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Outline
• Data types

• Operators and expressions
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Variable and Constant
numnum == 1240012400Variable Constant
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Memory Concepts
• Declare a variable

– Allocate memory to a variable  
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Memory Concepts (Cont.)
• Assign a value to a variable
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Data Types

Data 
Type

Description # of 
bytes

Range

int integer 4 -2147483648 ~ 2147483647
long int long integer 4 -2147483648 ~ 2147483647
short int short in 2 -32768 ~ 32767
char character 1 0 ~ 255
float floating point 4 1.2e-38 ~ 3.4e38
double double floating 

point
8 2.2e-308 ~ 1.8e308

Note: The size of each data type may vary from different compilers
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Overflow
• Definition:

– The value assigned to a variable is larger than or smaller 
than the range of the corresponding data type.

• Overflow example:
– short int num = 40000; /* short: -32768~32767 */
– unsigned short int num = 700000; /* unsigned short: 0~65535 */
– short int num_a, num_b, sum;

num_a = 30000;
num_b = 30000;
sum = num_a + num_b; /* num_a + num_b = 60000 */
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Overflow: Example
01 #include <stdio.h>   
02 #include <stdlib.h>
03 int main(void)
04 {
05 short int sum, num; /* declare “num” and “sum” */
06 num = 0x7FFFLL; /* set “num” to 32767 */
07 sum = num + 1;
08 printf(“num + 1 = %d\n“, sum); /* print variable */
09
10 sum = num + 2;
11 printf(“num + 2 = %d\n”, sum); /* print variable */
12 system("pause")
13 return 0;
14 }

num + 1 = -32768
num + 2 = -32767Output:

Long 
integer

0x7FFF=32767
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Overflow: 2’s Complement

• If sign bit = 1, the variable is negative

• If sign bit = 0, the variable is non‐negative

0 1 1 1 1 … 1 1 1 1
sign bit Max positive value = (-1)0 * (111111..11)2 = 32767

1 0 0 0 0 … 0 0 0 0
sign bit Min negative value = (-1)1 * (10000…00)2= -32768

One’s complement: if sign bit = 1, invert from 0 to 1 and from 1 to 0
Two’s complement: One’s complement + 1
The value of an integer variable: (-1)sign-bit * (two’s complement)2

One’s complement: if sign bit = 1, invert from 0 to 1 and from 1 to 0
Two’s complement: One’s complement + 1
The value of an integer variable: (-1)sign-bit * (two’s complement)2

Two’s complement (8 bits)

00000000 00000000 = 0

00000001 00000001 = 1

….

01111111 01111111=127

11111111 -(00000001) = -1

….

10000000 -(10000000) = -128
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Overflow: Signed Variable

0 1 1 1 1 … 1 1 1 1
sign bit Max positive value = (-1)0 * (111111..11)2

+ 1

1 0 0 0 0 … 0 0 0 0

short int num = 32767

num + 1
num + 2
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Unsigned Variables
• Let the variable always have a positive value

• Why should we use unsigned variables?
– Increase the range of a variable if we are very sure that the variable 

must not be a negative value.
- Example: The number of students in a class

– Save the size of a variable (in terms of memory)
- Example:  For a variable ranging from 0 to 40000, we can declare it as int

(4 bytes) or unsigned short int (2 bytes)

Data Type Description # of bytes Range
unsigned int Unsigned integer 4 0 ~ 4294967295
unsigned long int Unsigned long integer 4 0 ~ 4294967295
unsigned short int Unsigned short in 2 0 ~ 65535
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Data Type: char
• Character, which occupies one byte

– char ch = ‘1’; /* the character ‘1’ != integer 1 */ 
ch = ‘A’;
ch = ‘a’; /* ‘A’ != ‘a’ */
ch = 97; /* Assign the character whose ASCII is 10 (‘a’) to  ch. */

• There are totally 256 characters
– Not all characters are printable
– Check the table mapping each character to its ASCII 

code (http://en.wikipedia.org/wiki/ASCII)
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Print a Character
01 #include <stdio.h>   
02 #include <stdlib.h>
03 int main(void)
04 {
05 char ch = 'a' , ch2 = 100; /* declare a character */
06 printf("ch = %c\n", ch); /* print the character ‘a’ */
07 printf("ASCII of ch = %d\n", ch); /* print the ASCII of ‘a’ */
08
09   printf("ASCII 100 = %c\n", ch2); /* print the variable
10 whose ASCII is 100 */
12 system("pause");
13 return 0;
14 } /* end of main() */

ch = a
ASCII of ch = 97
ASCII 100 = d
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Escapes

Escape sequence Description ASCII
\a Alert 7
\b Backspace 8
\n New line 10
\r Carriage return 13
\0 Null character 0
\t Tab 9
\\ Backslash (\) 92
\’ Single quote (‘) 39
\” Double quote (“) 34



September 29, 2010 16

Copyright © All Rights Reserved by Yuan-Hao Chang

Data type: float
• Declare a float variable

– float f1 = 123.45FF;
– float f1 = 1.2345E2;
– float f1 = 0.00123;
– float f1 = 1.23E-3FF;

• Print a floating variable
– printf(”f1 = %f\n”, f1);

float

float
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Data type: double
• 2.2E-308 ~ 1.8E308

• Precision of float: 7~8 bits

• Precision of double: 15~16 bits

Must be abandoned due to
the limited memory size
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Library Function sizeofsizeof()()
• Calculate the size of data types

– sizeof(int);  // 4 bytes
– sizeof(double); // 8 bytes

• Calculate the size of a variable
– int num;

sizeof(num); // 4 bytes
– sizeof(2L); // 4 bytes

• Unit: byte
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Type Conversion
• Convert a variable to another type: 

(new type) variable(new type) variable

01 int num = 12;
02 float total;
03 total = (float) num;
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Type Conversion
• Example 1

01 float f1 = 3.1, f2 = 3.2F;
02 printf (“f1 = %f, f2 = %f\n“, f1, f2);
03 printf (“f1 = %d, f2 = %d\n“, (int)f1, (int)f2);

f1 = 3.1, f2 = 3.2
f1 = 3, f2 = 3

Output:

01 int num = 5;   
02 printf (“num/2 = %d\n“, num/2);
03 printf (“float: num/2= %f\n“, (float)num/2);

num/2 = 2
float: num/2 = 2.500

Output:

float



Operators and 
Expressions

Operators and 
Expressions
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Expression
• Expression is composed of operands and operators

– Operand: variables or constant, such as num, 10, etc.
– Operator: +, -, *, /, %, =, >, <, &, |, !, (, )

– Example:
num = a + b;
age = age + 1;

Enumnum == aa ++ bb
expression

Operand Operator

;;

statement
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Arithmetic Operator

• Division
– (int) / (int) = (int) (example: 5 / 2 = 2)
– (float) / (int) = (float) (example: 5.0 / 2 = 2.5)
– (int) / (float) = (float) (example: 5 / 2.0 = 2.5)

• Remainder
– 10 % 3 = 1
– Print %:  use %% (example: print(“10%%3 = %d\n”, 10 % 3);

Operation Arithmetic
operator

Algebraic
expression

C expression

Addition + a + b a + b
Subtraction - a – b a – b
Multiplication * ab a * b
Division / a / b a / b
Remainder % a mod b a % b
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Operator Precedence
• Some arithmetic operators act before others.

– Multiplication and division before addition and 
subtraction.

– Use parenthesis to specify precedence.
- Example: computer the average of a, b, and c
- Do not use:  a + b + c / 3
- Use: ( a + b + c ) / 3

Operator Precedence
( ) Evaluated first; Inner to outer; Left to right
*, /, % Evaluated second; Left to right
+, - Evaluated last; Left to right
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Operator Precedence: Example
1. y = 2 * 5 * 5 + 3 * 5 + 7;

2. y = 10 * 5 + 3 * 5 + 7;

3. y = 50 + 3 * 5 + 7;

4. y = 50 + 15 + 7;

5. y = 65 + 7;

6. y = 72;
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Equality and Relationship Operator

• Return “truth” (1) if the condition is true; otherwise, “false” (0).
• Note that == (equality operator) is different from = (assignment operator)

Operator Condition Meaning

Equality operator
== x == y x is equal to y 

!= x != y x is not equal to y 

Relationship operator
> x > y x is larger than y

< x < y x is smaller than y

>= x >= y x is larger than or equal to y 

<= x <= y x is smaller than or equal to y 
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Logical Operator

&& T F

T T F

F F F

Operator Condition Meaning

&& x && y x and y 
|| x || y x or y 

|| T F

T T T

F T F

Truth Table

F: 0
T: any non-zero value

10 && 0 False
5 || 0 Truth

Used in flow control; can not be put in the statement (ex: a = b && c)
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Concatenation Operator

12 & 4 = 4 (00001100)2 & (00000100) 2 = (00000100)2
12 & 2 = 0 (00001100)2 & (00000010) 2 = (00000000)2
12 | 2 = 14 (00001100)2 | (00000010) 2 = (00001110)2
~12  = -13 ~(00001100)2 (11110011)2

Operator Condition Meaning
& x & y x and y (bit-wise and)
| x | y x or y (bit-wise or)
~ ~x not x (bit-wise inverse)

printf("%d %d %d %d", 12&4, 12&2, 12 | 2, ~12); 4 0 14 -13

Output:
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Unary Operator
• Need only one operand

– +5 /* positive 5 */
– -a /* = -1 * a */
– !a /* not operator; if a = 0, !a = 1; otherwise, if a ≠ 0, !a = 0 */

01  int a = +5;
02  int b = -5;
03  int c = !a;
04 a = 0;
05 int d = !a;
06 int e = !b;
07 printf(”c = %d, d = %d, e = %d\n”, c, d, e);

c = 0, d = 1, e = 0

Output:
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++ and --

Operator Condition Meaning
++ x++ x = x + 1 

++x x = x + 1 
-- x-- x = x - 1

--x x = x - 1

• x++: execute the statement first, and then add x by 1
– int x = 5;

int y = (x++) + x + 5;    (result: y = 5 + 5 + 5 =15; x = 6)
• ++x: add x by 1, and then execute the statement

– int x = 5;
int y = (++x) + x + 5;    (result: y = 6 + 5 + 5 =17; x = 6)
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Compound Operator
Operator Condition Meaning
+= x += 5 x = x + 5 
-= x -= 5 x = x - 5 
*= x *= 5 x = x * 5
/= x /= 5 x = x / 5
%= x %= 5 x = x % 5 
&= x &= 5 x = x & 5
|= x |= 5 x = x | 5

No space before “=“
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Operator Precedence
Precedence Operators Associative
1 ++, -- Right to left

2 (), [] Left to right
3 !, -(negative), ~ Right to left
4 *, /, % Left to right
5 +, - Left to right
6 <<, >> Left to right
7 >, >=, <. <= Left to right
8 ==, != Left to right
9 & Left to right
10 ^ Left to right
11 | Left to right
12 && Left to right
13 || Left to right
14 ?: Right to left
15 = Right to left
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Example

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
int a = 2;
int b = 5;
int c = 10;
int e;
e= ++a + ++c/b+(c-2*b)|a&5 ;
printf("a = %d, e = %d", a,e);
system("pause");
}

a = 3, e=7

Output:
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Lab 03
•Write a program to print the ASCII codes of 
‘a’, ‘&’ and ‘\n’.

•Use sizeof() to show the size of the data 
types “char”, “short”, “int”, “float”, and 
“double”.
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