
Chapter 9
Array

Chapter 9
Array

November 4, 2010 2

Copyright © All Rights Reserved by Yuan-Hao Chang

Outline
• 1-D array
• 2-D array and multi-D array
• Passing arrays to functions
• Searching arrays
• Sorting arrays

1D Array1D Array

November 4, 2010 4

Copyright © All Rights Reserved by Yuan-Hao Chang

Arrays
• Arrays

– Group of consecutive memory locations
– Same name and type

November 4, 2010 5

Copyright © All Rights Reserved by Yuan-Hao Chang

Defining Arrays
• When defining arrays, specify

– Name
– Type of array
– Number of elements

• Format
– Data_type array_name[number]

• Examples
– int score[4]; /* integer arrays “score”, including 4 elements */
– float temp[7]; /* float arrays “temp”, including 7 elements */
– char name[6]; /* character arrays “name”, including 6 elements */

November 4, 2010 6

Copyright © All Rights Reserved by Yuan-Hao Chang

Defining Arrays (Cont.)
• Defining multiple arrays of same type

– Format similar to regular variables
– Example

- int arrayA[100], arrayB[27];
- float arrayC[20], arrayD[25], arrayE[10];

November 4, 2010 7

Copyright © All Rights Reserved by Yuan-Hao Chang

Array Index
• Access an element of an array by index

• First element at position 0

• Array elements are like normal variables
– score[2] = 3;
– score[5-4] = -5;
– printf(“%d”, score[3]);

1 -5 3 20array “score”

First element
Index = 0

Last element
Index = Array size - 1

score[0] score[1] score[2] score[3]

November 4, 2010 8

Copyright © All Rights Reserved by Yuan-Hao Chang

Array Initialization
• Initializers

– int n[5] = { 1, 2, 3, 4, 5 };
- If not enough initializers, rightmost elements become 0

– int n[5] = {0};
- Set all elements to 0

– int n[5] = {1} ;
- Set n[0] = 1; n[1] ~ n[4] = 0

– If too many initializers, a syntax error occurs

• If size omitted, initializers determine it
– int n[] = { 1, 2, 3, 4, 5 };
– 5 initializers, therefore 5 element array

November 4, 2010 9

Copyright © All Rights Reserved by Yuan-Hao Chang

Array Initialization (Cont.)
int main() {

int score[5];

score[0] = 90;

score[1] = 80;

score[2] = 75;

score[3] = 88;

score[4] = 65;

for(int i = 0; i < 5; i++)

printf(“score[%d] = %d\n”, i, score[i]);

return 0;

}

November 4, 2010 10

Copyright © All Rights Reserved by Yuan-Hao Chang

Examples

int main() {

int i, n[5];

for(i = 0; i < 5; i++)

n[i] = 2 * i;

for(i = 0; i < 5; i++)

printf(“n[%d] = %d\n”, i, n[i]);

return 0;

}

n[0] = 0
n[1] = 2
n[2] = 4
n[3] = 6
n[4] = 8

n[0] = 0
n[1] = 2
n[2] = 4
n[3] = 6
n[4] = 8

output

November 4, 2010 11

Copyright © All Rights Reserved by Yuan-Hao Chang

Examples (Cont.)

int main() {

int i, n[5] = {1};

for(i = 0; i < 5; i++)

printf(“n[%d] = %d\n”, i, n[i]);

return 0;

} n[0] = 1
n[1] = 0
n[2] = 0
n[3] = 0
n[4] = 0

n[0] = 1
n[1] = 0
n[2] = 0
n[3] = 0
n[4] = 0

output

November 4, 2010 12

Copyright © All Rights Reserved by Yuan-Hao Chang

Common Programming Error
int main() {

int score[5];

score[0] = 90;

score[1] = 80;

/* forget to initialize score[2] */

score[3] = 88;

score[4] = 65;

for(int i = 0; i < 5; i++)

printf(“score[%d] = %d\n”, i, score[i]);

return 0;

}

ERROR: There is no value for score[2]

November 4, 2010 13

Copyright © All Rights Reserved by Yuan-Hao Chang

Another Example

November 4, 2010 14

Copyright © All Rights Reserved by Yuan-Hao Chang

Another Example (Cont.)

November 4, 2010 15

Copyright © All Rights Reserved by Yuan-Hao Chang

sizeof()
• sizeof(array_name)

– Return how many bytes the array occupies.
int main() {

int data[5] = {0};
printf(“Size of array data (bytes): %d\n”, sizeof(data));
printf(“Size of elements in data: %d\n”, sizeof(data[0]));
printf(“Number of elements: %d\n”, sizeof(data)/sizeof(data[0]));
return 0;

}

Size of array data (bytes): 20
Size of elements in data: 4
Number of elements: 5

Size of array data (bytes): 20
Size of elements in data: 4
Number of elements: 5

output

November 4, 2010 16

Copyright © All Rights Reserved by Yuan-Hao Chang

Read Data to an Array
int main() {

int i, n[5];

for(i = 0; i < 5; i++) {

printf(“input element %d: ”, i);

scanf(“%d”, &n[i]);

}

for(i = 0; i < 5; i++)

printf(“element %d = %d\n”, i, n[i]);

return 0;

}

November 4, 2010 17

Copyright © All Rights Reserved by Yuan-Hao Chang

Read Data to an Array (Cont.)

November 4, 2010 18

Copyright © All Rights Reserved by Yuan-Hao Chang

Array Application
- Maximal and minimal values

November 4, 2010 19

Copyright © All Rights Reserved by Yuan-Hao Chang

Another Way to Specify Array Size

#define SIZE 10

int main() {

int n[SIZE] = {0};

return 0;

}

No semicolon
is needed

No semicolon
is needed

Usually use uppercase lettersUsually use uppercase letters

November 4, 2010 20

Copyright © All Rights Reserved by Yuan-Hao Chang

Common Programming Error
• We can not set the variable as the number of
elements.

int main() {
int size = 10;
int n[size] = {0};
return 0;

}

Syntax errorSyntax error

November 4, 2010 21

Copyright © All Rights Reserved by Yuan-Hao Chang

Array Application
- Nondeterministic Number of Input Data

November 4, 2010 22

Copyright © All Rights Reserved by Yuan-Hao Chang

Boundary Checking

C language never
checks the boundary of
arrays so as to
enhance the execution
performance.

November 4, 2010 23

Copyright © All Rights Reserved by Yuan-Hao Chang

Array Searching

2D Array and Multi-D Array2D Array and Multi-D Array

November 4, 2010 25

Copyright © All Rights Reserved by Yuan-Hao Chang

2D Arrays
• Multiple subscripted arrays

– Tables with rows and columns (m by n array)
– Like matrices: specify row, then column

• Defining 2D arrays
– int data[10][5]; /* 可存放10列5行個整數 */
– float score[4][3]; /* 可存放4列3行個浮點數 */

DataType ArrayName[RowNum][ColNum];

Declaration of 2D Array

November 4, 2010 26

Copyright © All Rights Reserved by Yuan-Hao Chang

2D-Array Initialization
• Initializers grouped by row in braces

– int b[2][3] = { { 1, 2, 3 }, { 4, 5, 6 } };
– int b[2][3] = { { 1, 2, 3 },

{ 4, 5, 6 } };

• If not enough, unspecified elements set to zero
– int b[2][3] = { { 1 }, { 4, 5 } };

1 0 0
4 5 0

1 2 3
4 5 6

November 4, 2010 27

Copyright © All Rights Reserved by Yuan-Hao Chang

2D-Array Initialization (Cont.)

int main() {

int i, j, b[5][5];

/* set each element to 1*/

for(i = 0; i < 5; i++)

for(j = 0; j < 5; j++)

b[i][j] = 1;

return 0;

}

November 4, 2010 28

Copyright © All Rights Reserved by Yuan-Hao Chang

Table and 2D Array

Could be ignored

Easier to read

2D array is suitable for table handling.

November 4, 2010 29

Copyright © All Rights Reserved by Yuan-Hao Chang

Accessing 2D Arrays

November 4, 2010 30

Copyright © All Rights Reserved by Yuan-Hao Chang

Matrix Addition

November 4, 2010 31

Copyright © All Rights Reserved by Yuan-Hao Chang

Multiple Subscripted Arrays
• 3D array

– Example
- int array[2][3][4];

– Initialization
- int array[][3][4] = { {{1,2,3,4},

{2,2,3,4},
{3,2,3,4}},
{{4,2,3,4},
{5,2,3,4},
{6,2,3,4}} };

- for (i = 0; i < 2; i++)
for (j = 0; j < 3; j++)

for (k = 0; k < 4; k++)
array[i][j][k] = 1;

First 2D array

Second 2D array
Could be
ignored

November 4, 2010 32

Copyright © All Rights Reserved by Yuan-Hao Chang

Multiple Subscripted Arrays (Cont.)

November 4, 2010 33

Copyright © All Rights Reserved by Yuan-Hao Chang

Finding the Maximal Value

November 4, 2010 34

Copyright © All Rights Reserved by Yuan-Hao Chang

Finding the Maximal Value (Cont.)

Passing Arrays to
Functions

Passing Arrays to
Functions

November 4, 2010 36

Copyright © All Rights Reserved by Yuan-Hao Chang

Passing Arrays to Functions

ReturnType FuncName(DataType Arrayname[]); /* Declaration *
int main(void)
{

DataType ArrayName[NumOfElements];
...

FuncName(ArrayName);
...

}
ReturnType FuncName(DataType ArrayName[])
{

...
}

/

Passing 1D Array

Size of Array could be ignored

November 4, 2010 37

Copyright © All Rights Reserved by Yuan-Hao Chang

Passing Arrays to Functions (Cont.)
• Parameter names optional in prototype

– int b[] could be written int []
– int arraySize could be simply int

• Arrays passed call-by-reference
• Name of array is address of its first element

November 4, 2010 38

Copyright © All Rights Reserved by Yuan-Hao Chang

Example

November 4, 2010 39

Copyright © All Rights Reserved by Yuan-Hao Chang

Array Address
• The address of the first element is the array’s address.

November 4, 2010 40

Copyright © All Rights Reserved by Yuan-Hao Chang

Call by Value

November 4, 2010 41

Copyright © All Rights Reserved by Yuan-Hao Chang

Call by Address

November 4, 2010 42

Copyright © All Rights Reserved by Yuan-Hao Chang

Application of Call by Address

November 4, 2010 43

Copyright © All Rights Reserved by Yuan-Hao Chang

Passing 2D Arrays

ReturnType FuncName(DataType ArrayName[][ElementNum]);
int main(void)
{

DataType ArrayName[RowNum][ColNum];
...
FuncName(ArrayName);
...

}
ReturnType FuncName(DataType ArrayName[][ColNum])
{

...
}

Declaration of 2D Array

Must fill in

Must fill in

November 4, 2010 44

Copyright © All Rights Reserved by Yuan-Hao Chang

Example
– Finding the Maximal/Minimal Value

November 4, 2010 45

Copyright © All Rights Reserved by Yuan-Hao Chang

Example
– Finding the Maximal/Minimal Value (Cont.)

Searching and Sorting
Arrays

Searching and Sorting
Arrays

November 4, 2010 47

Copyright © All Rights Reserved by Yuan-Hao Chang

Searching Arrays
#include <stdio.h>

#define SIZE 5

int search(int array[], int size, int key) {

for (int i = 0; i < size; i++)

if(array[i] == key)

return i;

return -1;

}

int main() {

int array[SIZE] = {20, 25, 30, 35, 40};

int search1 = search(array, SIZE, 35);

int search2 = search(array, SIZE, 44);

printf(“element of (35) = %d\nelement of (44) = %d\n”, search1, search2);

return 0;

}

element of (35) = 3
element of (44) = -1
element of (35) = 3
element of (44) = -1

output

November 4, 2010 48

Copyright © All Rights Reserved by Yuan-Hao Chang

Sorting Arrays
• Bubble sort (sinking sort)

– Several passes through the array
– Successive pairs of elements are compared

- If increasing order (or identical), no change
- If decreasing order, elements exchanged

– Repeat

November 4, 2010 49

Copyright © All Rights Reserved by Yuan-Hao Chang

Sorting Arrays – Bubble Sort

Sort by increasing
order

26 5

Original array

81 7 63

1st search

5 26 81 7 63

26>5, exchange

26<81, skip

5 26 81 7 63

81>7, exchange

5 26 7 81 63

81>63, exchange

5 26 7 63 81

5 26 7 63 81

26>7, exchange

5 7 26 63 81

26<63, skip

5 7 26 63 81

5 7 26 63 81

5<26, skip

5<7, skip

5 7 26 63 81

7<26, skip

5 7 26 63 81

5<7, skip

2nd search

3rd search 4th search

November 4, 2010 50

Copyright © All Rights Reserved by Yuan-Hao Chang

Bubble Sort

November 4, 2010 51

Copyright © All Rights Reserved by Yuan-Hao Chang

Bubble Sort (Cont.)

November 4, 2010 52

Copyright © All Rights Reserved by Yuan-Hao Chang

Lab 09-1
• Write a program to declare an array with 5 elements. Then

use for loop to assign arr[0]~arr[4] to 1~5, respectively.
Finally print out the value in each array element.

• Declare an array int array = {1, 2, 3, 4, 5, 6}. Use sizeof() to
calculate and output the number of elements in this array,
the size (i.e., the number of bytes) of this array.

• Write a program to calculate the result of
multiplying the following two matrices.

• Write a function double average(int arr1[][2], int arr2[][2])
to return the average of the 8 elements in arr1[][] and arr2[][],
where the two arrays are listed in the above.

1 2
3 4

5 6
7 8

×

November 4, 2010 53

Copyright © All Rights Reserved by Yuan-Hao Chang

Lab 09-2
• Write a program to answer the following

questions:
– The sale amount of each salesman.
– The sale amount of each product.
– Who is the best salesman?
– Which product has the higher sale amount.

• Write a program to answer the following
questions:

– Print out the content of arrays.
– Average temperature of each day.
– Average temperature of each time slot.
– The time slot and day with the highest

temperature.
– The time slot and day with the lowest

temperature.

Sale
s A B C D E

1 3 2 6 5 3
2 7 3 8 5 3
3 3 5 3 7 5

Price 5 4 6 7 3

Mon Tue Wed Thu

T1 18.2 17.3 15.0 13.4

T2 23.8 25.1 20.6 17.8

T3 20.6 21.5 18.4 15.7

	Outline
	Arrays
	Defining Arrays
	Defining Arrays (Cont.)
	Array Index
	Array Initialization
	Array Initialization (Cont.)
	Examples
	Examples (Cont.)
	Common Programming Error
	Another Example
	Another Example (Cont.)
	sizeof()
	Read Data to an Array
	Read Data to an Array (Cont.)
	Array Application�- Maximal and minimal values
	Another Way to Specify Array Size
	Common Programming Error
	Array Application�- Nondeterministic Number of Input Data
	Boundary Checking
	Array Searching
	2D Arrays
	2D-Array Initialization
	2D-Array Initialization (Cont.)
	Table and 2D Array
	Accessing 2D Arrays
	Matrix Addition
	Multiple Subscripted Arrays
	Multiple Subscripted Arrays (Cont.)
	Finding the Maximal Value
	Finding the Maximal Value (Cont.)
	Passing Arrays to Functions
	Passing Arrays to Functions (Cont.)
	Example
	Array Address
	Call by Value
	Call by Address
	Application of Call by Address
	Passing 2D Arrays
	Example �– Finding the Maximal/Minimal Value
	Example �– Finding the Maximal/Minimal Value (Cont.)
	Searching Arrays
	Sorting Arrays
	Sorting Arrays – Bubble Sort
	Bubble Sort
	Bubble Sort (Cont.)
	Lab 09-1
	Lab 09-2

