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Outline
• 1-D array
• 2-D array and multi-D array
• Passing arrays to functions
• Searching arrays
• Sorting arrays
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Arrays
• Arrays

– Group of consecutive memory locations
– Same name and type
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Defining Arrays
• When defining arrays, specify

– Name
– Type of array
– Number of elements

• Format
– Data_type array_name[number]

• Examples
– int score[4]; /* integer arrays “score”, including 4 elements */
– float temp[7]; /* float arrays “temp”, including 7 elements */
– char name[6]; /* character arrays “name”, including 6 elements */
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Defining Arrays (Cont.)
• Defining multiple arrays of same type

– Format similar to regular variables
– Example

- int arrayA[100], arrayB[27]; 
- float  arrayC[20], arrayD[25], arrayE[10];



November 4, 2010 7

Copyright © All Rights Reserved by Yuan-Hao Chang

Array Index
• Access an element of an array by index

• First element at position 0

• Array elements are like normal variables
– score[2] = 3;
– score[5-4] = -5;
– printf(“%d”, score[3]);

1 -5 3 20array “score”

First element
Index = 0

Last element
Index = Array size - 1

score[0] score[1] score[2] score[3]
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Array Initialization
• Initializers

– int n[5] = { 1, 2, 3, 4, 5 };
- If not enough initializers, rightmost elements become 0

– int n[5] = {0};
- Set all elements to 0

– int n[5] = {1} ;
- Set n[0] = 1; n[1] ~ n[4] = 0

– If too many initializers, a syntax error occurs

• If size omitted, initializers determine it
– int n[ ] = { 1, 2, 3, 4, 5 };
– 5 initializers, therefore 5 element array
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Array Initialization (Cont.)
int main() {

int score[5];

score[0] = 90;

score[1] = 80;

score[2] = 75;

score[3] = 88;

score[4] = 65;

for(int i = 0; i < 5; i++)

printf(“score[%d] = %d\n”, i, score[i]);

return 0;

}
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Examples

int main() {

int i, n[5];

for(i = 0; i < 5; i++)

n[i] = 2 * i;

for(i = 0; i < 5; i++)

printf(“n[%d] = %d\n”, i, n[i]);

return 0;

}

n[0] = 0
n[1] = 2
n[2] = 4
n[3] = 6
n[4] = 8

n[0] = 0
n[1] = 2
n[2] = 4
n[3] = 6
n[4] = 8

output
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Examples (Cont.)

int main() {

int i, n[5] = {1};

for(i = 0; i < 5; i++)

printf(“n[%d] = %d\n”, i, n[i]);

return 0;

} n[0] = 1
n[1] = 0
n[2] = 0
n[3] = 0
n[4] = 0

n[0] = 1
n[1] = 0
n[2] = 0
n[3] = 0
n[4] = 0

output
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Common Programming Error
int main() {

int score[5];

score[0] = 90;

score[1] = 80;

/* forget to initialize score[2] */

score[3] = 88;

score[4] = 65;

for(int i = 0; i < 5; i++)

printf(“score[%d] = %d\n”, i, score[i]);

return 0;

}

ERROR: There is no value for score[2]
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Another Example
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Another Example (Cont.)
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sizeof()
• sizeof(array_name)

– Return how many bytes the array occupies.
int main() {

int data[5] = {0};
printf(“Size of array data (bytes): %d\n”, sizeof(data));
printf(“Size of elements in data: %d\n”, sizeof(data[0]));
printf(“Number of elements: %d\n”, sizeof(data)/sizeof(data[0]));
return 0;

}

Size of array data (bytes): 20
Size of elements in data: 4
Number of elements: 5

Size of array data (bytes): 20
Size of elements in data: 4
Number of elements: 5

output
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Read Data to an Array
int main() {

int i, n[5];

for(i = 0; i < 5; i++) {

printf(“input element %d: ”, i);

scanf(“%d”, &n[i]);

}

for(i = 0; i < 5; i++)

printf(“element %d = %d\n”, i, n[i]);

return 0;

}
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Read Data to an Array (Cont.)
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Array Application
- Maximal and minimal values
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Another Way to Specify Array Size

#define SIZE 10

int main() {

int n[SIZE] = {0};

return 0;

}

No semicolon
is needed

No semicolon
is needed

Usually use uppercase lettersUsually use uppercase letters
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Common Programming Error
• We can not set the variable as the number of 
elements.

int main() {
int size = 10;
int n[size] = {0};
return 0;

}

Syntax errorSyntax error
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Array Application
- Nondeterministic Number of Input Data
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Boundary Checking

C language never 
checks the boundary of 
arrays so as to 
enhance the execution 
performance.



November 4, 2010 23

Copyright © All Rights Reserved by Yuan-Hao Chang

Array Searching



2D Array and Multi-D Array2D Array and Multi-D Array
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2D Arrays
• Multiple subscripted arrays  

– Tables with rows and columns (m by n array)
– Like matrices: specify row, then column

• Defining 2D arrays
– int data[10][5]; /* 可存放10列5行個整數 */
– float score[4][3]; /* 可存放4列3行個浮點數 */

DataType ArrayName[RowNum][ColNum];

Declaration of 2D Array
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2D-Array Initialization
• Initializers grouped by row in braces 

– int b[2][3] = { { 1, 2, 3 }, { 4, 5, 6 } }; 
– int b[2][3] = { { 1, 2, 3 }, 

{ 4, 5, 6 } }; 

• If not enough, unspecified elements set to zero
– int b[2][3] = { { 1 }, { 4, 5 } };

1 0 0
4 5 0

1 2 3
4 5 6
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2D-Array Initialization (Cont.)

int main() {

int i, j, b[5][5];

/* set each element to 1*/

for(i = 0; i < 5; i++) 

for(j = 0; j < 5; j++) 

b[i][j] = 1;

return 0;

}
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Table and 2D Array

Could be ignored

Easier to read

2D array is suitable for table handling.
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Accessing 2D Arrays
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Matrix Addition
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Multiple Subscripted Arrays
• 3D array

– Example
- int array[2][3][4];

– Initialization
- int array[ ][3][4] = { {{1,2,3,4},

{2,2,3,4},
{3,2,3,4}},
{{4,2,3,4},
{5,2,3,4},
{6,2,3,4}} };

- for (i = 0; i < 2; i++) 
for (j = 0; j < 3; j++)

for (k = 0; k < 4; k++)
array[i][j][k] = 1;

First 2D array

Second 2D array
Could be 
ignored
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Multiple Subscripted Arrays (Cont.)
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Finding the Maximal Value
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Finding the Maximal Value (Cont.)



Passing Arrays to 
Functions

Passing Arrays to 
Functions
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Passing Arrays to Functions

ReturnType FuncName(DataType Arrayname[]);  /* Declaration *
int main(void)
{

DataType ArrayName[NumOfElements];
...

FuncName(ArrayName);
...

}
ReturnType FuncName(DataType ArrayName[] )
{

...
}

/

Passing 1D Array

Size of Array could be ignored
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Passing Arrays to Functions (Cont.)
• Parameter names optional in prototype

– int b[] could be written int []
– int arraySize could be simply int

• Arrays passed call-by-reference
• Name of array is address of its first element
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Example
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Array Address
• The address of the first element is the array’s address.
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Call by Value
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Call by Address
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Application of Call by Address
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Passing 2D Arrays

ReturnType FuncName(DataType ArrayName[][ElementNum]); 
int main(void)
{

DataType ArrayName[RowNum][ColNum];
...
FuncName(ArrayName);
...

}
ReturnType FuncName(DataType ArrayName[][ColNum] )
{

...
}

Declaration of 2D Array

Must fill in 

Must fill in 
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Example 
– Finding the Maximal/Minimal Value
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Example 
– Finding the Maximal/Minimal Value (Cont.)



Searching and Sorting 
Arrays

Searching and Sorting 
Arrays
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Searching Arrays
#include <stdio.h>

#define SIZE 5

int search(int array[], int size, int key) {

for (int i = 0; i < size; i++)

if(array[i] == key)

return i;

return -1;

} 

int main() {

int array[SIZE] = {20, 25, 30, 35, 40};

int search1 = search(array, SIZE, 35);

int search2 = search(array, SIZE, 44);

printf(“element of (35) = %d\nelement of (44) = %d\n”, search1, search2);

return 0;

}

element of (35) = 3
element of (44) = -1
element of (35) = 3
element of (44) = -1

output
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Sorting Arrays
• Bubble sort (sinking sort) 

– Several passes through the array 
– Successive pairs of elements are compared 

- If increasing order (or identical ), no change
- If decreasing order, elements exchanged

– Repeat
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Sorting Arrays – Bubble Sort

Sort by increasing 
order

26 5

Original array

81 7 63

1st search

5 26 81 7 63

26>5, exchange

26<81, skip

5 26 81 7 63

81>7, exchange

5 26 7 81 63

81>63, exchange

5 26 7 63 81

5 26 7 63 81

26>7, exchange

5 7 26 63 81

26<63, skip

5 7 26 63 81

5 7 26 63 81

5<26, skip

5<7, skip

5 7 26 63 81

7<26, skip

5 7 26 63 81

5<7, skip

2nd search

3rd search 4th search



November 4, 2010 50

Copyright © All Rights Reserved by Yuan-Hao Chang

Bubble Sort
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Bubble Sort (Cont.)
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Lab 09-1
• Write a program to declare an array with 5 elements. Then 

use for loop to assign arr[0]~arr[4] to 1~5, respectively. 
Finally print out the value in each array element.

• Declare an array int array = {1, 2, 3, 4, 5, 6}. Use sizeof() to 
calculate and output the number of elements in this array, 
the size (i.e., the number of bytes) of this array.

• Write a program to calculate the result of 
multiplying the following two matrices. 

• Write a function double average(int arr1[][2], int arr2[][2])
to return the average of the 8 elements in arr1[][] and arr2[][], 
where the two arrays are listed in the above.

1 2
3 4

5 6
7 8

×
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Lab 09-2
• Write a program to answer the following 

questions:
– The sale amount of each salesman.
– The sale amount of each product.
– Who is the best salesman?
– Which product has the higher sale amount.

• Write a program to answer the following 
questions:

– Print out the content of arrays.
– Average temperature of each day.
– Average temperature of each time slot.
– The time slot and day with the highest 

temperature.
– The time slot and day with the lowest 

temperature.

Sale
s A B C D E

1 3 2 6 5 3
2 7 3 8 5 3
3 3 5 3 7 5

Price 5 4 6 7 3

Mon Tue Wed Thu

T1 18.2 17.3 15.0 13.4

T2 23.8 25.1 20.6 17.8

T3 20.6 21.5 18.4 15.7
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