mapping between the guest and host.

One possible approach for realizing the aforementioned idea is extending the NET algorithm to
keep track of a considerable number of executed blocks from the trace head. From this execution
history, a better region can be determined to avoid frequent exits. For instance, as block B reaches
the hot threshold, we can record a sequence of blocks from the execution in the inner loop’s
iterations to the outer loop and back to the inner loop (e.g., the sequence of BB...BBCABB...BB... is
recorded). In this manner, we can form the ideal region of blocks ABC. However, this approach can
incur significant overhead when tracking numerous blocks. Furthermore, it is difficult to determine
how long the recording should continue in order to cover all the blocks of a hot region.

With advanced processor-tracing technology, the execution history can be re-constructed by
leveraging the branch records stored in the processor. Therefore, this work is motivated and we
propose the region formation method guided by processor tracing.

3 PROCESSOR-TRACING GUIDED REGION FORMATION

Hardware performance monitoring (HPM) units have emerged as an integral part of modern
processors, and HPM counters have been extensively used to measure low-level processor events,
such as execution cycles, instruction counts, and cache misses. To achieve fine-grain measurement,
many processor manufacturers have introduced advanced tracing technology that can track program
execution flows, such as sources and targets of branches, execution mode transitions, and changes
in processor power states. These execution profiles are recorded in processor registers or internal
buffers, and programming interfaces are provided for software to retrieve such information. In this
paper, we refer to this hardware tracing technology as processor tracing. For example, the tracing
facilities of LBR, BTS and IPT are supported by Intel processors, and CoreSight is supported by
ARM. The system tools, such as GDB and Linux Perf, have exploited this technology to help users
find program bugs and diagnose performance bottlenecks, respectively.

Of the execution flow information, we are most interested in the series of branch sources and
targets, and such branch history is leveraged to assist region formation. In this section, we first
provide an overview of the processor-tracing facilities. We then elaborate on the design details of
the proposed region formation method.

3.1 Processor-Tracing Facility

3.1.1 Sampling-Based Processor Tracing. Facilities that support sampling-based tracing include
Intel LBR (Last Branch Record), Itanium BTB (Branch Trace Buffer), and PowerPC BHRB (Branch
History Rolling Buffer). Typically, this technology provides a limited number of registers to store
branch records. The processor traces all the executed branches, but only the most recent branches
are logged in the registers (usually 4 to 32 records). To extract branch data from the processor

registers, the software configures an HPM sampling event together with a sample period (e.g., one
million cycles). Branch records are dumped into the software’s buffer each time the sampling event
triggers processor interrupt. Because very few branches are saved over the sample period of time,
the collected branch history is disjointed and fuzzy with this technology.

3.1.2 Non-Sampling-Based Processor Tracing. Facilities that support non-sampling-based pro-
cessor tracing include Intel BTS (Branch Trace Store), Intel PT (Intel Processor Trace), and ARM
CoreSight. This technology does not require HPM sampling to extract branch data. The processor
traces all the executed branches and writes branch records to the software’s buffer either directly
or indirectly via caching in the internal buffers. The branch records are stored in the order in which
they occur; thus, the branch history is continuous.

Intel BTS writes each branch into the software buffer directly. It must clear the instruction pipeline
in order to maintain correct branch ordering, and the branch records are stored in the raw form as
branch source/target addresses.

Intel PT (a.k.a. IPT) [27] is the successor of Intel BTS. It improves the tracing performance by
caching branch data in the internal buffer. Instead of writing raw branch data in the software
buffer, the branch records are encoded into IPT packets. For example, the TNT packet ' uses one
bit to indicate whether the conditional branch is taken or not. A software decoder is required for
converting IPT packets back to branches. The execution of direct unconditional branches is not
logged by IPT and no packet type representing direct unconditional branches is provided, because
these branch information can be derived from walking the program binary. Therefore, the cost to
restore the branch history can be extremely high due to the software overhead of decoding IPT
packets and the program binary. IPT supports hardware instruction point (IP) filtering. It can be
configured to record only the branches executed inside or outside specific address ranges.

ARM CoreSight [2] is similar to IPT technology. It supports hardware IP filtering, encodes branch
data, and requires software decoding.

The comparison of the processor-tracing facilities used in this paper is summarized in Table 1.

Table 1. Comparision of processor-tracing facilities.

Intel LBR Intel BTS Intel PT ARM CoreSight
tracing mechanism sampling non-sampling non-sampling non-sampling
branch history disjointed & fuzzy continuous continuous continuous

IP filtering no no yes yes
hardware overhead | depend on sample freq medium low low
software overhead no no high high

3.2 Methodology

When processor tracing is enabled, the execution of a guest program is monitored, and the branches
executed by the processor are logged. Our goal is to (1) convert the branch records to an execution
flow graph of the guest program, and (2) determine from the graph the shape of regions that can
achieve minimal exits.

Figure 2 illustrates the basic components of the DBT framework extended from HQEMU. A
new processor-tracing module (PTM) is added in the framework, which is in charge of the region
formation process. Before we can construct the execution flow graph, we must extract branch data
from the processor into the memory space allocated by PTM. To do this, a processor-tracing buffer

1Taken Not-Taken (TNT) packets track the direction of direct conditional branches with 1 for taken and 0 for not taken.

..

Dynamic Binary Translator

9

Translator (QEMU/TCG + LLVM)

. Z N
Dispatcher v v
: Block Region
: Code Cache Code Cache

<= sL

HPM Processor Execution Region
Sampling Tracing > GFrIg;Vh i}_» Selector

Processor-Tracing Module (PTM)

.. -

S

’
.,

Fig. 2. The DBT framework of the processor-tracing guided region formation.

is installed for each emulation thread to receive branch records. For simplicity, we assume that each
branch record stored in the tracing buffer is in the raw form of <branch property, branch source
address, branch target address>, where the branch property may indicate whether the branch is
taken/non-taken, direct/indirect, etc.

When a sufficient number of branch records are written in the tracing buffer, the branch data
are processed to construct the execution flow graph. The execution flow graph is a subset of the
guest binary’s CFG, in which only the basic blocks executed are included. In the graph, each node
maps to one guest basic block, and the edges map to branch links. Moreover, each node and edge
is assigned one execution counter. To construct the graph, we follow the execution flow of the
traced branch records. A new node/edge is inserted into the graph if the mapped block/branch is
encountered for the first time. The execution counter of the node or edge is incremented by one
each time the execution enters the associated block or branch. In the end, an execution flow graph
that contains the execution frequencies of the guest basic blocks and branch links is constructed.

The region selector is then kicked off to conduct region formation. The region formation method
proceeds in two steps, which aim at selecting the sub-graphs of the execution flow graph as the
resultant regions.

In the profiling step, the region selector determines the “seeds” in the execution flow graph as the
starting points for region selection. To do this, we follow the idea of NET to quickly cover program
hotspots by beginning region selection from potential loop heads. Thus, a node is set as the region
head candidate if it is (1) a target of a backward branch or (2) an exit target of existing regions. When
branch data are processed to update the execution flow graph, these branches are also inspected to
determine whether any region head candidate exists. If a branch maps to a backward edge in the
graph or the source/target addresses are respectively within the range of region/block code cache,
aregion head candidate is found in the target node of this branch. Region head candidates whose
node frequency exceeds the hot threshold are collected to select region bodies.

In the selection step, the region selector determines the shapes of region bodies for the collected
region heads. The region body is constructed by following the outgoing edges from the head node
and iteratively selecting the nodes traversed. The question raised here is: how to determine whether
a traversed node should be selected? Moreover, poor selection of the region body can degrade the

Po=1.0 D
HPM No

Eo2 P1=Po x Eo1 Sampling .| Code Cache | Yes
P2 =Po x Eo2 Chunk is Hot?

P3 = max (P1x E13, P2 x E23)

Pa=P2x E24

New Region? |«
9 Processor

Yes Tracing

Fig. 3. An example of the reaching probability compu- Fig. 4. Controls of HPM sampling and proces-
tation. sor tracing.

No

performance through frequent region exits. To solve these issues, we utilize the information of
edge frequencies to guide the selection.

Based on the edge frequencies, we compute the reaching probability of each node from the region
head. The rules for computing the reaching probabilities are as follows:

(1) For each node, the probability of an outgoing edge is the edge frequency divided by the total

edge frequency of all the outgoing edges.

(2) The reaching probability of the region head node is 1.

(3) A child node’s reaching probability is derived by multiplying the parent node’s reaching

probability with the linking edge’s probability.

(4) If a node has multiple parents, its reaching probability is the highest reaching probability

derived from the parents.
The computation of the reaching probability begins from the region head node and propagates to
the child nodes. An example of such a computation is illustrated in Figure 3, where P; refers to the
reaching probability of node i, E;; refers to the edge probability from nodes i to j, and node 0 is the
region head.

After the reaching probabilities are assigned, the region body is composed by selecting the nodes
(1) with high probabilities, (2) whose node frequency exceeds the hot threshold, and (3) that do not
exceed the maximum region length. In this probability-based selection method, the execution is
likely to remain within the formed region, which minimizes the number of region exits. Moreover,
the shapes of regions that can be constructed by the proposed algorithm are not limited to simple
graphs. The algorithm can form general regions, including the nested loops and graphs of complex
control flows, as shown in Figure 1a and 1c. The targets of unbiased branches can also be selected
simultaneously if their reaching probabilities are high.

The formed regions are then optimized using the LLVM optimizer. The translated region codes
are saved in the region code cache, and the emulation is redirected to the optimized region codes
by patching the basic blocks of region heads. Finally, the processor-tracing buffer is flushed so that
it can continue to receive new branch records. Execution counters in the execution flow graph are
not reset after region formation. The counter values continue to accumulate until the program
terminates. Since the DBT system migrates the workload of LLVM optimizations to the helper
threads, we assign the job of region formation to one of the threads. This handling thread often
stays in the idle state and is only activated when the tracing buffer overflows.

3.3 Lightweight HPM Sampling

In the design described in the previous subsection, the processor-tracing event is enabled at the
program startup time and is never disabled. In this situation, the processor-tracing buffer periodically
overflows and triggers the update of execution flow graph (software decoding may be run to restore

branch history, e.g., IPT) and the profiling and selection steps to form regions. However, the region
selector does not always produce new regions if no basic block becomes hot in the recent tracing
period or if the region is already formed. Such a situation can occur when the emulation thread
spends a large amount of the recent time running (1) outside the code cache, (2) in the cold execution
path of the guest program, or (3) in the translated region codes. Especially after most regions of a
program are translated, the emulation thread is likely to execute in the third condition. Although
the workload of region formation is handled by another thread and does not delay the emulation,
the permanent enabling of processor tracing is unacceptable because processor time and energy
are wasted when no region is produced.

The ideal design is to perform processor tracing and region formation on demand. That is, they
are disabled if the aforementioned conditions occur and enabled only when a hot and untranslated
region appears. Therefore, the condition that the emulation thread runs into must be determined in
order to design such a demand-based scheme. One possible approach to detect the condition is to
instrument monitoring codes in the DBT components, including the code caches and dispatcher.
However, this approach can incur significant instrumentation overhead. Another possible approach
is to permanently enable processor tracing but region selection is skipped if any of the aforemen-
tioned conditions is recognized from the branch records. Although this approach optimizes the
region formation process, it can also incur significant overhead if the processor tracing requires
software decoding to restore the branch records.

Instead, we propose a lightweight HPM sampling mechanism, which predicts the appearance
of hot regions on the basis of the captured IPs of the emulation thread. To realize this sampling
mechanism, an HPM sampling event is set up with a sample period. One buffer is installed for
each emulation thread to receive the sampled IPs. Moreover, we partition the code cache space
into small chunks (e.g., the chunk size is 256 bytes in this work). Each chunk is associated with a
profiling counter, which is used to estimate the hotness of the chunk. When the HPM sampling
buffer overflows, each sampled IP is verified with the address ranges of each code cache chunk,
and the counter of the matched chunk is incremented by one. If a chunk’s counter value reaches
the hot threshold, it implies that the code in this chunk is frequently executed. Thus, a potential
hot region is predicted.

Figure 4 shows the flows between HPM sampling and processor tracing. Initially, HPM sampling
is performed to predict the occurrence of potential hot regions. When any chunk becomes hot, the
HPM sampling event is disabled, and processor tracing is activated for collecting branch records.
Processor tracing is in an active state if the region selector can continue to produce new regions.
When no new regions are generated, the processor tracing event is stopped, and the execution
returns to HPM sampling to predict the next hot regions. Through this mechanism, processor
tracing is only enabled when required. When most regions of a program are generated, the handling
thread will mostly remain in the lightweight HPM sampling state. As a consequence, the overhead
of region formation is minimized.

The combination of HPM sampling and processor tracing can be beneficial for systems using
sampling-based processor-tracing facilities (e.g., LBR). Recall that the branch history generated
by the sampling-based tracing facilities is disjointed and fuzzy (Section 3.1.1). To mitigate this
problem, the branch history quality can be enhanced by increasing the sampling frequency for
processor tracing. However, this enhancement also increases the tracing overhead. Previous research
demonstrated that when tracing is enabled permanently, the program performance can degrade
significantly with a high sampling frequency [32]. Because processor tracing is selectively enabled
based on our mechanism, we can improve the branch history quality and limit the overall overhead
by configuring sampling-based tracing with a burst sampling mode. Therefore, better quality
regions can be obtained.

10

Assembly: IPT packet: Branch record: Key value

PSB (0x100) <jmp,0x200,0x400>

‘ |
| 0x100: add
e | TNT(D) <jne, 0x600,0x100> 0x100 | <jmp,0x200,0x400>
\ . TNT(L) <jmp,0x200,0x400>
200: 4 ‘
| Ox200: Jmp 0x400 1) IZ:> <ine, 0x600,0x100>
} } TNT(0) <jmp,0x200,0x400>
| 0x400: add <ine, 0x600,0x100> 0x400 | <jne, 0x600,X>
O | <jmp,0x200,0x400> :
| 0X600: jne 0x100 | <jne, 0x600,0x606>
L a
(a) IPT packets and the branch records decoded for a loop. PSB: (b) Branch instruction decode
packet stream boundary. TNT: taken(1)/non-taken(0) branch. cache

Fig. 5. Example of a loop and branch record restoration with the branch instruction decode cache. The format
of a branch record is <branch property, branch source address, branch target address>.

3.4 Branch Instruction Decode Cache for IPT

Processor-tracing facilities, such as IPT and ARM CoreSight, encode branch records in the form
of packets, and software decoding is required to convert the packets back into the raw data of
branch source/target addresses. In this subsection, we first provide an example that demonstrates
the process of software decoding and then present the proposed branch instruction decode cache,
which can effectively reduce the overhead of software decoding.

Figure 5a depicts a decoding example with IPT. The assembly code is a loop that comprises
two executable code segments, 0x100-0x200 and 0x400-0x600. Assume that the loop executes four
iterations. The generated IPT packets and restored branch records are listed in the figure (the packet
payload is simplified for explanation). Software decoding starts from the first packet, PSB(0x100),
which indicates that the processor begins tracing at the address 0x100. Then, the decoder begins
disassembling the program binary from this address until a branch instruction is encountered
(0x200), and the first branch record, <jmp,0x200,0x400>, is decoded. Since this restored branch is a
direct jump, the decoder continues from the jump target address and runs a new disassembling
range (0x400-0x600). Because the last instruction is a conditional jump, jne, the decoder decodes
the next packet, TNT(1), which indicates that the jump is taken. Thus, the jump target address,
0x100, is resolved and the second branch record <jne,0x600,0x100> is restored. Again, the decoder
goes to the branch target address and begins the next disassembling range. Such program binary
disassembling proceeds repeatedly until all packets are processed.

Asillustrated in the example, direct branches are not recorded in the tracing buffer and no address
information is attached in the TNT packets for conditional branches, because such information
can be resolved by walking the program binary. Although this design requires considerably less
memory usage and achieves a better hardware tracing performance compared with other processor-
tracing facilities, the overhead of the software decoder is too high for restoring the branch history.
Furthermore, all instructions, including the non-branch ones, are disassembled in order to find the
branch instructions. In the aforementioned loop example, all the instructions within the two code
segments are disassembled, and the disassembling is repeated for four loop iterations.

Therefore, the restoration of branch records by the decoder can be viewed as a process of collecting
the branch instructions (i.e., the last instruction) of the instruction ranges (i.e., disassembling ranges)
in the execution order.

11

Since the aim is to collect branches, the restoration process can be accelerated if the branch
instruction can be quickly extracted from an instruction range. The idea is that the branch instruction
is remembered after an instruction range is disassembled. Thus, when the same instruction range
is entered at another time, the branch can be returned without disassembling the binary again.
Therefore, we design a branch instruction decode cache in the IPT decoder to cache the decoded
branch instructions. The cache is implemented as a hashtable. The key of the hashtable is the start
address of an instruction range and the value is the branch record. Note that the target address of
the branch record may not be populated because IPT packet lookup may be required to resolve it
(e.g., TNT for conditional branches). When the decoder begins an instruction range, it first looks up
the hashtable according to the range start address. Upon a hashtable miss, the decoder decodes all
the instructions until the next branch instruction is found, and the restored branch record is saved
in the hashtable. Upon a hashtable hit, the cached branch record is returned and disassembling of
the instruction range is skipped.

Consider the code in Figure 5a as an example. In the first loop iteration, the decoder must
disassemble all the instructions of the two instruction ranges because the ranges are encountered
for the first time. Then, two records are inserted into the hashtable, as displayed in Figure 5b. In the
following loop iterations, disassembling is not required. The branch records are retrieved directly
from the hashtable, and the branch target of jne is resolved from the TNT packet and the jump
instruction’s operands.

With the branch instruction decode cache, the restoration of repeatedly executed branches can
be accelerated. This scheme is important for our region formation method because we intend to
build hot regions in which the code segments are very likely to be executed frequently. Thus, the
time required for restoring the branch history can be significantly reduced.

4 PERFORMANCE EVALUATION

Our region formation method was implemented in the retargetable DBT system based on HOEMU
(QEMU-2.5 + LLVM-6.0). We evaluated the performance with four types of cross-ISA translations:
ARM32/ARM64 to x86-64 translations and x86-32/x86-64 to ARM64 translations. The experiments
were performed on two host platforms:

e x86-64 host: Intel Skylake Core i7-6700 quad-core CPU at 3.40GHz, which supports LBR,
BTS and IPT. The host machine has 32GB of main memory and the operating system is 64-bit
CentOS 7.2 with Linux kernel 4.11.

o ARM64 host: ARM Juno r0 development board with big.LITTLE architecture, which supports
the CoreSight tracing facility. The big cluster contains one ARM Cortex-A57 out-of-order
dual-core CPU at 1.1GHz, and the little cluster contains one ARM Cortex-A53 in-order quad-
core CPU at 850MHz. The host machine has 8GB of main memory and the operating system
is 64-bit Ubuntu 16.04 with Linux kernel 4.11.

The tracing buffer has a size of 128KB for LBR and BTS, and 4KB for IPT and ARM CoreSight. We
allocate more buffer size for LBR and BTS because their branch data are not encoded to compressed
formats. This 128KB tracing buffer can store approximately 5000 branch records. We set up LBR
in a burst sampling mode. The sample period is 1000 instructions and 32 branches are recorded
at every interrupt. For HPM sampling, the sample period is set to 1 million instructions, and the
buffer size is 16 KB. The branch instruction decode cache comprises 4096 entries. We use Linux
Perf APIs to implement processor tracing and HPM sampling. The OpenCSD library [30] is used
for decoding ARM CoreSight packets.

The SPEC CPU2006 benchmark suite is evaluated with reference inputs in the experiments. We
use arm-gec-5.4 [31] and flags “-O3 -marm —mtune=cortex-a8 -mfpu=neon -ffastmath -ftree-vectorize

12

15 T T T T T T T T T T T T T
1% LBR o BTS s |PT
E 15 1.13
=z 141]
5 68 [
3 08]
18 E
& 03 -
0.2 —
80]
. Porg b%e G0 ey %, /)”7/;, %, g, R, O, P, %, %,
oy, kT T Ty, T B
(a) CINT2006
15 T T T T T T T T T T T T T T T T
1.4 LBR mm==m BTS mmmm |PT —m—=
13 1.08
5 i3
3 0 =
o i I
3 08]
a 8% |
® 05 —
2 04]
» 0.3 |
0.2 ||
8:0 [
’ by, Q5. My, <a, 9 Cs Ba, 5. %. So. O C, G lo,. b, W So. O
ey, 93 P <&, Yo, Qo sy Y3 %05, %0y, o, @, Bs, One ©ny x4, 96
QL. e 0 s, Oy SCh, oy h, Ry P, g Ay, e o,
Yog Osg s% 0790@ 2 40@30, o ey ey, "y, %’%o /"*e %‘9/7

25
(b) CFP2006

Fig. 6. Performance of the ARM32 to x86-64 translations compared with the NET method.

-static” for ARM32 guest binary, and flags “-O3 -ffast-math -ftree-vectorize -static” for ARM64 guest.
For x86-32/x86-64 guest binary, we use gce-5.4 and flags “-O3 -m32/-mé64 -fno-strict-aliasing -msse2
-mfpmath=sse -ffast-math -static” For comparison, the NET trace formation method is used as the
performance baseline. We compare the execution time, number of memory instructions executed,
and structure of the formed traces and regions. For NET trace formation, the trace profiling threshold
is set to 50. For region formation, the hot threshold for the node frequencies is set to 32, and the
threshold for the reaching probabilities is 0.2. The maximum length of a NET trace and formed
region is 64 basic blocks. One helper thread is used for handling the LLVM optimizations and region
formation.

4.1 Performance Results with the ARM32 to x86-64 Translations

Figure 6 shows the performance results of ARM32 to x86-64 translations. The y-axis represents
the speedup of our region formation method over the NET method. There exist three bars in each
benchmark. The blue, red, and green bars represent the results of LBR, BTS, and IPT, respectively.
Benchmark time reported by SPEC is used, and all runtime overhead is included in the measurement.

Overall, IPT-guided region formation achieves the best performance, with a gain of 1.13x in
geometric mean for integer benchmarks and 1.08x for floating-point benchmarks compared with

13

NET. The performance of LBR and BTS is slightly lower than that of IPT. On average, our method
achieves speedups of 1.10x, 1.09x and 1.08x for the CPU2006 benchmarks with reference inputs
based on LBR, BTS, and IPT, respectively.

The improvement that can be accomplished with the proposed region formation method is
affected by the following factors. (1) The complexity of control flows in the program: regions of
complex control flows are split into traces by the NET formation algorithm, and thus, the more
complex the hot regions, the more optimization opportunities can be obtained with our method by
reconstructing regions from the separated traces. (2) The frequency of early exits: if few exits occur
in the formed traces, there exists limited room for our method to optimize. (3) Operations of the
guest architecture states: the overhead of guest state synchronization at the exit points depends on
the number of states modified in the traces. If many states are modified, superior performance can
be achieved by eliminating overhead via region formation. Moreover, the use of additional states in
the formed regions can create additional optimization opportunities for selecting the best register
mappings between the guest and host.

Among the benchmarks, gcc and 1bm have the most significant improvement for the integer
and floating-point benchmarks, respectively achieving speedups of 1.28x and 1.38x. Many integer
benchmarks achieve remarkable performance gains (> 1.10x) with all the processor-tracing facilities.
However, only four floating-point benchmarks, i.e., bwaves, dealIl, tonto and 1bm, achieve signif-
icant improvement, and no noticeable performance gain is observed in the other benchmarks. The
reason for the difference in performance is that the integer benchmarks have considerably more
complex control flows than the float ones. Therefore, integer benchmarks suffer from the severe
problems of trace separation and overhead of early exits with the NET method. In contrast, our
method successfully reforms the original complex regions and effectively maintains the execution in
the regions. Thus, our method outperforms NET for most integer benchmarks. The same situation
is also observed for the four improved floating-point benchmarks. For the benchmarks that exhibit
little performance gain, the NET formation method has performed well and few exits are incurred.
Therefore, little room for improvement exists on these benchmarks by using our method.

The performance of several floating-point benchmarks (e.g., gamess and zeusmp) degrades with
the LBR-guided method because the branch history generated by LBR is fuzzy despite LBR being
enabled with a burst sampling mode of the highest available frequency (i.e., 1 interrupt per 1000
instructions). As a result, the execution flow graph is divided into disconnected sub-graphs, and the
node and edge frequencies are not as accurate as those of BTS and IPT. The LBR-guided method
does not select the best regions. Region exits occur in the formed regions, and the performance of
LBR is worse than that of NET for these benchmarks.

Because 1bm achieves the best performance gain of all the benchmarks, we investigate this bench-
mark in more detail and compare the results of trace and region formation. 1bm spends more than
95% of the execution time running in a for-loop in a function named LBM_per formStreamCollide.
The control flow of the for-loop is a two-cycle region (Figure 1c), and the execution frequently
transitions among three code segments. The computation in the loop of the compiled ARM32 guest
binary uses 13 general-purpose registers and 31 VFP registers (d registers). When running with
NET, this loop is split into two traces, a loop trace and a straight-line trace (Figure 1d). Further-
more, early exits occur frequently in the middle of the loop trace. Consequently, huge overhead is
incurred because numerous guest architecture states are frequently stored and reloaded during the
transitions between the two separate traces. In contrast, the three code segments are selected in one
region in processor-tracing guided region formation. The guest architecture states are effectively
kept in the host registers, which results in the execution of 20% fewer memory operations and 38%
improvement in the performance compared with NET.

14

30 T T T T T T T T T T T T
LBR mm BTS mmmm |PT 0004

25

20
15

10

Memoy Reduction Rate (%)

Oy Gy Y0 o4, %, % 2,
O LR R R

) 2
% % %
/774 ?/'@ e /7@,'(0'0 U Q’)o

2 20)
% (a) CINT2006 %
—_ 30 T T T T T T T T T T T T T T T T
X LBR e BTS mmss |PT 0
E 25
& 20
c
S 15
E]
S 10
4
> 5
g j_']__
& O
=
_5 Ié 1 1 1 1 1 I/ 1 1 1 1 1 IG I, I/é Ih, 1
h,@e’b'?e@e@esopc‘e (9 S04,
. e, ”o Us, e 0/;, 04,42//@9 Doy »0/6,* ’ey 4:*0/4 @/7,6\’(\0’7/0 7 r 6,,)*
%y “
(b) CFP2006
Fig. 7. The reduction of memory operations compared with NET.
0\\0’ 100 T
o LBR m==== BTS mmmm |PT 0
< 80
[
>
o
2 60
e
54 I
o 40
H*
3
N 20
©
€
s 0 7 7 +3,1,9 el 0,5 et
p s,/é /770)9%0;/@,7’69 96 %;9/9 ,})’77//0 ’77 /7;90/ @,/ %’e //o/ e/% /;,(f /;«0,59@0/77@
o s R 44 0, % 5,
Fig. 8. Number of regions generated.
Table 2. Number of traces generated with the NET method.
perlbench bzip2 gee mcf gobmk hmmer sjeng libquan h264 omnetpp
#traces 10783 6617 78421 396 63728 594 2041 159 7569 937
astar xalanc bwaves gamess milc zeusmp gromacs cactus leslie3d namd
#traces 913 2831 306 12376 508 1600 884 611 635 1234
dealll soplex povray calculix = Gems tonto Ibm wrf sphinx3
#traces 3016 2793 1873 3346 1451 3699 116 5936 2161

15

4.1.1 Reduction of Memory Operations. In this subsection, we evaluate the performance of NET
and our method by comparing the number of memory instructions executed for the benchmarks
with ARM32 to x86-64 translations. The number of memory operations decreases with register
mapping when enlarging the translation scope and increases if many trace/region exits occur.
Thus, this metric can be used to evaluate the quality of the formed traces and regions. A low
number indicates good formation quality. We use HPM counters to measure the number of memory
operations executed. For comparison, we use the NET results as a baseline and report the memory
reduction rate, which is calculated as follows:

Memorylnsn — Memorylnsn
ReductionRate = Y NET 4 PT

E

TotalInanET

where Memorylnsny ;- and MemorylInsnp, respectively refer to the number of memory operations
executed with NET and our method, and Totallnsn gt refers to the total instruction count with
NET. A high reduction rate indicates that fewer memory operations are executed in the formed
regions than in the NET traces.

Figure 7 illustrates the measurement results. Note that the reduction rate may not exhibit direct
correlations with the improvement in the execution performance of the benchmarks, because of
the different composition of instructions in the benchmarks, cache effect, and effect of out-of-order
execution. For the benchmarks in Figure 6 that exhibit a remarkable speedup, our method also
achieves significant memory reduction rates. These results imply that the proposed processor-
tracing guided method effectively forms regions with fewer early exits than those of NET. As
expected, for the benchmarks that have performance degradation with LBR, the number of executed
memory operations is higher than that with the NET method.

4.1.2 Number of Regions. We measure the number of traces and regions formed with NET and
our method. Table 2 lists the number of traces generated by NET for each benchmark, and Figure 8
shows the number of regions normalized to NET. As indicated by the results, our method generates
fewer regions than NET with all tracing facilities. This is due to two reasons. First, NET causes trace
separation; however, our method combines separated traces back into complex regions. Second, the
instrumentation-based NET method captures the traces immediately after the trace head blocks
reach the hot threshold (i.e., 50). In contrast, our region selection begins with HPM sampling to
detect the occurrence of program hotspots followed by processor tracing to record the branches.
Thus, a delay time is involved; therefore, a region must be really hot to be captured. Modestly
hot code segments that are selected by NET may not be detected with our method. Fewer regions
are obtained with our method, which may result in the loss of some improvement opportunities.
However, it is more important that the separate traces of frequent exits are combined as one,
which is the main reason why our method outperforms NET. The LBR-guided method generates
more regions than the BTS- and IPT-guided methods for many benchmarks because some regions
generated by BTS and IPT are formed in sub-regions due to the disjointed branch history of LBR.

4.1.3 Overhead of Region Formation. In this subsection, we discuss the overhead of our region
formation method. The overhead is measured as the time spent on the region formation handling
thread over the benchmark time, which includes (1) the time for performing HPM sampling and (2)
the time for processor tracing, which begins from the tracing buffer overflow and ends when the
region is formed. The time required for LLVM optimizations and code emission is not included.
Figure 9a shows the overhead incurred by the three Intel tracing facilities. As the result shows,
LBR and BTS incur extremely low overhead (< 1%). The overhead of IPT is higher than that of LBR
and BTS because software decoding is required for restoring the branch records, which increases
the process time. However, the IPT overhead remains within an acceptable range (< 3% of the

16

30 T
- LBR = BTS mmmm |PT 0=
25
< 20
s
o 1.5 I
E [
e I 1
3 1.0 H
0.5 Il l
0.0 N/ X +5,0 c 29, 0% G Yo, by 1S,
¢
i S R A /b’be“f S, 66//0/"”»@/%/»3’2‘ e
% (A /v 2 Q
(a) Region formation overhead with the Intel tracing facilities
processor-tracing
HPM-sampling+processor-tracing
decode-cache+HPM-sampling+processor-tracing ==——3
100 T
—~ 80
B
° 60
e
5 40
>
O 20 N
0 _LJD_IQ_L_J:_I_ID_LLLLLL_E i l I

./ e
Porf 900”’0)9%2;2,;@,@ 69 ’b *6/%9%”% o ,fﬁo S, e/ﬂ/@‘jv,e ofj;e % é’bh"f AP
(b) Effects of HPM sampling and the branch instruction decode cache with IPT.

6’ @‘90

Fig. 9. Region formation overhead.

benchmark time). Moreover, the result shows that the integer benchmarks incur more overhead than
the floating-point benchmarks, which also implies that the control flows of the integer benchmarks
are more complicated than the float ones. More branch records are processed to cover the hot
regions of the integer programs.

To evaluate the effects of HPM-sampling and the branch instruction decode cache, we disable
these optimizations and measure the resultant overhead on the handling thread. Figure 9b shows
the measurement results. We only report the results of IPT because it is the only Intel tracing
facility that requires software decoding. In Figure 9b, the blue bar represents the results when
running processor tracing permanently (no optimization), the red bar represents the results when
HPM-sampling is enabled, and the green bar is for both optimizations enabled (the same results as
the green bar in Figure 9a). The results show that permanently enabling processor tracing imposes
significant overhead on the handling thread (25%-98%). However, as the results in Figure 9a indicate,
3% of the execution time is sufficient to detect and form all the hot regions for each benchmark.
Therefore, most of the time is wasted by the handling thread when using processor tracing only.
By performing the optimization of lightweight HPM sampling, processor tracing is only activated
when required. Significant workload of the handling thread is eliminated, and the overhead on the
thread is reduced to 1%-8%. By adding the optimization of the branch instruction decode cache, the
overhead is further minimized to less than 3%.

17

16 T T T T T T T T T T T T
12 LBR m BTS s |PT 0
E]Ig 1.19
2 5 =
2 09 -
° 08]
5 0.7 [
o 0.6 —
8 05 —
a 04 [
2] 8%]
0.1 —
e, % % & e,,/(/o) & Y, %0% %
(a) CINT2006 performance results
1.6 T T T T T T T T T T T T T T T
1.5 LBR mmm BTS mms [PT 04
.]:g .16
w 1.2
z 11]
2 09]
o 08 [
=] 0.7 [
8 06 -
o 05 -
o 04 —
n 8% ||
0.1 —
0.0 —
éh/ QQ/}] /};,/O ?@O s, ‘90 /6'@/ Q/}] @Q % ob Q/o Gy, 45/)) e %/5 9@0
SO e flxs 0Oy ey Ty, %X\ Ny e,
0¢, 072) U
(b) CFP2006 performance results
30 T
LBR === BTS mmm |PT 00—
25 -
< 20
®
o 15
<
g 1.0 I
y J&ﬂﬂﬁjﬂﬂﬂjﬂ
0.0
0@,/ ’”0)9 % /"5 07‘9@1*9/6‘1*9‘90;’7% ,b/f;%z 52 <7‘5’6//0/01/43, o(S’;@ fo,,,b,,/p,,%ég%
6,8 0% “457%,
/) /;) %o ’774, 4044 O U

(c) Region formation overhead
Fig. 10. Performance and overhead of the ARM64 to x86-64 translations.

4.2 Performance Results with the ARM64 to x86-64 Translations

Figure 10 shows the performance and region formation overhead of the ARM64 to x86-64 transla-
tions. Similar to the ARM32 results in Figure 6, our method also achieves significant improvement

18

over the NET method for most integer benchmarks and some floating-point benchmarks, respec-
tively achieving an average speedup of 1.19x and 1.16x. Many benchmarks, such as gobmk, astar,
and 1bm, show higher speedup with the ARM64 to x86-64 translations than with the ARM32
translations. The reason is because ARM64 comprises more architecture states than ARM32 (32
general-purpose registers and 32 SIMD registers in ARM64 compared with 16 general-purpose
registers and 16 SIMD registers in ARM32). The ARM64 program binaries use more registers than
ARM32 binaries, and thus additional state synchronization overhead can be eliminated by forming
regions. Overall, our method achieves an average speedup of 1.16x for the CPU2006 benchmarks
with the three tracing facilities, where less than 3% region formation overhead is incurred (Figure
10c). Furthermore, our method achieves 8% fewer memory operations executed and generates fewer
regions (20%) on average compared with NET.

4.3 Performance Results with the x86-32 and x86-64 to ARM64 Translations

In this experiment, we evaluate the performance of our method based on the ARM CoreSight
technology with two translations: x86-32 to ARM64 and x86-64 to ARM64. The emulation and
region formation threads are bound to the two ARM Cortex-A57 out-of-order big cores. The SPEC
CINT2006 benchmarks with reference inputs are used for evaluation. Because the Cortex-A57 CPU
lacks the performance counter for measuring memory operations, we only report the execution
performance and region formation overhead.

Figure 11a shows the performance results. On average, our region formation method achieves
speedups of 1.10x and 1.13x over NET for the x86-32 and x86-64 translations, respectively. Among
the benchmarks, gcc exhibits the most significant improvement, achieving a speedup of 1.25x.
Many other benchmarks, such as mcf, gobmk, omnetpp, astar and xalancbmk, also show remarkable
performance gain (> 1.10x). This result is expected because the integer benchmarks have complicated
control flows, and our method constructs complex regions instead of separate traces. Therefore,
better performance is achieved over the NET trace formation method.

Figure 11b shows the overhead of region formation, which ranges from 1.1% (1ibquantum)
to 7.5% (xalancbmk). The overhead in ARM CoreSight is higher than that in IPT because the
processing power of the ARM Cortex-A57 CPU is not as efficient as that of the Intel Skylake
processor. Therefore, more time is spent for decoding the CoreSight packets and performing region
selection.

4.4 Comparison with the NETPlus Region Formation Method

In the preceding sections, we have presented the importance of region formation for minimizing
the architecture state synchronization overhead. Unlike our method, Davis and Hazelwood [16]
proposed NETPlus, which is a software-based region formation method. NETPlus is an extension
of the NET trace selection method and comprises two steps. In the first step, the conventional NET
algorithm is applied to select a trace. In the second step, a forward search is performed from all
exits of the trace for any possible paths that return to the trace head block. A region is formed by
combining the NET trace and the basic blocks along the paths to the trace head. We implemented
a relaxed NETPlus algorithm in our DBT system, in which the target of the search paths is not
limited to the trace head block; any path flowing back to any trace body block is included in the
region. Such relaxation enables NETPlus to cover additional region shapes, including the if-then
and if-then-else control flows that are supported by the IA-32 EL DBT system. In the following, we
compare the effectiveness of the relaxed NETPlus and IPT-guided region formation methods. The
ARMS64 to x86-64 translations are used for evaluation.

Figure 12 shows the speedup of NETPlus and our method over NET. As the result shows, NETPlus
achieves performance gain for many programs by avoiding the trace separation problem. The

19

15 T
1@ x86-32/ARM64 mmmmm x86-64/ARM64 =z
E 12 1.10 1.13
z 1 N N e NN b T R
5 09 N R EEEEEE NN LR . LK
2 08 HEEEEEEEEEE N LR . LK
a 07 N R EEEEEE NN LR K]
5 06 HEEE RN N | LB]
3 08 HEEEEEEEEEE N LB LK
o 04 N R EEEEEE NN LR - LK
& 03 N R EEEEEE NN L ER . - K
05 N R EEEEEE NN LR . LK
0.1 HEEEEEEEEEE N LB K LB K
o I A W R B I H
ks oo e ’69396«%@% 450, Ve "’9/’96 o
Cy
o5 (I /);4_‘9/7 ’70,5 /}) op b,,):e
(a) Performance
100 T
x86-32/ARM64 mm=== x86-64/ARM64 ==
8.0
S
- 6.0
[
()
<
S 4.0
>
o
2.0 ﬁ r
0.0 L]
@%8/0900/)’0}9%’5/7; s 0‘59(?96‘ /);,) s,;? geo/b @%3/,0‘900070/*9%6’7) s 9‘59696"7? ,;9, &9/)90/77
2
"y, /7; 0 6,7%@,7 /70/7 0) 00 6,7729,7

(b) Region formation overhead

Fig. 11. Performance and overhead of the x86-32 and x86-64 to ARM64 translations.

performance of NETPlus is competitive with that of our method for some benchmarks, such as
astar, bwaves, and dealII. However, the IPT-guided method outperforms NETPlus for most of
the benchmarks. This performance gap is related to the timing of a region’s component block
selection. NETPlus decides and combines additional paths into a region immediately after the
NET trace is completed. Potential paths that contain soon-to-be-executed untranslated blocks are
not combined with the NETPlus algorithm. This results in such potential paths being formed as
different translation code fragments, which causes separation. In contrast, we select regions on
the basis of sufficiently long execution history tracked by the tracing hardware. Therefore, our
method could combine all the potential paths in a complete region and minimize region separation.
Compared with NET, the overall performance improves by 9% with NETPlus and 16% with our IPT
method.

Because enlarging the translation granularity can increase the translation overhead and the traces
and regions are aggressively optimized with LLVM passes, we measure the LLVM compilation
overhead of each formation method. Figure 13 shows the total compilation time normalized to that
of NET. Overall, the NETPlus algorithm spends 28% additional time for LLVM compilation than
NET, however, 67% less time is required with the IPT-guided method. Two factors determine the

20

16 T
12 NET mm=== NETPlus o IPT === I
13 i - I] —
R 15)] N n | I .
3 09]
g 08]
» 06]
0.5 —
0.4 ||
0.3 —
0.2 [
0.1 —
0.0 4 45 6
@/76 900/770)906 /7767@ /69 S‘{Q Q"/s, 11"99/)7/77//0 /boeo, 9/ /O/ OI/fQ/O(/ 0/71'0 /77@/7 ’5;,9780/))
,O /77/0 06‘ 0 “+ Ge
/$ /;, "7,{. 2

Fig. 12. Performance of NETPlus and IPT-guided region formation with the ARM64 to x86-64 translations.

20 T
18 NET === NETPlus mmmmm IPT ===

LLVM Compilation Overhead

eol/

‘9/‘/2 0‘9000’0)90 %/; bor "7/;'29’ S é”"%’b 9,;70/;,0‘90 > ‘90%’9//0/01/39/ X 35”’ 7% //;f,o
/7 40

1‘
() /77

Fig. 13. LLVM compilation overhead with the ARM64 to x86-64 translations.

compilation overhead: (1) the region size and (2) number of regions. Although NETPlus generates
fewer regions than NET (i.e., 85% the number of NET traces), the total compilation time increases
due to the considerably increased overhead for optimizing large regions. In contrast, our method
generates considerably fewer regions than NET (i.e., 20% the number of NET traces) because only
the really hot regions are selected for optimization. Therefore, the compilation overhead can be
significantly reduced.

In summary, we evaluate our processor-tracing guided region formation method with four
types of cross-ISA translations. The benchmark results indicate that our method effectively forms
high-quality regions with fewer memory accesses and achieves superior performance over NET.
Moreover, using lightweight HPM sampling and the branch instruction decode cache significantly
reduces the system overhead. The comparison with NETPlus also indicates that our method achieves
the best performance and lowest compilation overhead.

5 RELATED WORK

After Duesterwald and Bala Duesterwald and Bala [18] proposed the NET selection algorithm in
2000, NET quickly became a popular trace formation method because of its good performance and
simple design. Many dynamic compilation systems [4, 9, 11, 14, 15, 19, 24, 26, 39, 42] have adopted

21

NET or its variants to conduct trace formation. However, the NET selection algorithm faces the
problems of trace separation and early exits. For addressing these issues, numerous methods have
been proposed in the literature.

Trace formation methods. MRET2 (Two-pass Most Recent Execution Tail) [40] is a two-pass trace
selection algorithm. It performs trace selection twice from the same trace head, and the final hot
trace is the common path of the two selected traces. Using this two-pass selection, MRET2 reduces
the possibility of selecting a bad trace that causes frequent trace exits. Hayashizaki et al. [21] found
that a function is falsely identified as a loop by the trace formation algorithm if the function is
invoked multiple times in a loop body, which results in the real loop being split into short traces.
They proposed a false-loop filtering mechanism, which monitors the call stack. Trace selection
continues through the function until the real loop is formed in one trace. Inspired by the work of
Hayashizaki et al. [21], Castanos et al. [13] proposed the N-E-C (Next-Executing-Cycle) method,
which is an adaptive trace selection algorithm. N-E-C defines two-level thresholds. When the trace
head reaches the level-1 (i.e., lower) threshold, a hot trace is selected using the NET algorithm,
which terminates trace recording if an existing trace head is encountered. When the trace head
reaches level-2 (i.e., higher) threshold, the trace selection continues through an existing trace head
instead of being terminated. Thus, a long trace, which can select the loop mentioned in [21], is
formed. D" Antras et al. [15] addressed the issue that hardware return address prediction cannot be
exploited if the formed traces do not preserve the call/return structure. To overcome this problem,
they proposed an improved NET algorithm that stops trace recording when the call/return sequence
is detected. The aforementioned algorithms use different termination conditions to lengthen traces,
avoid early exits, or exploit hardware features. However, these algorithms still focus on forming
traces, which do not solve the problems of trace separation and early exits for complex regions.

Hiniker et al. [22] proposed the Last Executed Iteration (LEI) trace formation algorithm. In
contrast to the NET algorithm that selects traces from the next executed blocks, LEI selects cyclic
traces from a software-implemented history buffer containing the most recently taken branches.
Although the LEI algorithm achieves less trace separation and code duplication than NET, its imple-
mentation introduces high profiling overhead. ADORE [32] is a lightweight dynamic optimization
system based on sampling-based processor tracing. It collects path profiles from the Itanium II BTB
counters, and the four most recently taken branches are recorded at each interrupt. When a set of
four branches occurs frequently, the corresponding path is selected and linked with other frequent
paths to form a trace. The LEI algorithm and ADORE system do not form regions.

Region formation methods. The IA-32 EL software [7] applies two-phase translation. The first
phase instruments cold blocks to collect the block and edge frequencies, which are used for hot
trace selection in the second phase. A trace is further extended to a region containing if-then or
if-then-else structures if predication can be used to include these structures as part of the linear trace.
Unlike IA-32 EL, our method does not employ instrumentation and builds general regions of any
shape. The formation of general regions has been reported in the following DBT systems: the EHS
simulator [28], Transmeta CMS [17], and the x86 simulator [10]. The EHS simulator identifies hot
regions by profiling block execution using interpretation, whereas our algorithm collects execution
profiles through processor tracing. Transmeta CMS requires special hardware to form regions,
however, its design details are not reported in the literature. Borin et al. [10] presented the frame
formation logic, which is a new hardware component that can profile retired micro-operations and
use branch predictability information to assist trace and region formation. The functionality of
the frame formation logic is similar to processor tracing. However, their work is evaluated on the
simulator level, whereas our method is designed with real hardware.

Numerous extensions of the NET selection algorithm have been proposed for region formation.
The NETPlus algorithm [16] forms regions by combining a sequence of basic blocks that can flow

22

back to the NET trace head. We demonstrated in Section 4.4 that our algorithm achieves better
performance and lower compilation overhead compared with NETPlus. Hong et al. [24] and Hsu
et al. [25] proposed the trace merging algorithms based on HPM sampling. Similar to NETPlus,
they begin with NET trace formation but no additional block is combined in the first phase. Instead,
HPM sampling is used to monitor the execution of NET traces. In [24], multiple connectable traces
are merged into one region if the traces are frequently sampled. In [25], the exit points of frequently
sampled traces are instrumented with profiling counters. Two traces are combined if the associated
profiling counter reaches a certain threshold. These algorithms perform NET trace formation in
the first phase that involves instrumentation, and additional paths are included in the second phase
to form regions. In contrast, our algorithm is a non-intrusive approach. Regions are formed by
utilizing branch records collected through processor tracing.

Sampling methods. Sampling is a common mechanism to reduce the overhead of profiling: instead
of exhaustively collecting information, profiling is only applied at specific time points. Sampling
can be driven by software or hardware. Software sampling typically uses operating system features
or software-based counters as the trigger mechanism. Jikes RVM [1] and IBM J9 VM [36] use the
OS timer to trigger a sampling thread, whereas the OS sleep function is used in [41] to periodically
awakes a profiler thread to sample the call stacks of application threads. Using counter-based
sampling, Arnold and Ryder [3] proposed a framework that duplicates execution code in two
versions: one version is instrumented to collect profile information and the other version is only
inserted with checking counters in procedure entries and loop backedges. Their framework samples
by using the checking counters and switches the execution to instrumentation code only when
the counter value decreases to zero. Hirzel and Chilimbi [23] further enhanced the Arnold-Ryder
framework. The enhancement allows profiling to span across procedure boundaries, and overhead
is reduced by executing fewer counter checks. Unlike the aforementioned software-based sampling
approaches, our method uses HPM sampling. [37] and [12] are two close work that also leverage
HPM sampling to identify hot methods for optimization. Tam and Wu [37] instrument method
prologues and epilogues to determine the hotness of methods by reading the HPM cycle counter;
Buytaert et al. [12] find optimization candidates by retrieving method ID from the stack upon the
HPM counter overflow. These work aim to dynamically recompile code for higher optimization
levels. In contrast, our work uses HPM sampling for triggering hot region formation and minimizing
the overhead of processor tracing.

6 CONCLUSION

In this paper, we present a processor-tracing guided region formation method. We leverage the
branch history recorded by the processor and construct an execution flow graph containing node
and edge frequencies. According to the reaching probabilities derived from the node and edge
frequencies, general regions are formed by selecting only the basic blocks with high reaching
probabilities. Because of this probability-based region formation, the execution is likely to remain in
the formed regions, resulting in minimal region exits. We implemented our method in a retargetable
cross-ISA DBT, which is based on the popular NET trace formation method. For the ARM64 to
x86-64 translations with the SPEC CPU2006 benchmarks, our method outperforms NET with a
speedup of up to 1.53x (1.16x on average). To minimize the system overhead, we design a mechanism
that combines processor tracing and lightweight HPM sampling. This mechanism effectively limits
the region formation overhead to less than 8%. Moreover, the design of the branch instruction
decode cache further reduces the overhead to less than 3%. The comparison with a relaxed NETPlus
region formation algorithm demonstrates that our method achieves the best performance and
lowest compilation overhead.

23

REFERENCES
[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F.

[11

[12

[13
[14

(15

[16

[17

[18

[19

[20

[21

[22

[23

—

]

—_

]

—

—_ =

—

—

= =

Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith,
V. C. Sreedhar, H. Srinivasan, and J. Whaley. 2000. The JalapeniO Virtual Machine. IBM Systems Journal 39, 1 (Jan.
2000), 211-238.

ARM 2012. CoreSight Components Technical Reference Manual. ARM.

Matthew Arnold and Barbara G. Ryder. 2001. A Framework for Reducing the Cost of Instrumented Code. In Proceedings
of the ACM SIGPLAN 2001 Conference on Programming Language Design and Implementation. 168-179.

Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. 2000. Dynamo: a transparent dynamic optimization system.
In ACM SIGPLAN Conference on Programming Language Design and Implementation. 1-12.

Thomas Ball and James R. Larus. 1994. Optimally Profiling and Tracing Programs. ACM Transactions on Programming
Languages and Systems 16, 4 (July 1994), 1319-1360.

Thomas Ball and James R. Larus. 1996. Efficient Path Profiling. In Proceedings of the 29th Annual ACM/IEEE International
Symposium on Microarchitecture. 46-57.

Leonid Baraz, Tevi Devor, Orna Etzion, Shalom Goldenberg, Alex Skaletsky, Yun Wang, and Yigel Zemach. 2003. IA-32
Execution Layer: a two-phase dynamic translator designed to support IA-32 applications on Itanium-based systems. In
IEEE/ACM International Symposium on Microarchitecture.

Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In USENIX Annual Technical Conference. 41-46.
Igor Bohm, Tobias J.K. Edler von Koch, Stephen C. Kyle, Bjorn Franke, and Nigel Topham. 2011. Generalized just-in-time
trace compilation using a parallel task farm in a dynamic binary translator. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation. 74-85.

Edson Borin, Youfeng Wu, Cheng Wang, Wei Liu, Mauricio Breternitz, Jr., Shiliang Hu, Esfir Natanzon, Shai Rotem,
and Roni Rosner. 2010. TAO: Two-level Atomicity for Dynamic Binary Optimizations. In Proceedings of the 8th Annual
IEEE/ACM International Symposium on Code Generation and Optimization. 12-21.

Derek Bruening, Timothy Garnett, and Saman Amarasinghe. 2003. An infrastructure for adaptive dynamic optimization.
In International Symposium on Code Generation and Optimization. 265-275.

Dries Buytaert, Andy Georges, Michael Hind, Matthew Arnold, Lieven Eeckhout, and Koen De Bosschere. 2007.
Using Hpm-sampling to Drive Dynamic Compilation. In Proceedings of the 22Nd Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems and Applications. 553-568.

J.G. Castanos, H. Hayashizaki, H. Inoue, M.J. Serrano, and P. Wu. 2014. Adaptive next-executing-cycle trace selection
for trace-driven code optimizers. http://www.google.com/patents/US8756581 US Patent 8,756,581.

Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken, and David M. Gillies. 2000. Mojo: A dynamic optimization system. In
ACM Workshop on Feedback-Directed and Dynamic Optimization. 81-90.

Amanieu D’ Antras, Cosmin Gorgovan, Jim Garside, and Mikel Lujan. 2017. Low Overhead Dynamic Binary Translation
on ARM. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation.
333-346.

Derek M. Davis and Kim Hazelwood. 2011. Improving Region Selection through Loop Completion. In ASPLOS Workshop
on Runtime Environments/Systems, Layering, and Virtualized Environments.

James C. Dehnert, Brian K. Grant, John P. Banning, Richard Johnson, Thomas Kistler, Alexander Klaiber, and Jim Mattson.
2003. The Transmeta Code Morphing&Trade; Software: Using Speculation, Recovery, and Adaptive Retranslation
to Address Real-life Challenges. In Proceedings of the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization. 15-24.

Evelyn Duesterwald and Vasanth Bala. 2000. Software Profiling for Hot Path Prediction: Less is More. In Proceedings of
the 9th International Conference on Architectural Support for Programming Languages and Operating Systems. 202-211.
Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin, Mohammad R. Haghighat, Blake Kaplan,
Graydon Hoare, Boris Zbarsky, Jason Orendorff, Jesse Ruderman, Edwin W. Smith, Rick Reitmaier, Michael Bebenita,
Mason Chang, and Michael Franz. 2009. Trace-based just-in-time type specialization for dynamic languages. In ACM
Conference on Programming Language Design and Implementation.

Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. 1982. Gprof: A Call Graph Execution Profiler. In
Proceedings of the 1982 SIGPLAN Symposium on Compiler Construction. 120-126.

Hiroshige Hayashizaki, Peng Wu, Hiroshi Inoue, Mauricio J. Serrano, and Toshio Nakatani. 2011. Improving the
Performance of Trace-based Systems by False Loop Filtering. In Proceedings of the 16th International Conference on
Architectural Support for Programming Languages and Operating Systems. 405-418.

David Hiniker, Kim Hazelwood, and Michael D. Smith. 2005. Improving Region Selection in Dynamic Optimization
Systems. In Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture. 141-154.

Martin Hirzel and Trishul Chilimbi. 2001. Bursty Tracing: A Framework for Low-Overhead Temporal Profiling. In 4th
ACM Workshop on Feedback-Directed and Dynamic Optimization.

http://www.google.com/patents/US8756581

[24]
[25]
[26]
[27]
[28]
[29]
[30

[31]
[32]

—

[33]

[34]
[35]
[36]
[37]
[38]

[39]

[40]
[41]

[42]

24

Ding-Yong Hong, Chun-Chen Hsu, Pen-Chung Yew, Jan-Jan Wu, Wei-Chung Hsu, Yeh-Ching Chung, Pangfeng Liu,
and Chien-Min Wang. 2012. HQEMU: A Multi-Threaded and Retargetable Dynamic Binary Translator on Multicores.
In International Symposium on Code Generation and Optimization. 104-113.

Chun-Chen Hsu, Pangfeng Liu, Jan-Jan Wu, Pen-Chung Yew, Ding-Yong Hong, Wei-Chung Hsu, and Chien-Min Wang.
2013. Improving Dynamic Binary Optimization Through Early-exit Guided Code Region Formation. In Proceedings of
the 9th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments. 23-32.

Hiroshi Inoue, Hiroshige Hayashizaki, Peng Wu, and Toshio Nakatani. 2011. A trace-based Java JIT compiler retrofitted
from a method-based compiler. In 9th Annual IEEE/ACM International Symposium on Code Generation and Optimization.
246-256.

Intel Corporation 2018. Intel(R) 64 and IA-32 Architectures Software Developer’s Manual: Volume 3. Intel Corporation.
Daniel Jones and Nigel Topham. 2009. High Speed CPU Simulation Using LTU Dynamic Binary Translation. In
Proceedings of the 4th International Conference on High Performance Embedded Architectures and Compilers. 50-64.
Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis & Transfor-
mation. In International Symposium on Code Generation and Optimization. 75-88.

Linaro. 2018. OpenCSD library. https://github.com/Linaro/OpenCSD.

Linaro ToolChain. 2017. Linaro ARM GCC toolchain. http://www.linaro.org/downloads/.

Jiwei Lu, Howard Chen, Pen-Chung Yew, and Wei-Chung Hsu. 2004. Design and Implementation of a Lightweight
Dynamic Optimization System. Journal of Instruction-Level Parallelism 6 (2004), 1-24.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa
Reddi, and Kim Hazelwood. 2005. Pin: Building customized program analysis tools with dynamic instrumentation. In
ACM SIGPLAN Conference on Programming Language Design and Implementation.

Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavyweight dynamic binary instrumentation.
In ACM SIGPLAN Conference on Programming Language Design and Implementation. 89-100.

Andreas Neustifter. 2010. Efficient Profiling in the LLVM Compiler. Master’s thesis. Vienna University of Technology.
Vijay Sundaresan, Daryl Maier, Pramod Ramarao, and Mark Stoodley. 2006. Experiences with Multi-threading and
Dynamic Class Loading in a Java Just-In-Time Compiler. In Proceedings of the International Symposium on Code
Generation and Optimization. 87-97.

David Tam and John Wu. 2003. Using Hardware Counters to Improve Dynamic Compilation. Technical Report.
Mustafa M. Tikir and Jeffrey K. Hollingsworth. 2002. Efficient Instrumentation for Code Coverage Testing. In Proceedings
of the 2002 ACM SIGSOFT International Symposium on Software Testing and Analysis. 86-96.

Cheng Wang, Shiliang Hu, Ho-seop Kim, Sreekumar R. Nair, Mauricio Breternitz, Zhiwei Ying, and Youfeng Wu. 2007.
StarDBT: An Efficient Multi-platform Dynamic Binary Translation System. In Asia-Pacific Conference on Advances in
Computer Systems Architecture. 4-15.

C. Wang, B. Zheng, H.S. Kim, M. Breternitz, and Y. Wu. 2010. Two-pass MRET trace selection for dynamic optimization.
http://www.google.com/patents/US7694281 US Patent 7,694,281.

John Whaley. 2000. A Portable Sampling-based Profiler for Java Virtual Machines. In Proceedings of the ACM 2000
Conference on Java Grande. 78-87.

Peng Wu, Hiroshige Hayashizaki, Hiroshi Inoue, and Toshio Nakatani. 2011. Reducing Trace Selection Footprint for
Large-scale Java Applications Without Performance Loss. In Proceedings of the 2011 ACM International Conference on
Object Oriented Programming Systems Languages and Applications. 789-804.

http://www.google.com/patents/US7694281

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 DBT Infrastructure
	2.2 NET

	3 Processor-Tracing Guided Region Formation
	3.1 Processor-Tracing Facility
	3.2 Methodology
	3.3 Lightweight HPM Sampling
	3.4 Branch Instruction Decode Cache for IPT

	4 Performance Evaluation
	4.1 Performance Results with the ARM32 to x86-64 Translations
	4.2 Performance Results with the ARM64 to x86-64 Translations
	4.3 Performance Results with the x86-32 and x86-64 to ARM64 Translations
	4.4 Comparison with the NETPlus Region Formation Method

	5 Related Work
	6 Conclusion
	References

