
Chapter 13
File Handling
Chapter 13

File Handling

December 16, 2010 2

Copyright © All Rights Reserved by Yuan-Hao Chang

File Types

December 16, 2010 3

Copyright © All Rights Reserved by Yuan-Hao Chang

Files and Streams
• Read from stdin / Write to stdout

• Read from file / Write to file

December 16, 2010 4

Copyright © All Rights Reserved by Yuan-Hao Chang

Buffered vs. Non-buffered File Handling

• Nonbuffered:
無緩衝區的檔案處理：

• Buffered:
有緩衝區的檔案處理：

Buffered File HandlingBuffered File Handling

December 16, 2010 6

Copyright © All Rights Reserved by Yuan-Hao Chang

Open/Close Files with Buffers
• Open Files

– FILE *stream;
stream = fopen(“file name”, “open mode”);
- fopen() returns a FILE pointer to the beginning of the file data.
- If open fails, NULL returned.

• Close files
– fclose(stream);

December 16, 2010 7

Copyright © All Rights Reserved by Yuan-Hao Chang

File Opening Modes
• "r“: Open a file for reading. The file must exist.

• "w“: Create an empty file for writing. If a file with the same name already exists
its content is erased and the file is treated as a new empty file.

• "a“: Append to a file. Writing operations append data at the end of the file. The
file is created if it does not exist.

• When open a file as a binary file, a "b" character has to be included in
the mode string.

– "rb", "wb", "ab"

December 16, 2010 8

Copyright © All Rights Reserved by Yuan-Hao Chang

Open Files with Buffer: Example

#include <stdio.h>
int main() {

/* open a file for writing called “test.txt” */
FILE *stream = fopen(“test.txt”, “w”);
fclose(stream); // close file
return 0;

}

\ is the escape
symbol

December 16, 2010 9

Copyright © All Rights Reserved by Yuan-Hao Chang

Open Files with Buffers: Example (Cont.)

FILE *fptr; /* 宣告指向檔案的指標fptr */
fptr=fopen("abc.txt","r"); /* 開啟檔案abc.txt以供讀取

*/

if(fptr!=NULL) /* 判別檔案是否開啟成功

*/

{
/* 檔案開啟成功時，所要執行的程式碼

*/

}
else
{

/* 檔案開啟失敗時，所要執行的程式碼

*/

}

December 16, 2010 10

Copyright © All Rights Reserved by Yuan-Hao Chang

Handling Functions to Files with Buffer

• #include <stdio.h>

December 16, 2010 11

Copyright © All Rights Reserved by Yuan-Hao Chang

Handling Functions to Files with Buffer (Cont.)

December 16, 2010 12

Copyright © All Rights Reserved by Yuan-Hao Chang

Example: Reading File

空白與換行字元也列入字元數的計

算，因此總字元數為34：

December 16, 2010 13

Copyright © All Rights Reserved by Yuan-Hao Chang

Example: Copying Files

December 16, 2010 14

Copyright © All Rights Reserved by Yuan-Hao Chang

Example: Appending Files

December 16, 2010 15

Copyright © All Rights Reserved by Yuan-Hao Chang

Reading Files with fread()

December 16, 2010 16

Copyright © All Rights Reserved by Yuan-Hao Chang

fscanf() and fprintf()
• Use fscanf() to read from file:

– Useful for skipping spaces (‘\n’, ‘\t, ‘ ‘)
– Read and ignore any spaces (including blank spaces and the newline and

tab characters) encountered before the next spaces
– On success, the function returns the number of items successfully read

• Use fprintf() to write to file
FILE *in, *out;
in = fopen(“input.txt”, “r”);
out = fopen(“output.txt”, “w”);
char str[100];
int cnt;
while (!feof(in)) {

cnt = fscanf (in, “%s”, str); // read from file
if (cnt > 0) fprintf(out, “%s\n”, str); // write to file

}

Non-buffered File HandlingNon-buffered File Handling

December 16, 2010 18

Copyright © All Rights Reserved by Yuan-Hao Chang

Opening Files
open(“FileName", Mode, Attribute);
open("檔案名稱", 開啟模式, 存取屬性);

December 16, 2010 19

Copyright © All Rights Reserved by Yuan-Hao Chang

Modes and Attributes
• Use | to concatenate modes
O_WRONLY /* 開啟舊檔，此檔只供寫入，不能讀取

*/

O_WRONLY|O_APPEND /* 開啟舊檔，此檔可以附加資料，但不能讀取

*/

O_WRONLY|O_CREAT|O_APPEND /* 若檔案不存在，則建立可附加資料的新檔*/

O_RDONLY|O_TEXT /* 開啟已存在的文字檔，且只供讀取

*/

open(“FileName”, O_CREAT, Attribute);

open(“檔案名稱”, O_CREAT, 存取屬性

);

December 16, 2010 20

Copyright © All Rights Reserved by Yuan-Hao Chang

Handling Functions

December 16, 2010 21

Copyright © All Rights Reserved by Yuan-Hao Chang

Example: Copying File

Libraries providing handling functions

December 16, 2010 22

Copyright © All Rights Reserved by Yuan-Hao Chang

Example: Copying File (Cont.)

Handling Binary FilesHandling Binary Files

December 16, 2010 24

Copyright © All Rights Reserved by Yuan-Hao Chang

Using fopen() to Handle Binary Files
• Using buffered file handling with fopen():

/* 開啟可供附加資料的二進位檔案test.bin */

FILE *fptr;

fptr=fopen("test.bin","ab");

December 16, 2010 25

Copyright © All Rights Reserved by Yuan-Hao Chang

Writing Data to Binary Files (Buffered)

December 16, 2010 26

Copyright © All Rights Reserved by Yuan-Hao Chang

Reading Data from Binary Files (Buffered)

December 16, 2010 27

Copyright © All Rights Reserved by Yuan-Hao Chang

Writing Data to Binary Files (Non-buffered)
- write()

December 16, 2010 28

Copyright © All Rights Reserved by Yuan-Hao Chang

Reading Data to Binary Files (Non-buffered)
- read()

December 16, 2010 29

Copyright © All Rights Reserved by Yuan-Hao Chang

Lab 13
• Let the user input the student id and grade until the student id

is -1
– Write the Information to a file called “grade.txt”, formatted as

• Read the file generated by the previous problem (“grade.txt”).
– Print the student id and the grade if he/she is failed (grade < 60)
– Compute and print the average grade (float) on stdout after reading all

data.

student_id-1 grade-1
student_id-2 grade-2
student_id-3 grade-3

…
student_id-k grade-k

	投影片編號 1
	File Types
	Files and Streams
	Buffered vs. Non-buffered File Handling
	投影片編號 5
	Open/Close Files with Buffers
	File Opening Modes
	Open Files with Buffer: Example
	Open Files with Buffers: Example (Cont.)
	Handling Functions to Files with Buffer
	Handling Functions to Files with Buffer (Cont.)
	Example: Reading File�
	Example: Copying Files
	Example: Appending Files
	Reading Files with fread()
	fscanf() and fprintf()
	投影片編號 17
	Opening Files
	Modes and Attributes
	Handling Functions
	Example: Copying File
	Example: Copying File (Cont.)
	投影片編號 23
	Using fopen() to Handle Binary Files
	Writing Data to Binary Files (Buffered)
	Reading Data from Binary Files (Buffered)
	Writing Data to Binary Files (Non-buffered)�- write()
	Reading Data to Binary Files (Non-buffered)�- read()
	Lab 13

