
Job Scheduling Techniques for Distributed Systems with Heterogeneous
Processor Cardinality

Hung-Jui Chang
Department of Computer Science and Information Engineering

National Taiwan University

Taipei, Taiwan

Jan-Jan Wu
Institute of Information Science

Academia Sinica

Nankang, Taiwan

Pangfeng Liu
Department of Computer Science and Information Engineering

Graduate Institute of Networking and Multimedia

National Taiwan University

Taipei, Taiwan

Abstract

This paper proposes scheduling algorithms for assigning
jobs with different release time and execution time, to ma-
chines with heterogeneous processor cardinality. We show
that this scheduling problem is NP-complete, and propose
dynamic programming to find the optimal schedules. Since
the dynamic programming is time-consuming we propose
techniques that improve the efficiency of the dynamic pro-
gramming. We also propose heuristic algorithms for this
scheduling problem. Experimental results suggest that some
of the heuristics not only compute the answer efficiently but
also provide good solution.

1 Introduction

As grid systems become increasingly popular, the vast
amount of computing and storage resources allow us to
dispatch large scale resource-demanding problems to re-
mote servers so that the final solution can be found within
a reasonable amount of time. Grid systems are widely
adopted by scientists in various research areas. For ex-
ample, the Worldwide Large Hadron Collider Computing
Grid [9] builds and maintains a data storage and analysis
infrastructure for the entire high energy physics commu-
nity. Other organizations like the Biomedical Informatics
Research Network [2] provides a platform for biomedical
science sharing data and computing resources.

Grid systems often consist of different computing sites
with heterogeneous resources, which make it difficult to
schedule tasks to run efficiently. Due to the heterogeneous

nature, grid systems are often built across the wide area net-
work. As a result, the communication latencies between
sites in grid systems are usually high. High communication
latencies have significant impact to the efficiency of data
transfer. As a result job must be assigned to only one ma-
chine instead of run across many machines to reduce the
transfer latency.

In this paper, we are interested in scheduling jobs that
require a given number of processors. We are given a set of
tasks to schedule so that a job will only be assigned to a ma-
chine where the number of available processors is enough
to run the job. The objective is to develop algorithms that
minimizes the total makespan of job execution.

The rest of the paper is organized as follows. Section 2
reviews related works on scheduling jobs on multiproces-
sors. Section 3 describes the system model of scheduling.
Section 4 introduces the dynamic programing, and propose
efficient heuristic algorithms. Section 5 examines the exper-
imental results from our heuristics and compare them with
the optimal solution found by the dynamic programing pro-
gram. Section 6 concludes and and discusses future works.

2 Related Works

Scheduling is a key issue on parallel and distributed sys-
tems. In order to improve system performance we need to
schedule jobs to run at the right place at the right time. In
particular, when job compete for resources that are not pre-
emptive, it is very import to interleave their usage on these
resources so that system utilization and quality of service
are maintained at the same time.

Scheduling is a very difficult problem in parallel and dis-

tributed systems. General scheduling problems on multi-
processor system has been showed to be NP-complete [12].
Even if there are only two processors with identical com-
puting capacity and jobs do not share data, the problem is
still NP-complete because it is a special case of 2-Partition
problem [5].

There are many different objective functions in schedul-
ing. Some researches focus on average completion time of
all jobs [3, 8]. Some researchers focus on total completion
time [3, 7]. However, most of the research [1, 4, 6, 10] focus
on the makespan – the completion time of the last job. As a
result we will focus on the makespan in this paper.

There have been many research results in minimizing
makespan for multi-processors. Garey and Graham [6] give
an approximation algorithm with competitive ratio 2 − 1

m
in an environment where jobs are independent and require
only one processor. Albers improves the competitive ratio
to 1.923 in [1]. Naroska and Schwiegelshohn [10] show
that the same bound in [1] holds when the jobs need more
than one processor. Dell’Amico et al. [4] summarize lower
and upper bounds on scheduling jobs on multiprocessors.
Schwiegelshohn et al. [11] suggest a model in which there
are many machines, and each machine has a number of pro-
cessors. They show that if jobs cannot run across machine,
then to find an approximation algorithm with competitive
ratio less than 2 is also NP-complete. This result implies
that it is unlikely one can find approximation algorithm for
the scheduling problem on multi-processors.

3 Model and Problem Definition

A grid system M has |M | = m machines and each ma-
chine Mi ∈ M has pi processors. We denote Pi as the set of
processors in Mi and Pi,j as the j-th processor of machine
Mi. Without lose of generality the machines are ordered so
that mi−1 ≤ mi for all Mi ∈ M . All processors in the
system are identical.

A job set J has n independent jobs. A job Jj has three
attributes – a processing time tj , a release time rj , and a
degree of parallelism sj . The processing time is the amount
of time for the job to finish. The release time is the time for
a job to be ready for execution. The degree of parallelism is
the number of processors that must be exclusively allocated
to the job during its processing. Note that we do not al-
low multi-site scheduling or preemption, therefore a job Jj

must be executed on sj processors on one machine without
interruption.

A schedule for a grid system M to run a job set J con-
tains two attributes for each job – the machine a job is as-
signed to and the starting time of the job. Formally for a
given schedule S we use aS,j to denote the machine job Jj

is assigned to, and rS,j denotes the starting time of job Jj .
A schedule S is feasible if all following conditions hold.

The first condition is that a job cannot start before its release
time. The second condition is that at any time t and on
any machine Mi, the total number of processors required by
those jobs running on Mi. Those jobs Jj that are assigned to
machine Mi (aS,j = Mi) and are running at time t (rS,j ≤
t < rS,j + tj), use at most pi processors, where pi is the
number of processors in machine Mi.

1. rS,j ≥ rj , for all Jj ∈ J .

2.
∑

{Jj|aS,j=Mi,rS,j≤t<rS,j+tj} sj ≤ pi, for all Mi ∈
M , Jj ∈ J , t ≥ 0.

For a given grid system M and a job set J , we want to
find a schedule S to minimize the makespan. The makespan
of a schedule S, denoted by C(S), is the maximum comple-
tion time over all job Jj ∈ J in schedule S.

4 Algorithms

It is easy to see that the job scheduling problem men-
tioned earlier is NP-complete. We can have two machines,
each has one processor. The parallelism of every job is 1,
so that every job can run on either machine. The goal is
to divide the jobs into two groups so that total execution
times of the two groups are the same. This is exactly the
2-partition problem. Since 2-partition is a special case of
the job scheduling problem, the scheduling problem is NP-
complete.

Since the problem is NP-complete, it is unlikely to find
an efficient algorithm that finds the optimal schedule. In-
stead we will use a dynamic programing to find the optimal
schedule. Also in order to enhance the efficiency of the dy-
namic programming, we propose techniques to speed up the
dynamic programming.

4.1 Schedule

Our algorithm constructs the job schedule in phases, and
in each phase the algorithm schedules a job and adds it
into the current “partial” schedule. We will use the current
schedule to denote the partial schedule up to this point, and
we use JS to denote the set of jobs that have already been
scheduled by this current (and partial) schedule S.

The ready time of a processor p is the time that a new
job J2 can run on p under the current schedule S. If job J1

is last running job on processor p according to S, J2 has to
wait until J1 completes, and the ready time of J2 will be
the completion time of J1. Initially the ready time of every
processor p is 0 since the initial schedule is empty and there
is no job running on p.

Let RS,i,j to denote the ready time of the j-th processor
in machine Mi, i.e., Pi,j . under current schedule S. Again
for ease of notation we will drop the S subscript when the

context clearly indicate the schedule S. As a result the ready
time sequence R(S) of a schedule S is defined as R(S) =
((R1,1, . . . , R1,p1), . . . , (Rm,1, . . . , Rm,pm)). Note that the
ready time sequence has m vectors and each of them is for
a machine, and the i-th vector has pi components, i.e., the
number of processors in machine Mi.

4.2 Dynamic Programing

We now define the table element in our dynamic pro-
gramming. Let R be a ready time sequence for machines
M , and J ′ be a subset of J . We define E(R, J ′) to be
the minimum makespan when the ready time sequence is
R and we have J ′ to schedule. Therefore the optimal
makespan of a given job set J for a machine M will be
E(((0, . . . , 0), . . . , (0, . . . , 0)), J), where the ready time of
every processor is 0, and we have the entire job set J to
schedule.

For ease of description we will define a function that
gives all possible ways to pick a given number of pro-
cessors from a machine. For example, If the number
of processors required by Jj (sj) is two, and we would
like to run it on the i-th machine with pi = 4 proces-
sors, there will

(
4
2

)
= 6 different ways to choose proces-

sors from Mi. We can choose from one of the follow-
ing – {Pi,1, Pi,2}, {Pi,1, Pi,3}, {Pi,1, Pi,4}, {Pi,2, Pi,3},
{Pi,2, Pi,4}, and {Pi,3, Pi,4). Formally we use A(Mi, Jj)
to denote the set of all possible processors sets from Mi

where each subset has sj processors. Note that A(Mi, Jj)
is empty if the number of requested processors sj is larger
than the number of processors in machine Mi.

A(Mi, Jj) =
{ {p|p ⊆ Pi, |p| = sj}, if pi ≥ sj

∅, if pi < sj
(1)

We now describe how a given ready time sequence R
could change if we schedule a new job Jj to a machine Mi.
For ease of notation let Ri be the i-th vector of R, i.e. the
ready time of processors in machine Mi, and Ri,j be j-th
component of Ri, i.e., the ready time of Pi,j .

If we assign Jj to a machine Mi using one of the
assignment A from A(Mi, Jj), then only the processor
in A will be affected. The starting time of Jj will be
max(rj , maxk∈A Ri,k), i.e., the maximum of the release
time of job Jj (rj), and the maximum of the ready time
of processors in A, the set of processor in Mi that we
choose to run Jj . Consequently the completion time of Jj

is max(rj , maxk∈A Ri,k) + tj , which will become the new
ready time for processors in A.

We use T (R, Jj, Mi, A) = R′ to denote the result of
assigning Jj to a machine Mi using one of the assignment
A from A(Mi, Jj) based on the ready time sequence R.
That is, R and R′ are the ready time sequence before and

after the scheduling respectively. The definition of R′ is as
follows. Note that if a processor is not in the assignment A
its ready time will not be affected.

R′
i,j =

{
Ri,j , if Pi,j /∈ A
max(rj , maxPi,k∈A Ri,k) + tj , if Pi,j ∈ A

(2)
Now we are ready to describe the recursive formula for

the optimal makespan function E(R, J) in Equation 3. We
consider all jobs Jj in J and all machines Mi in M , and all
possible processor assignments for running Jj on Mi, and
choose one that will in term has the minimum makespan.

E(R, J) = min
Jj∈J

min
Mi∈M

min
A∈A(Mi.Jj)

E(T (R, Jj , Mi, A), J−Jj)

(3)
The terminal condition for E(R, J) is when J is empty,

i.e., we have nothing to schedule. Thus the value of E(R, ∅)
is the maximum ready time within the ready sequence R.

4.3 Improvements

The dynamic programing we proposed considers all job
scheduling orders and the ways to choose processors within
a machine, therefore it is very time consuming. In order
to speed up the dynamic programming we derive efficiency
improving techniques that are based on simple observations
on the scheduling problem.

For the ease of notation we sort all elements in each vec-
tor Ri of the ready time sequence R(S) in decreasing order,
that is, Ri,j ≤ Ri,j+1 for all Ri,j ∈ Ri. Since we assume
that all processors are homogeneous, there will be no dif-
ference if the ready time vector of a machine is (3, 4, 1) or
(1, 3, 4). We also use PS,i,j to denote the corresponding
processor with ready time RS,i,j , i.e., the processor with j-
th smallest ready time in Mi. The purpose of this “normal-
ization” of ready time is to compare two ready time vectors
as in the following definition.

Definition 1. A schedule S1 is better than another sched-
ule S2 if each element in the ready time sequence under
S1 (R(S1)) is no more than the corresponding element of
ready time sequence R(S2). That is, RS1,i,j ≤ RS2,i,j , for
all 1 ≤ i ≤ m, and 1 ≤ j ≤ pi.

We observe the following if a a schedule S1 is better than
another schedule S2.

Observation 1. First the current makespan of S1 will not
be larger than the current makespan of S2. Second if we
schedule the same set of remaining jobs in the same order
for both schedule S1 and S2, it is always possible to sched-
ule the remaining jobs so that the makespan from S1 will be
no more than the makespan from S2.

Now we can describe our first technique to speed up the
dynamic programming. In the original dynamic program-
ing program, when we assign a job required s processors
into a machine of p processors, we need to consider all

(
p
s

)
ways to chose processors. In the following Lemma 1 shows
that we only need to consider p − s + 1 ways that choose
processors with consecutive index.

Lemma 1. Let S be a schedule S, R be the set of all pos-
sible

(
pi

sj

)
ready time sequences that start with S and then

schedule Jj to machine Mi, and R′ be the set of all possi-
ble pi − sj + 1 ready time sequences that start with S and
then schedule Jj to machine Mi with consecutive proces-
sor index according to increasing ready time. The minimum
makespan of schedules that follow R′ will not be longer
than the minimum makespan of schedules that follow R.

Proof. We consider any assignment A among
(

pi

sj

)
possibil-

ities within R, and argue that there must be another assign-
ment A′ in R′ that is as good as A. Suppose the assign-
ment A choose sj processors as (Pi,a1 , . . . , Pi,asj

) in non-
decreasing ready time order, then the assignment A′ will
choose (Pi,asj

−sj+1, . . . , Pi,asj
) instead. For example, if

sj is 3 and a1 = 3, a2 = 4 and a3 = 7, then A′ will choose
(Pi,5, Pi,6, Pi,7) instead.

We will make a series of transformations to convert A
into A′ without delaying the schedule. Consider the last
“hole” in the ak sequence, that is, the largest k such that
there exists an integer s such that ak > s > ak−1. Now we
adjust the sequence so that new ak−1 is now ak − 1. For
example in our previous case when a is (3, 4, 7) we now
make it (3, 6, 7). The ready time of Pi,ak−1 increases from
Ri,ak−1 to Ri,ak

+ tj . Recall that tj is the execution time of
job Jj . However the ready time of Pi,ak−1 decreases from
o Ri,ak

+ tj to Ri,ak−1 . Since the ready time Ri,ak−1 will
never be later than Ri,ak−1 because of the “hole”, and the
fact that the ready time is sorted. We conclude that changing
ak−1 to ak − 1 will not delay anything. We can repeatedly
perform this switching until there is no “hole” within the
series ak and finally changing A into A′ without delaying
anything.

For any assignment A we can always find a A′ so that
the schedule is better. i.e., without delaying the ready time
of any processor. From Observation 1 we conclude that by
using only R′, i.e., considering only processors that have
consecutive processor ids according to ready time, we will
still be able to find optimal schedule that starts from S and
assigns Ji to Mi.

With Lemma 1 in place we only need to consider proces-
sors with consecutive processor index while selecting pro-
cessors for a job. This will significantly improve the effi-
ciency of dynamic programming since

(
p
s

)
is much larger

than p − s + 1.

The second possible improvement is how to order jobs
that require the same number of processors. Lemma 2 es-
tablishes that if all the processors’ ready time are greater
than the jobs’ release time, we only need to consider
scheduling those jobs with the increasing order of process-
ing time.

Lemma 2. Given a schedule S, if J1 and J2 are two jobs
that require the same number of processors but not yet
scheduled, the release time of both J1 and J2 is earlier than
the ready time of all processors, and the processing time of
J1 is at most the processing time of J2, i.e., t1 ≤ t2. Then
the minimum makespan of starting from S, then schedul-
ing J1, then scheduling J2, is no longer than the mini-
mum makespan of starting from S, then scheduling J2, then
scheduling J1.

Proof. For a given schedule S and two unscheduled jobs
J1 and J2 with s = s1 = s2, t1 ≤ t2 and max(r1, r2) ≤
RS,i,j , for all machine Mi ∈ M , and processor PS,i,j ∈
Mi, we want to show that for every schedule S21 from the
set of all schedules that start from S, then assign job J2

then J1, there exists another schedule S12 from the set of
schedules that start from S, then assign J1, then J2, and
S12 is better than S21.

We observe that we need only consider the case when J1

and J2 share processors at a machine Mi. If J1 and J2 were
assigned to different machines, or to the same machine but
different processors, then it does not make any difference
which job is scheduled first. Figure 1 illustrates the case
when J1 and J2 share processors at a machine Mk.

time ttime t

processor idprocessor id

Pk,8

Pk,7

Pk,6

Pk,5

Pk,4

Pk,3

Pk,2

Pk,1Pk,1

Pk,2

Pk,3

Pk,4

Pk,5

Pk,6

Pk,7

Pk,8

S12

t t + t1 t + t1 + t2t + t1 + t2t + t2t

S21

J1

J2

J1

J2

Figure 1. S21 and S12

From Figure 1 we can easily see that schedule S12 is
better than S21. For those processors that are not allocated
to either J1 or J2 the ready time will not change. Let P
denote the set of processors that are allocated to either J1

or J2. There will be s processors in P now have new ready
time t + t1 + t2, where t is the maximum ready time of
processors in P . The other |P | − s processors now have
new ready time t + t2 in S21, and t + t1 in S12. Since
t1 ≤ t2, S12 is better than S21. The lemma follows.

We can easily generalize Lemma 2 to cases when the

number of unscheduled jobs with the same number of pro-
cessors is greater than two. The proof is similar and we
change the schedule one job at a time.

4.4 Heuristic Algorithms

We propose a earliest-completion-first greedy heuristic
to schedule jobs. The algorithm always chooses the job
with the minimum completion time. Let Ju be the set of
unscheduled job. Initially Ju has all the jobs. We compute
the minimum possible completion time of each unscheduled
job Jj ∈ Ju, and schedule the one with smallest minimum
possible completion time. The chosen job is assigned to the
processors according to its minimum possible completion
time, and then is remove from Ju. The algorithm finishes
when Ju becomes empty.

If there are more than one job that has the earliest com-
pletion time, or one job has more than one processor as-
signment that has the earliest completion time, the algo-
rithm picks the job that requires the maximum/minimum
number of processors, and the machine that has the maxi-
mum/minimum number of processors. These four combi-
nations will be referred to as min-min, min-max, max-min,
and max-min heuristics.

5 Experimental Results

The experimental environment is as follow. There are 3
machine in the system – machine M1 has a processor, ma-
chine M2 has two processors, and machine M3 has four
processors. The number of jobs is from 1 to 17. The pro-
cessing time of a job is from 1 to 30, and the release time is
from 0 to 20. Each job requires 1 to 4 processors. For every
parameter combination we run the simulation for 100 times
and calculate the average.

We use relative makespan to measure the performance of
heuristic algorithms. The relative makespan of a heuristic
algorithm is the makespan of the heuristic algorithm divided
by the optimal makespan for the problem instance. We are
able to determine the optimal makespan because of our dy-
namic programming. The heuristic algorithm performs best
when its relative makespan is close to 1.

All-Zero-Release-Time We first consider a case when all
jobs have release time 0. We will refer to this case as all-
zero-release-time case. In the all-zero-release-time model
all jobs can be scheduled right from the beginning. Also
note that when a large set of of computation-intensive jobs
are submitted into the system, the jobs will be waiting for
the previous jobs to finish before it can start. In that case the
schedule will be similar to the all-zero-release-time model
since the jobs will be waiting in queue, and will be ready as
soon as processors become available.

Figure 2 shows the relative makespan when all jobs re-
quires only one processor in the all-zero-release-time case.
We consider three cases –the job processing time is from 1
to 10, 10 to 20, and 20 to 30. Notice that when every job
requires one processor, the four heuristic algorithms will be
the same. The relative makespan is about 1.3 for the case
of processing time from 1 to 10, 1.1 to 1.35 for the case of
processing time from 10 to 20, and 1.05 to 1.17 for the case
of processing time from 20 to 30.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 6 8 10 12 14 16 18

R
el

at
iv

e
m

ak
es

pa
n

Total number of jobs n

1-10
10-20
20-30

Figure 2. Relative makespan in all-zero-
release-time model

When jobs require different number of processors the
four heuristics behave differently. Figure 3 (a) compares the
relative makespan of the four heuristics when jobs require
1 to 2 processors, and (b) compares the relative makespan
when jobs require 1 to 4 processors. The processing time of
jobs in both experiments is from 10 to 20. In both two sets
of experiments the max-min heuristic performs best.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 0 2 4 6 8 10 12 14 16 18

R
el

at
iv

e
m

ak
es

pa
n

Total number of jobs n

min-min
max-min
min-max
max-max

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 0 2 4 6 8 10 12 14 16 18

R
el

at
iv

e
m

ak
es

pa
n

Total number of jobs n

min-min
max-min
min-max
max-max

Figure 3. All-zero-release-time model when
jobs require (a) 1 to 2 processors (b) 1 to 4
processors

Non-Zero-Release-Time We now consider the case when
the release time of jobs are not zero. Since jobs are submit-
ted into the system only when they are released, therefore
the heuristic algorithms will know the information of job
only after it has been released. We will refer to this model
as non-zero-release-time model.

Figure 4 compares the relative makespan between all-
zero-release-time and non-zero-release-time. The setting is
that all jobs require one processor only, the processing time
of jobs is from 10 to 20, and the release time of jobs is from
0 to 10. We observe that the relative makespan is more sta-

ble in non-zero-release-time model than in all-zero-release-
time model. When the number of jobs is slightly more than
the number of processors, usually the optimal schedule is to
place shortest jobs into the same processor. However, since
the heuristics use earliest-completion-first criteria, they will
place the shorter jobs into different processors. This mis-
judegment will become more often when more shortest jobs
are available to schedule. Unfortunately this is the case
when all jobs have release time 0, i.e., all-zero-release-time
model. That is, in all-zero-release-time model the scheduler
is more likely to place shortest jobs into different processor
by ECF, since they are available right at the beginning.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 0 2 4 6 8 10 12 14 16 18

R
el

at
iv

e
m

ak
es

pa
n

Total number of jobs n

r=0
r=0-10

Figure 4. Comparison of all/non-zero-release-
time models

Figure 5 illustrate the relative makespan under different
release time, where (a) has release time from 0 to 10 and (b)
has release time from 0 to 20. The number of processors per
job is from 1 to 4 and the processing time of jobs is from
10 to 20. In both sets of release time the max-min heuris-
tics still performs best. We also observe that the relative
makespan decreases when the release time becomes later.
The reason is that when jobs have later release time, some
processors will start their first job later and the makespan
will increase. Since the optimal makespan increases, the
relative makespan becomes smaller when the release time
becomes later.

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 0 2 4 6 8 10 12 14 16 18

R
el

at
iv

e
m

ak
es

pa
n

Total number of jobs n

min-min
max-min
min-max
max-max

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 0 2 4 6 8 10 12 14 16 18

R
el

at
iv

e
m

ak
es

pa
n

Total number of jobs n

min-min
max-min
min-max
max-max

Figure 5. Non-zero-release-time model when
release time is (a) from 0 to 10 (b) from 0 to
20

6 Conclusion

This paper proposes scheduling algorithms for assign-
ing jobs with different release time and execution time,

to machines with heterogeneous processor cardinality. We
show that this scheduling problem is NP-complete, and pro-
pose dynamic programming to find the optimal schedules.
Since the dynamic programming is time-consuming we pro-
pose techniques that improve the efficiency of the dynamic
programming. We also propose heuristic algorithms for
this scheduling problem. Experimental results suggest that
some of the heuristics not only compute the answer effi-
ciently but also provide good solution.

We will continue the investigation on efficient schedul-
ing algorithms for this problem. One of the ongoing work
is to examine the possibility of finding good algorithms
when the numbers of processors in every machine are spe-
cial numbers, e.g., a powers of 2. It seems more likely to
find efficient solution if we further assume that the num-
ber of processors for every job is also a power of 2. Also
we would like to consider the case if the execution time of
many jobs are the same. We might be able to take advantage
of the constraint on the input and derive efficient algorithms.

References

[1] S. Albers. Better bounds for online scheduling. In STOC,
pages 130–139, 1997.

[2] BIRN: The Biomedical Informatics Research Network.
http://www.nbirn.net/.

[3] C. Chekuri, R. Motwani, B. Natarajan, and C. Stien.
Approximation techniques for average completion time
scheduling. In SODA, pages 609–618, 1997.

[4] M. Dell’Amico, M. Iori, and S. Martello. Heuristic al-
gorithms and scatter search for the cardinality constrained
p||cmax problem. Journal of Heuristics, 10(2):169–204,
2004.

[5] M. Garey and D. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. WH Freeman and
Co. New York, NY, USA., 1979.

[6] M. R. Garey and R. L. Graham. Bounds for multiproces-
sor scheduling with resource constraints. SIAM Journal on
Computing, 4(2):187–200, 1975.

[7] Y. Guan, W. Xiao, R. K. Cheung, and C. Li. A multipro-
cessor task scheduling model for berth allocation: heuris-
tic and worst-case analysis. Operations Research Letters,
30(5):343–350, 2002.

[8] L. A. Hall, D. B. Shmoys, and J. Wein. Scheduling to min-
imize average completion time: Off-line and on-line algo-
rithms. In SODA, pages 142–151, 1996.

[9] LCG: LHC Computing Grid. http://lcg.web.cern.ch/LCG/.
[10] E. Naroska and U. Schwiegelshohn. On an on-line schedul-

ing problem for parallel jobs. Information Processing Let-
ters, 81(6):297–304, 2002.

[11] R. Y. U. Schwiegelshohn, A. Tchernykh. Online scheduling
in grids. In 22nd IEEE International Symposium on Parallel
and Distributed Processing, pages 1–10, 2008.

[12] J. D. Ullman. Np-complete scheduling problems. Journal
of Computer and System Sciences, 10(3):384–393, 1975.

