
Chapter 15
Linked List
(鍵結串列)

Chapter 15
Linked List
(鍵結串列)

December 23, 2010 2

Copyright © All Rights Reserved by Yuan-Hao Chang

Memory Allocation
• Static Allocation

– Compile-time
– Fixed size of memory size
– Example: int arr[9][9]; // allocate 9x9 2D array

• Dynamic Allocation
– Run-time
– Efficiently utilize memory

December 23, 2010 3

Copyright © All Rights Reserved by Yuan-Hao Chang

Dynamic Allocation
• Use the standard function malloc()

• Example:
– Allocate an 1D integer array with size 3

pointer-variable = (data-type *) malloc(int

memory-size-in-byte);pointer-variable = (data-type *) malloc(int

memory-size-in-byte);

int

*ptr;
 ptr

= (int

*)malloc(12);

int

*ptr;
 ptr

= (int

*)malloc(3 * sizeof(int));

Bad coding style Good coding style

December 23, 2010 4

Copyright © All Rights Reserved by Yuan-Hao Chang

Access Memory
• Access k-th element by *(ptr+k-1) or ptr[k-1]

int

*ptr;
 ptr

= (int

*)malloc(3 * sizeof(int));

*ptr=12;
*(ptr+1) = 35;
*(ptr+2) = 140;

int

*ptr;
 ptr

= (int

*)malloc(3 * sizeof(int));

ptr[0]=12;
ptr[1] = 35;
ptr[2] = 140;

12

35

140

ptr[0] or *ptr

ptr[1] or *(ptr+1)

ptr[2] or *(ptr+2)

FFa0

FFa0

ptr

December 23, 2010 5

Copyright © All Rights Reserved by Yuan-Hao Chang

Initialize Memory
• Use the standard function memset()

• Initialize all elements to 10

memset(pointer-variable, int

value,

int

memory-size-in-byte);memset(pointer-variable, int

value,

int

memory-size-in-byte);

int

*ptr;
 ptr

= (int

*)malloc(3 * sizeof(int));

memset(ptr, 10, 3 * sizeof(int));

December 23, 2010 6

Copyright © All Rights Reserved by Yuan-Hao Chang

Free Memory
• Use the standard function free

• Can not access the pointer after free()

free(pointer-variable);free(pointer-variable);

int

*ptr;
 ptr

= (int

*)malloc(3 * sizeof(int));

*ptr=12;
*(ptr+1) = 35;
*(ptr+2) = -15;
free(ptr);

December 23, 2010 7

Copyright © All Rights Reserved by Yuan-Hao Chang

Dynamic Allocation Example: Array

December 23, 2010 8

Copyright © All Rights Reserved by Yuan-Hao Chang

Dynamic Allocation Example: Structure

December 23, 2010 9

Copyright © All Rights Reserved by Yuan-Hao Chang

Dynamic Allocation Example: Structure
(Cont.)

December 23, 2010 10

Copyright © All Rights Reserved by Yuan-Hao Chang

List
• Ordered data could construct a list.

• Two types of lists:
– Sequential list: Continuous memory address to store the

list
- Advantage: Easy to access
- Disadvantage:

· Large overheads on insertion and deletion
· Memory space shortage or waste problems

– Linked list: Pointers that link elements of the list together
- Advantage: Flexible on memory usage and memory allcation
- Disadvantage: Large overheads on searching elements in the list

December 23, 2010 11

Copyright © All Rights Reserved by Yuan-Hao Chang

List with Array

December 23, 2010 12

Copyright © All Rights Reserved by Yuan-Hao Chang

Linked List
• A node of a linked list consists of at least two fields.

• For example:
– The first field is to store data (資料).
– The second field is a pointer (指標) to store the address

of the next element.

December 23, 2010 13

Copyright © All Rights Reserved by Yuan-Hao Chang

Linked List (Cont.)
• A linked list is composed of multiple nodes (節點).

– Each node points to the next node.

December 23, 2010 14

Copyright © All Rights Reserved by Yuan-Hao Chang

Linked List Consturction

December 23, 2010 15

Copyright © All Rights Reserved by Yuan-Hao Chang

Linked List Example (1/3)

December 23, 2010 16

Copyright © All Rights Reserved by Yuan-Hao Chang

Linked List Example (2/3)

December 23, 2010 17

Copyright © All Rights Reserved by Yuan-Hao Chang

Linked List Example (3/3)

December 23, 2010 18

Copyright © All Rights Reserved by Yuan-Hao Chang

Linked List with Dynamic Allocation (1/3)

December 23, 2010 19

Copyright © All Rights Reserved by Yuan-Hao Chang

Linked List with Dynamic Allocation (2/3)

After the first iteration After the second iteration

December 23, 2010 20

Copyright © All Rights Reserved by Yuan-Hao Chang

Linked List with Dynamic Allocation (3/3)

December 23, 2010 21

Copyright © All Rights Reserved by Yuan-Hao Chang

Basic Operations of Linked List (1/4)
• Header file declaration for the basic operation
functions (e.g., linklist.h)

December 23, 2010 22

Copyright © All Rights Reserved by Yuan-Hao Chang

Basic Operations of Linked List (2/4)
• Use arr[] to create a linked list

December 23, 2010 23

Copyright © All Rights Reserved by Yuan-Hao Chang

Basic Operations of Linked List (3/4)
• The function to print the data in the nodes of the link list

December 23, 2010 24

Copyright © All Rights Reserved by Yuan-Hao Chang

Basic Operations of Linked List (4/4)
• Free the memory space allocated for the linked list

December 23, 2010 25

Copyright © All Rights Reserved by Yuan-Hao Chang

Linked List Example with Operation
Functions

Use array {14,27,32,46}
to create a linked list

December 23, 2010 26

Copyright © All Rights Reserved by Yuan-Hao Chang

Node Searching
• This function could search where is the node
containing “item.”

December 23, 2010 27

Copyright © All Rights Reserved by Yuan-Hao Chang

Node Insertion

A linked list with 3 nodes

After inserting node 46

December 23, 2010 28

Copyright © All Rights Reserved by Yuan-Hao Chang

Application: Node Searching and Insertion

December 23, 2010 29

Copyright © All Rights Reserved by Yuan-Hao Chang

Node Deletion
• Three condition upon node deletion:

– 1. An empty list: Node operation is performed.
– 2. The deleted node is the first node in the list:

- Move “first” to the next node”, and then delete the first node.

– 3. The deleted node is not the first node in the list:
- Pont the next node of the next node, and free the space.

December 23, 2010 30

Copyright © All Rights Reserved by Yuan-Hao Chang

Node Deletion Function

December 23, 2010 31

Copyright © All Rights Reserved by Yuan-Hao Chang

Node Deletion Example (1/2)

December 23, 2010 32

Copyright © All Rights Reserved by Yuan-Hao Chang

Node Deletion Example (2/2)

December 23, 2010 33

Copyright © All Rights Reserved by Yuan-Hao Chang

Lab 15
• 試以malloc() 配置3個可存放double型態的變數（即利用

 malloc(3*sizeof(double)) 的語法）之記憶空間，然後在for迴
 圈裡，分別以scanf() 函數輸入三個浮點數，最後再計算它們
 的總和與平均值。

• 定義下列結構:
struct student {

int num;
struct student *next;

};
試使用上列結構建立可存放 int 型態的變數 linked list。請使

 用while迴圈，在 while 迴圈以scanf() 函數輸入整數並存到一
 個新建的node，然後把該node加在linked list的最後，若輸入
 值為零，則離開迴圈並印出linked list中所有的直並算出list中
 的node數及平均值。

	投影片編號 1
	Memory Allocation
	Dynamic Allocation
	Access Memory
	Initialize Memory
	Free Memory
	Dynamic Allocation Example: Array
	Dynamic Allocation Example: Structure
	Dynamic Allocation Example: Structure (Cont.)
	List
	List with Array
	Linked List
	Linked List (Cont.)
	Linked List Consturction
	Linked List Example (1/3)
	Linked List Example (2/3)
	Linked List Example (3/3)
	Linked List with Dynamic Allocation (1/3)
	Linked List with Dynamic Allocation (2/3)
	Linked List with Dynamic Allocation (3/3)
	Basic Operations of Linked List (1/4)
	Basic Operations of Linked List (2/4)
	Basic Operations of Linked List (3/4)
	Basic Operations of Linked List (4/4)
	Linked List Example with Operation Functions
	Node Searching
	Node Insertion
	Application: Node Searching and Insertion
	Node Deletion
	Node Deletion Function
	Node Deletion Example (1/2)
	Node Deletion Example (2/2)
	Lab 15

