
Chapter 3
Basic Data Types

Chapter 3
Basic Data Types



September 29, 2010 2

Copyright © All Rights Reserved by Yuan-Hao Chang

Outline
• Data types

• Operators and expressions



Data TypesData Types



September 29, 2010 4

Copyright © All Rights Reserved by Yuan-Hao Chang

Variable and Constant
numnum == 1240012400Variable Constant



September 29, 2010 5

Copyright © All Rights Reserved by Yuan-Hao Chang

Memory Concepts
• Declare a variable

– Allocate memory to a variable  



September 29, 2010 6

Copyright © All Rights Reserved by Yuan-Hao Chang

Memory Concepts (Cont.)
• Assign a value to a variable



September 29, 2010 7

Copyright © All Rights Reserved by Yuan-Hao Chang

Data Types

Data 
Type

Description # of 
bytes

Range

int integer 4 -2147483648 ~ 2147483647
long int long integer 4 -2147483648 ~ 2147483647
short int short in 2 -32768 ~ 32767
char character 1 0 ~ 255
float floating point 4 1.2e-38 ~ 3.4e38
double double floating 

point
8 2.2e-308 ~ 1.8e308

Note: The size of each data type may vary from different compilers



September 29, 2010 8

Copyright © All Rights Reserved by Yuan-Hao Chang

Overflow
• Definition:

– The value assigned to a variable is larger than or smaller 
than the range of the corresponding data type.

• Overflow example:
– short int num = 40000; /* short: -32768~32767 */
– unsigned short int num = 700000; /* unsigned short: 0~65535 */
– short int num_a, num_b, sum;

num_a = 30000;
num_b = 30000;
sum = num_a + num_b; /* num_a + num_b = 60000 */



September 29, 2010 9

Copyright © All Rights Reserved by Yuan-Hao Chang

Overflow: Example
01 #include <stdio.h>   
02 #include <stdlib.h>
03 int main(void)
04 {
05 short int sum, num; /* declare “num” and “sum” */
06 num = 0x7FFFLL; /* set “num” to 32767 */
07 sum = num + 1;
08 printf(“num + 1 = %d\n“, sum); /* print variable */
09
10 sum = num + 2;
11 printf(“num + 2 = %d\n”, sum); /* print variable */
12 system("pause")
13 return 0;
14 }

num + 1 = -32768
num + 2 = -32767Output:

Long 
integer

0x7FFF=32767



September 29, 2010 10

Copyright © All Rights Reserved by Yuan-Hao Chang

Overflow: 2’s Complement

• If sign bit = 1, the variable is negative

• If sign bit = 0, the variable is non‐negative

0 1 1 1 1 … 1 1 1 1
sign bit Max positive value = (-1)0 * (111111..11)2 = 32767

1 0 0 0 0 … 0 0 0 0
sign bit Min negative value = (-1)1 * (10000…00)2= -32768

One’s complement: if sign bit = 1, invert from 0 to 1 and from 1 to 0
Two’s complement: One’s complement + 1
The value of an integer variable: (-1)sign-bit * (two’s complement)2

One’s complement: if sign bit = 1, invert from 0 to 1 and from 1 to 0
Two’s complement: One’s complement + 1
The value of an integer variable: (-1)sign-bit * (two’s complement)2

Two’s complement (8 bits)

00000000 00000000 = 0

00000001 00000001 = 1

….

01111111 01111111=127

11111111 -(00000001) = -1

….

10000000 -(10000000) = -128



September 29, 2010 11

Copyright © All Rights Reserved by Yuan-Hao Chang

Overflow: Signed Variable

0 1 1 1 1 … 1 1 1 1
sign bit Max positive value = (-1)0 * (111111..11)2

+ 1

1 0 0 0 0 … 0 0 0 0

short int num = 32767

num + 1
num + 2



September 29, 2010 12

Copyright © All Rights Reserved by Yuan-Hao Chang

Unsigned Variables
• Let the variable always have a positive value

• Why should we use unsigned variables?
– Increase the range of a variable if we are very sure that the variable 

must not be a negative value.
- Example: The number of students in a class

– Save the size of a variable (in terms of memory)
- Example:  For a variable ranging from 0 to 40000, we can declare it as int

(4 bytes) or unsigned short int (2 bytes)

Data Type Description # of bytes Range
unsigned int Unsigned integer 4 0 ~ 4294967295
unsigned long int Unsigned long integer 4 0 ~ 4294967295
unsigned short int Unsigned short in 2 0 ~ 65535



September 29, 2010 13

Copyright © All Rights Reserved by Yuan-Hao Chang

Data Type: char
• Character, which occupies one byte

– char ch = ‘1’; /* the character ‘1’ != integer 1 */ 
ch = ‘A’;
ch = ‘a’; /* ‘A’ != ‘a’ */
ch = 97; /* Assign the character whose ASCII is 10 (‘a’) to  ch. */

• There are totally 256 characters
– Not all characters are printable
– Check the table mapping each character to its ASCII 

code (http://en.wikipedia.org/wiki/ASCII)



September 29, 2010 14

Copyright © All Rights Reserved by Yuan-Hao Chang

Print a Character
01 #include <stdio.h>   
02 #include <stdlib.h>
03 int main(void)
04 {
05 char ch = 'a' , ch2 = 100; /* declare a character */
06 printf("ch = %c\n", ch); /* print the character ‘a’ */
07 printf("ASCII of ch = %d\n", ch); /* print the ASCII of ‘a’ */
08
09   printf("ASCII 100 = %c\n", ch2); /* print the variable
10 whose ASCII is 100 */
12 system("pause");
13 return 0;
14 } /* end of main() */

ch = a
ASCII of ch = 97
ASCII 100 = d



September 29, 2010 15

Copyright © All Rights Reserved by Yuan-Hao Chang

Escapes

Escape sequence Description ASCII
\a Alert 7
\b Backspace 8
\n New line 10
\r Carriage return 13
\0 Null character 0
\t Tab 9
\\ Backslash (\) 92
\’ Single quote (‘) 39
\” Double quote (“) 34



September 29, 2010 16

Copyright © All Rights Reserved by Yuan-Hao Chang

Data type: float
• Declare a float variable

– float f1 = 123.45FF;
– float f1 = 1.2345E2;
– float f1 = 0.00123;
– float f1 = 1.23E-3FF;

• Print a floating variable
– printf(”f1 = %f\n”, f1);

float

float



September 29, 2010 17

Copyright © All Rights Reserved by Yuan-Hao Chang

Data type: double
• 2.2E-308 ~ 1.8E308

• Precision of float: 7~8 bits

• Precision of double: 15~16 bits

Must be abandoned due to
the limited memory size



September 29, 2010 18

Copyright © All Rights Reserved by Yuan-Hao Chang

Library Function sizeofsizeof()()
• Calculate the size of data types

– sizeof(int);  // 4 bytes
– sizeof(double); // 8 bytes

• Calculate the size of a variable
– int num;

sizeof(num); // 4 bytes
– sizeof(2L); // 4 bytes

• Unit: byte



September 29, 2010 19

Copyright © All Rights Reserved by Yuan-Hao Chang

Type Conversion
• Convert a variable to another type: 

(new type) variable(new type) variable

01 int num = 12;
02 float total;
03 total = (float) num;



September 29, 2010 20

Copyright © All Rights Reserved by Yuan-Hao Chang

Type Conversion
• Example 1

01 float f1 = 3.1, f2 = 3.2F;
02 printf (“f1 = %f, f2 = %f\n“, f1, f2);
03 printf (“f1 = %d, f2 = %d\n“, (int)f1, (int)f2);

f1 = 3.1, f2 = 3.2
f1 = 3, f2 = 3

Output:

01 int num = 5;   
02 printf (“num/2 = %d\n“, num/2);
03 printf (“float: num/2= %f\n“, (float)num/2);

num/2 = 2
float: num/2 = 2.500

Output:

float



Operators and 
Expressions

Operators and 
Expressions



September 29, 2010 22

Copyright © All Rights Reserved by Yuan-Hao Chang

Expression
• Expression is composed of operands and operators

– Operand: variables or constant, such as num, 10, etc.
– Operator: +, -, *, /, %, =, >, <, &, |, !, (, )

– Example:
num = a + b;
age = age + 1;

Enumnum == aa ++ bb
expression

Operand Operator

;;

statement



September 29, 2010 23

Copyright © All Rights Reserved by Yuan-Hao Chang

Arithmetic Operator

• Division
– (int) / (int) = (int) (example: 5 / 2 = 2)
– (float) / (int) = (float) (example: 5.0 / 2 = 2.5)
– (int) / (float) = (float) (example: 5 / 2.0 = 2.5)

• Remainder
– 10 % 3 = 1
– Print %:  use %% (example: print(“10%%3 = %d\n”, 10 % 3);

Operation Arithmetic
operator

Algebraic
expression

C expression

Addition + a + b a + b
Subtraction - a – b a – b
Multiplication * ab a * b
Division / a / b a / b
Remainder % a mod b a % b



September 29, 2010 24

Copyright © All Rights Reserved by Yuan-Hao Chang

Operator Precedence
• Some arithmetic operators act before others.

– Multiplication and division before addition and 
subtraction.

– Use parenthesis to specify precedence.
- Example: computer the average of a, b, and c
- Do not use:  a + b + c / 3
- Use: ( a + b + c ) / 3

Operator Precedence
( ) Evaluated first; Inner to outer; Left to right
*, /, % Evaluated second; Left to right
+, - Evaluated last; Left to right



September 29, 2010 25

Copyright © All Rights Reserved by Yuan-Hao Chang

Operator Precedence: Example
1. y = 2 * 5 * 5 + 3 * 5 + 7;

2. y = 10 * 5 + 3 * 5 + 7;

3. y = 50 + 3 * 5 + 7;

4. y = 50 + 15 + 7;

5. y = 65 + 7;

6. y = 72;



September 29, 2010 26

Copyright © All Rights Reserved by Yuan-Hao Chang

Equality and Relationship Operator

• Return “truth” (1) if the condition is true; otherwise, “false” (0).
• Note that == (equality operator) is different from = (assignment operator)

Operator Condition Meaning

Equality operator
== x == y x is equal to y 

!= x != y x is not equal to y 

Relationship operator
> x > y x is larger than y

< x < y x is smaller than y

>= x >= y x is larger than or equal to y 

<= x <= y x is smaller than or equal to y 



September 29, 2010 27

Copyright © All Rights Reserved by Yuan-Hao Chang

Logical Operator

&& T F

T T F

F F F

Operator Condition Meaning

&& x && y x and y 
|| x || y x or y 

|| T F

T T T

F T F

Truth Table

F: 0
T: any non-zero value

10 && 0 False
5 || 0 Truth

Used in flow control; can not be put in the statement (ex: a = b && c)



September 29, 2010 28

Copyright © All Rights Reserved by Yuan-Hao Chang

Concatenation Operator

12 & 4 = 4 (00001100)2 & (00000100) 2 = (00000100)2
12 & 2 = 0 (00001100)2 & (00000010) 2 = (00000000)2
12 | 2 = 14 (00001100)2 | (00000010) 2 = (00001110)2
~12  = -13 ~(00001100)2 (11110011)2

Operator Condition Meaning
& x & y x and y (bit-wise and)
| x | y x or y (bit-wise or)
~ ~x not x (bit-wise inverse)

printf("%d %d %d %d", 12&4, 12&2, 12 | 2, ~12); 4 0 14 -13

Output:



September 29, 2010 29

Copyright © All Rights Reserved by Yuan-Hao Chang

Unary Operator
• Need only one operand

– +5 /* positive 5 */
– -a /* = -1 * a */
– !a /* not operator; if a = 0, !a = 1; otherwise, if a ≠ 0, !a = 0 */

01  int a = +5;
02  int b = -5;
03  int c = !a;
04 a = 0;
05 int d = !a;
06 int e = !b;
07 printf(”c = %d, d = %d, e = %d\n”, c, d, e);

c = 0, d = 1, e = 0

Output:



September 29, 2010 30

Copyright © All Rights Reserved by Yuan-Hao Chang

++ and --

Operator Condition Meaning
++ x++ x = x + 1 

++x x = x + 1 
-- x-- x = x - 1

--x x = x - 1

• x++: execute the statement first, and then add x by 1
– int x = 5;

int y = (x++) + x + 5;    (result: y = 5 + 5 + 5 =15; x = 6)
• ++x: add x by 1, and then execute the statement

– int x = 5;
int y = (++x) + x + 5;    (result: y = 6 + 5 + 5 =17; x = 6)



September 29, 2010 31

Copyright © All Rights Reserved by Yuan-Hao Chang

Compound Operator
Operator Condition Meaning
+= x += 5 x = x + 5 
-= x -= 5 x = x - 5 
*= x *= 5 x = x * 5
/= x /= 5 x = x / 5
%= x %= 5 x = x % 5 
&= x &= 5 x = x & 5
|= x |= 5 x = x | 5

No space before “=“



September 29, 2010 32

Copyright © All Rights Reserved by Yuan-Hao Chang

Operator Precedence
Precedence Operators Associative
1 ++, -- Right to left

2 (), [] Left to right
3 !, -(negative), ~ Right to left
4 *, /, % Left to right
5 +, - Left to right
6 <<, >> Left to right
7 >, >=, <. <= Left to right
8 ==, != Left to right
9 & Left to right
10 ^ Left to right
11 | Left to right
12 && Left to right
13 || Left to right
14 ?: Right to left
15 = Right to left



September 29, 2010 33

Copyright © All Rights Reserved by Yuan-Hao Chang

Example

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
int a = 2;
int b = 5;
int c = 10;
int e;
e= ++a + ++c/b+(c-2*b)|a&5 ;
printf("a = %d, e = %d", a,e);
system("pause");
}

a = 3, e=7

Output:



September 29, 2010 34

Copyright © All Rights Reserved by Yuan-Hao Chang

Lab 03
•Write a program to print the ASCII codes of 
‘a’, ‘&’ and ‘\n’.

•Use sizeof() to show the size of the data 
types “char”, “short”, “int”, “float”, and 
“double”.


	Outline
	Variable and Constant
	Memory Concepts
	Memory Concepts (Cont.)
	Data Types
	Overflow
	Overflow: Example
	Overflow: 2’s Complement
	Overflow: Signed Variable
	Unsigned Variables
	Data Type: char
	Print a Character
	Escapes
	Data type: float
	Data type: double
	Library Function sizeof()
	Type Conversion
	Type Conversion
	Expression
	Arithmetic Operator
	Operator Precedence
	Operator Precedence: Example
	Equality and Relationship Operator
	Logical Operator
	Concatenation Operator
	Unary Operator
	++ and --
	Compound Operator
	Operator Precedence
	Example
	Lab 03

