
Chapter 3
Lexical Analysis

Chapter 3
Lexical Analysis

April 29, 2010 2

Copyright © All Rights Reserved by Yuan-Hao Chang

Outline
• The role of the lexical analyzer
• Input buffering
• Specification of tokens
• Recognition of tokens
• The lexical-analyzer generator Lex
• Finite automata
• From regular expressions to automata
• Design of a lexical-analyzer generator
• Optimization of DFA-based pattern matchers

The Role of the Lexical
Analyzer

The Role of the Lexical
Analyzer

April 29, 2010 4

Copyright © All Rights Reserved by Yuan-Hao Chang

Lexical Analyzer (Scanner)
• The main tasks of the lexical analyzer

– Read the input characters of the source program,
– Group them, and
– Produce a sequence of tokens for each lexeme in the

source program.
- When a lexeme constituting an identifier is found, the lexeme is

put to the symbol table.

• Other tasks of the lexical analyzer
– Strip out comments and whitespace (blank, newline, tab,

and other characters that separate tokens in the input)
– Correlate error messages generated by the compiler with

the source program. (e.g., line number for error message)

April 29, 2010 5

Copyright © All Rights Reserved by Yuan-Hao Chang

Lexical Analyzer (Cont.)
• The parser calls the lexical analyzer that reads
characters from its input until it can identify the next
lexeme and produce the next token for the
compiler.

ParserLexical
Analyzer getNextToken

token
To semantic

analysis
Source
program

Symbol
Table

1

2

April 29, 2010 6

Copyright © All Rights Reserved by Yuan-Hao Chang

Lexical Analyzer (Cont.)
• Lexical analyzers are sometimes divided into two
processes:
– Scanning:

- Consist of the simple processes (that do not require tokenization
of the input).

- E.g., deletion of comments, compaction of consecutive
whitespace characters into one

– Lexical analysis:
- Produce the sequence of tokens as output.

April 29, 2010 7

Copyright © All Rights Reserved by Yuan-Hao Chang

Lexical Analysis vs. Parsing
• Reasons to separate lexical analysis from syntax
analysis:
– Simplicity of the design

- A parse that has to deal with comments and whitespace would be
considerably more complex.

– Compiler efficiency
- A separate lexical analyzer allows to adopt specialized buffering

techniques to speed up reading input characters.

– Compiler portability
- Input-device-specific peculiarities (特質) can be restricted to the

lexical analyzer.

April 29, 2010 8

Copyright © All Rights Reserved by Yuan-Hao Chang

Tokens, Patterns, and Lexemes
• Token

– A token is a pair consisting of a token name and an optional attribute value.
- The token name is an abstract symbol representing a kind of lexical unit (e.g.,

keyword) or a sequence of input characters (e.g., identifier).
- The token names are the input symbols that the parser processes.

• Pattern
– A pattern is a description of the lexeme forms that a token may take.

- In the case of a keyword as a token, the pattern is just the sequence of characters
that form the keyword.

- For identifiers, the pattern is a more complex structure matched by many string.

• Lexeme
– A lexeme

- Is a sequence of characters in the source program matches the pattern for a token,
and

- Is identified by the lexical analyzer as an instance of that token.

April 29, 2010 9

Copyright © All Rights Reserved by Yuan-Hao Chang

Example of Tokens
Token name

(or referred to as token) Informal description Sample lexemes

if characters i, f if

else characters e, l, s, e else

comparison < or > or <= or >= or ==
or != <=, !=

id letter followed by letters
and digits pi, score, D2

number Any numeric constant 3.12159, 0, 6.02e23

literal Anything but
surrounded by “ “core dumped”

- We often refer to a token by its token name.
- We generally write token names in boldface.

April 29, 2010 10

Copyright © All Rights Reserved by Yuan-Hao Chang

Classes of Tokens
• Classes for most tokens:

– One token for one keyword
- The pattern for a keyword is the same as the keyword itself.

– Tokens for the operators
- Either individually or in classes (e.g., comparison)

– One token representing all identifiers
- E.g., id

– One or more tokens representing constants
- E.g., number for numeric constants, and literal for strings constants

– Tokens for each punctuation symbol
- E.g., left and right parentheses, comma, and semicolon

• E.g., printf(“Total = %d\n”, score);
– printf and score are lexemes matching the pattern for token id.
– “Total = %d\n” is a lexeme matching token literal.

April 29, 2010 11

Copyright © All Rights Reserved by Yuan-Hao Chang

Attributes of Tokens
• When more than one lexeme can match a pattern,
the lexical analyzer must provide additional
information.
– In many cases, the lexical analyzer returns to the parser

- Not only a token name,
- But also an attribute value that describes the lexeme represented

by the token.

– Assume each token has at most one associated attribute:
- The attribute may have a structure that combines several pieces

of information.
- E.g., The token id whose attribute is a pointer pointing to the

symbol table for its corresponding information (e.g., a structure for
its lexeme, its type, and the location at which it is first found)

April 29, 2010 12

Copyright © All Rights Reserved by Yuan-Hao Chang

Token Names and Associated Attribute
Values
• A Fortran statement: E = M * C ** 2 can be written
as a sequence of pairs (i.e., tokens):

<id, pointer to symbol-table entry for E>
<assign_op>
<id, pointer to symbol-table entry for M>
<mult_op>
<id, pointer to symbol-table entry for C>
<exp_op>
<number, integer value 2>

Token name attribute
Operators,
punctuation, and
keywords don’t need
an attribute value.

In practice, a typical
compiler stores a
character string for
the constant with a
pointer pointing to the
string.

April 29, 2010 13

Copyright © All Rights Reserved by Yuan-Hao Chang

Lexical Errors
• Lexical analyzers are hard to tell source-code
errors without the aid of other components.
– E.g., fi (a == f(x)) …

The string fi is a transposition of the keyword if or a valid
lexeme for the token id?

– The parse could help identify a transposition error.

April 29, 2010 14

Copyright © All Rights Reserved by Yuan-Hao Chang

Error-Recovery Strategies
• When the lexical analyzer is unable to proceed because no

pattern for tokens matches any prefix of the remaining input, the
following error-recovery strategies could be adopted:

1. Delete successive characters from the remaining input until the
lexical analyzer can find a well-formed token. (panic mode recovery)

2. Delete one character from the remaining input.
3. Insert a missing character into the remaining input.
4. Replace a character by another character.
5. Transpose two adjacent characters.

– The simplest strategy is to see whether a prefix of the remaining input
can be transformed into a valid lexeme by a single transformation.
(because most lexical errors involve a single character)

Input BufferingInput Buffering

April 29, 2010 16

Copyright © All Rights Reserved by Yuan-Hao Chang

The Problem of Recognizing Lexemes
• We often have to look one or more characters
beyond the next lexeme.
– E.g., an identifier can’t be identified until we see a

character that is not a letter or digit.
– E.g., In C, single-character operators like -, =, or < could

also be the beginning of a two-character operator like ->,
==, or <=.

• Two-buffer scheme could handle large lookaheads
safely so as to improve the speed on reading the
source program.

April 29, 2010 17

Copyright © All Rights Reserved by Yuan-Hao Chang

Two-Buffer Scheme
• Two buffers reloaded alternately to reduce the amount of overhead

required to process a single input character.
– E.g., Each buffer is of the same size N, and N is usually the size of a disk

block (e.g., 4096 bytes).
- One system read command can read N characters into a buffer.
- If fewer than N characters remain in the input file, then a special character (i.e.,

eof) marks the end of the source file.
– Once the next lexeme is determined,

- The lexeme is recorded as an attribute value of a token returned to the parser.
- Then, forward is set to the character at its right end, and lexemeBegin is set to the

character immediately after the lexeme just found.

E = M * eofC * * 2

lexemeBegin
forward

First buffer Second buffer
Mark the beginning of

the current lexeme
Scan ahead until a pattern match
is found: “2” should be retracted

April 29, 2010 18

Copyright © All Rights Reserved by Yuan-Hao Chang

eofeof

• Whenever we advance forward, we make two tests:
– Test the end of the buffer
– Then, determine what character is read (a multiway branch)

• To combine the two tests in one, we can add a sentinel
character (Sentinel is a special character that can’t be part
of the source program.)

– at the end of each buffer and
– at the end of the entire input.

Two-Buffer Scheme with Sentinels

E = M * eofC * * 2

lexemeBegin
forward

First buffer Second buffer
Mark the beginning of

the current lexeme
Scan ahead until a pattern match
is found: “2” should be retracted

If a long string (> N) is encountered, we
can treat the long string as a concatenation
of strings to prevent buffer overflow.

April 29, 2010 19

Copyright © All Rights Reserved by Yuan-Hao Chang

Lookahead Code with Sentinels

Switch (*forward++) {
case eof:

if (forward is at the end of the first buffer) {
reload secnod buffer;
forward = beginning of second buffer;

}
else if (forward is at end of the second buffer) {

reload first buffer;
forward = beginning of first buffer;

}
else // eof within a buffer marks the end of input
break;

Cases for the other characters
}

Multiway branch:
In practice, a multiway
branch depending on
the input character
that is the index of an
array of addresses.
Only a jump to the
indexed address is
needed for a selected
case.

Specification of TokensSpecification of Tokens

April 29, 2010 21

Copyright © All Rights Reserved by Yuan-Hao Chang

Strings and Languages
• An alphabet (字母) is any finite set of symbols. Typical

examples are:
– Binary (alphabet): the set {0, 1}
– ASCII (alphabet): important alphabet used in many systems
– Unicode (alphabet): including approximately 100,000 characters

• A string over an alphabet is a finite sequence of symbols
drawn from that alphabet.

– In language theory, “sentence” and “word” are often used as
synonyms for “string.”

– |s| is the length of a string s.
- E.g., banana is a string of length six.
- E.g., ε denotes the empty string whose length is zero.

• A language is any countable set of strings over some fixed
alphabet.

April 29, 2010 22

Copyright © All Rights Reserved by Yuan-Hao Chang

Terms for Parts of Strings
• A prefix of string s is any string obtained by removing zero

or more symbols from the end of s.
– E.g., ban, banana, and ε are prefixes of banana.

• A suffix of string s is any string obtained by removing zero
or more symbols from the beginning of s.

– E.g., nana, banana, and ε are suffixes of banana.

• A substring of s is obtained by deleting any prefix and suffix
from s.

– E.g., banana, nan, and ε are substrings of banana.

• A proper prefix, suffix or substring of a string s doesn’t
include ε and s.

• A subsequence of string s is any string fromed by deleting
zero or more characters from s.

– E.g., baan is a subsequence of banana.

April 29, 2010 23

Copyright © All Rights Reserved by Yuan-Hao Chang

Operations on Languages
Operation Definition and Notation

Union of L and M L U M = {s | s is in L or in M}
Concatenation of L and M LM = {st | s is in L and t is in M}
(Kleene) closure of L
Positive closure of L

i
i LL ∞
=∪= 0

*

i
i LL ∞
=

+ ∪= 1

• E.g., x = dog and y = house
– xy = doghouse

• For any string s,
– εs = sε = s
– s0 = ε
– s1 = s, s2 = ss, s3 = sss, si = si-1s

Concatenation of L
one or more times

Concatenation of L
zero or more times

April 29, 2010 24

Copyright © All Rights Reserved by Yuan-Hao Chang

Operations on Languages (Cont.)
• E.g.,

– Let L be the set of letters {A, B, …, Z, a, b, …, z} and let
D be the set if digits {0, 1, …, 9}
- L U D is the set of letters and digits (62 strings of length one)
- LD is the set of 520 strings of length two (one letter and one digit)
- L4 is the set of all 4-letter strings
- L(L U D)* is the set of all strings of letters and digits beginning with

a letter
- D+ is the set of all strings of one or more digits

April 29, 2010 25

Copyright © All Rights Reserved by Yuan-Hao Chang

Regular Expressions
• Regular expressions are an important notation for
specifying lexeme patterns.

• For example:
– If letter_ is established to stand for any letter or the

underscore, and digit is established to stand for any digit,
then the language of C identifiers is described as

• Two basic rules over some alphabet ∑ :
– ε is a regular expression, and L(ε) is {ε}, the empty string.
– If a is a symbol in the alphabet ∑, then a is regular

expression and L(a) = {a}.

letter_(letter_ | digit)*

Boldface for regular expression italics for regular symbols

April 29, 2010 26

Copyright © All Rights Reserved by Yuan-Hao Chang

Induction (歸納) of Regular Expressions
• Suppose r and s are regular expressions denoting languages L(r)

and L(s), respectively.
– (r)|(s) denotes the language L(r) U L(s)
– (r)(s) denotes the language L(r)L(s)
– (r)* denotes the language (L(r))*

– (r) denotes L(r) we can add additional pairs of parenthesses around
expressions

• Unnecessary pairs of parentheses can be dropped if we adopt
the following conventions:

– The unary operator * has the highest precedence and is left associative.
– Concatenation has the second highest precedence and is left associative.
– | has the lowest precedence and is left associative.

E.g., (a)|((b)*(c)) = a|b*c

April 29, 2010 27

Copyright © All Rights Reserved by Yuan-Hao Chang

Induction of Regular Expressions (Cont.)

• Let the alphabet ∑ = {a, b}
– The regular expression a|b denotes the language {a, b}.
– (a|b)(a|b) denotes {aa, ab, ba, bb}, the language of all

strings of length two over the alphabet ∑. (= aa|ab|ba|bb)
– a* denotes the language consisting of all strings of zero

or more a’s. I.e., {ε, a, aa, aaa, …}
– (a|b)* denotes the language consisting of zero or more

instances of a or b. I.e., all strings of a’s and b’s {ε, a, b,
aa, ab, ba, bb, aaa, …} (= (a*b*)*)

April 29, 2010 28

Copyright © All Rights Reserved by Yuan-Hao Chang

Algebraic Laws for Regular Expressions
• A language that can be defined by a regular expression is

call a regular set.
– If two regular expressions r and s denote the same regular set, then

r = s. E.g., (a|b) = (b|a)
Law Description

r|s = s|r | is commutative (交換律)
r|(s|t) = (r|s)|t | is associative (結合律)
r(st) = (rs)t Concatenation is associative
r(s|t) = rs|rt; (s|t)r = sr|tr Concatenation distributions (分配律) over |
εr = rε = r ε is the identity for concatenation
r* = (r|ε)* ε is guaranteed in a closure

r** = r* * is idempotent (i.e., applied multiple times
without changing the result)

April 29, 2010 29

Copyright © All Rights Reserved by Yuan-Hao Chang

Regular Definitions
• If ∑ is an alphabet of basic symbols, then a regular definition

is a sequence of definitions of the form:

where
– Each di is a new symbol that is not in ∑ and not the same as any

other of the d’s, and
– Each ri is a regular expression over the alphabet ∑ U {d1, d2, …, di-1}.

• By restricting ri to ∑ and the previous defined d’s,
– The recursive definitions can be avoided, and
– A regular expression can be constructed for each ri over ∑ alone.

d1 r1
d2 r2

…
dn rn

April 29, 2010 30

Copyright © All Rights Reserved by Yuan-Hao Chang

Regular Definition for C Languages
• Regulation definition for C’s Identifiers

• Regulation definition for C’s unsigned numbers
(e.g., 5280, 0.01234, 6.3366E4, or 1.89E-4)

letter_ A | B | … | Z | a | b | … | z | _
digit 0 | 1 | … | 9
id letter_ (letter_ | digit)*

digit
digits
optionalFraction
optionalExponent
number

0 | 1 | … | 9
digit digit*
. digits | ε
(E (+ | - | ε) digits) | ε
digits optionalFraction optionalExponent

At least one
digit must

follow the dot

April 29, 2010 31

Copyright © All Rights Reserved by Yuan-Hao Chang

Extensions of Regular Expressions
• Extensions of the regular expression introduced by Kleene:

– One or more instances
- The unary postfix operator ++ represents the positive closure of a regular

expression and its language.
- i.e., if r is a regular expression, then (r)+ denotes the language (L(r))+.
- Two useful algebraic laws:

· r* = r* | ε
· r+ = rr* = r*r

– Zero or one instance
- The unary postfix operator ? ? means “zero or one occurrence.”
- E.g., r? = r | ε or L(r?) = L(r) U {ε}
- ? has the same precedence and associativity as * and +

– Character classes (shorthand regular expression)
- A regular expression a1 | a2 | … | an = [a1a2…an]
- If a1, a2, …, an form a logical sequence (e.g., consecutive uppercase

letters), then a1 | a2 | … | an = [a1-an]

April 29, 2010 32

Copyright © All Rights Reserved by Yuan-Hao Chang

Regular Definition with Shorthand

letter_ A | B | … | Z | a | b | … | z | _
digit 0 | 1 | … | 9
id letter_ (letter_ | digit)*

letter_ [A-Za-z_]
digit [0-9]
id letter_ (letter_ | digit)*

digit
digits
optionalFraction
OptionalExponent
number

0 | 1 | … | 9
digit digit*
. digits | ε
(E (+ | - | ε) digits) | ε
digits optionalFraction OptionalExponent

digit
digits
number

[0-9]
digit+
digits (. digits)? (E [+-]? digits)?

Recognition of TokensRecognition of Tokens

April 29, 2010 34

Copyright © All Rights Reserved by Yuan-Hao Chang

• The terminals of the grammar (which are if, then, else, relop, id, and
number) are the names of tokens as far as the lexical analyzer is
concerned.

Patterns for Tokens

stmt if expr then stmt
| if expr then stmt else stmt
| ε

expr term relop term
| term

term id
| number

A Grammar for branching
statements (similar to Pascal)

[0-9]
digit+
digits (. digits)? (E[+-]? digits)?
[A-Za-z]
letter (letter | digit)*

if
then
else
< | > | <= | >= | = | <>
Patterns for tokens

digit
digits
number
letter
id
if
then
else
relop

The lexical analyzer recognizes the keywords (i.e., reserved words) if, then, and
else, as well as lexemes that match the patterns for relop, id, and number.

April 29, 2010 35

Copyright © All Rights Reserved by Yuan-Hao Chang

Whitespace
• The lexical analyzer also strips out whitespace by

recognizing the “token” ws defined by:

• Token ws is different from the other tokens in that the
lexical analyzer does not return it to the parser, but rather
restarts the lexical analysis from the character following the
whitespace.

ws (blank | tab | newline)+
Abstract symbols to
express ASCII characters
of the same names.

April 29, 2010 36

Copyright © All Rights Reserved by Yuan-Hao Chang

Patterns and Attribute Values of Tokens
Lexemes Token Name Attribute Value
Any ws - -

if if -
Then then -
Else else -

Any id id Pointer to table entry
Any number number Pointer to table entry

< relop LT
<= relop LE
= relop EQ
<> relop NE
> relop GT
>= relop GE

April 29, 2010 37

Copyright © All Rights Reserved by Yuan-Hao Chang

Transition Diagrams
• An intermediate step of a lexical analyzer is to convert

patterns into stylized flowcharts called transition diagrams.
– Transition diagrams have a collection of nodes or circles called

states.
- Each state represents a condition that could occur during the process of

scanning the input looking for a lexeme that matches one of several
patterns.

- Each edge is directed from one state to another and is labeled by a
symbol or a set of symbols.

– We assume that each transition diagram is deterministic (at this
stage).
- That is, there is never more than one edge out of a given state with a

given symbol among its labels.

April 29, 2010 38

Copyright © All Rights Reserved by Yuan-Hao Chang

Transition Diagrams (Cont.)
• Conventions of transition diagrams

– Accepting states indicate that a lexeme has been found.
An accepting state is indicated by a double circle.
- Once the accepting state is reached, a token and attribute value

are typically returned to the parser.

– If it is necessary to retract the forward pointer one
position, we shall place a * near that accepting state.

– The start state is indicated by an edge labeled “start”,
entering from nowhere.

April 29, 2010 39

Copyright © All Rights Reserved by Yuan-Hao Chang

Transition Diagram for reloprelop

0 1 2

3

4

5

6 7

8

start < =

>

other
=

>

other

*

*

return (relop, GE)

return (relop, GT)

return (relop, EQ)

=

return (relop, LE)

return (relop, NE)

return (relop, LT)
Retract one character

April 29, 2010 40

Copyright © All Rights Reserved by Yuan-Hao Chang

Recognition of Keywords and Identifiers

• Keywords are not identifiers, but look like identifiers.

• There are two ways to recognize keywords and identifiers:
– Install the reserved words in the symbol table initially.

- A field of the symbol-table entry indicates that these strings are never ordinary identifiers.
– Create separate transition diagrams for each keyword.

- No character can be the continuation of an keyword.
· E.g., “then” is a keyword, but “thenextvalue” is an identifier.

9 10 11
start letter other

return (getToken(), installID())

letter or digit

*
Identify both identifiers and keywords

Get token’s lexeme
Get the pointer to symbol-table

entry for the found lexeme

start t h e n Nonletter-or-digit *

April 29, 2010 41

Copyright © All Rights Reserved by Yuan-Hao Chang

Transition Diagrams for Unsigned
Numbers and Whitespace

12 13 19
start digit *.

14 15
digit E

16 17
+ or - digit

18
other

digit

digit

digit

20 21
E

digit

* *other other

A Transition diagram for unsigned numbers

22 23
start delim other

24

delim

*

A Transition diagram for whitespace

delimiter

digit
digits
number

[0-9]
digit+
digits (. digits)? (E [+-]? digits)?

April 29, 2010 42

Copyright © All Rights Reserved by Yuan-Hao Chang

Transition-Diagram-Based Lexical Analyzer
• A lexical analyzer can be

built by a collection of
transition diagrams.

– A switch based on the current
state value.

– The code for a state is a switch
statement or multi-way branch.

relop transition diagram (with C++)

TOKEN* getRelop() {
TOKEN* retToken = new RELOP; //token object
while (1) { // repeat until a return or failure occurs

switch (state) {
case 0: c = nextChar();

if (c == ‘<‘) state = 1;
else if (c == ‘=‘) state = 5;
else if (c == ‘>’) state = 6;
else fail(); // lexeme is not a relop
break;

case 1: …
…
case 8: retract ();

retToken.attribute = GT; // attribute
return (retToken);

}
}

}

Reset forward
pointer to

lexemeBegin

April 29, 2010 43

Copyright © All Rights Reserved by Yuan-Hao Chang

Transition Diagrams in Lexical Analysis
• There are several ways to recognize tokens through

transition diagrams:
1. Arrange the transition diagrams for each token to be tried

sequentially. Then, the function fail() resets the pointer forward to
start the next transition diagram.

– We should use transition diagrams for keywords before using the
transition diagram for identifiers.

2. Run various transition diagrams in parallel, and take the longest
prefix of the input that matches any pattern.

– This rule allows us to prefer
– Identifier “thenext” to keyword “then”, or
– The operator -> to -.

3. Combine all the transition diagrams into one.
– The combination is easy if no two tokens start with the same character.
– In general, the problem of combining transition diagram for several

tokens is complex.

April 29, 2010 44

Copyright © All Rights Reserved by Yuan-Hao Chang

The Combined Transition Diagram

Combine states
0, 9, 12, and 22
together

The Lexical-Analyzer
Generator Lex

The Lexical-Analyzer
Generator Lex

April 29, 2010 46

Copyright © All Rights Reserved by Yuan-Hao Chang

Lexical-Analyzer Generator LexLex
• Lex (or Flex, fast Lex) allows users to specify regular

expressions to describe patterns for tokens.
– Input notation for the Lex tool is the Lex language, and the tool is the
Lex compiler.

– The Lex compiler
- Transforms the input patterns into a transition diagram and
- Generates code (lex.yy.c) to simulate this transition diagram.

Lex Compiler
(e.g., flex)lex.l lex.yy.c

C compiler
(e.g., gcc)lex.yy.c a.out (lexical analyzer)

a.outInput stream Sequence of tokens

April 29, 2010 47

Copyright © All Rights Reserved by Yuan-Hao Chang

Structure of Lex Programs
• Declarations section

– Include declarations of variables, manifest
constants (常數清單), e.g., the names of
tokens, and regular definitions.

• Translation rules
– Each rule has the form:

- Each pattern is a regular expression that uses
the regular definitions in the declaration section.

- The actions are fragments of code, typically
written in C.

• Additional functions
– Hold whatever additional functions used in

the actions.
– These functions can be compiled separately

and loaded with the lexical analyzer.

declarations section
%%
translation rules
%%
auxiliary functions
Structure of a Lex program

The symbol
to separate
two sections

Pattern { Action }

April 29, 2010 48

Copyright © All Rights Reserved by Yuan-Hao Chang

Use of Lex
• The lexical analyzer created by Lex behaves in
concert with the parser:
– When the lexical analyzer is called by the parser, it

begins reading its remaining input until it finds the
longest prefix matching the pattern Pi.

– Then the lexical analyzer executes the associated action
Ai.

– Typically, Ai will return to the parser if Pi is not a
whitespace or comments.

– The lexical analyzer returns a single value (i.e., the token
name) to the parser, but use the shared integer variable
(i.e., yylval) to pass additional information about the
lexeme found.

April 29, 2010 49

Copyright © All Rights Reserved by Yuan-Hao Chang

Lex Program for the Tokens
%{

/* definitions of manifest constants
LT, LE, EQ, NE, GT, GE,
IF, THEN, ELSE, ID, NUMBER, RELOP */

%}

/* regular definitions */
delim [\t\n]
ws {delim}+
letter [A-Za-z]
digit [0-9]
id {letter}({letter}|{digit})*
number {digit}+(\.{digit}+)?(E[+-]?{digit}+)?

%%

{ws} {/* no action and no return */}
if {return(IF);}
then {return{THEN);}
else {return{ELSE);}

{id} {yylval = (int) installID(); return(ID);}
{number} {yylval = (int) installNum();

return(NUMBER);}
“<“ {yylval = LT; return(RELOP);}
“>“ {yylval = LE; return(RELOP);}
“=“ {yylval = EQ; return(RELOP);}
“<>“ {yylval = NE; return(RELOP);}
“>“ {yylval = GT; return(RELOP);}
“>=“ {yylval = GE; return(RELOP);}

%%

int installID() { /* function to install the lexeme,
whose first character is pointed
by yytext, and whose length is
yyleng, into symbol table and
return a pointer */ }

int installNum() {/* similar to installID, but puts
numerical constants into a
separate table */ }

dot

space

Pass value to
the parser

Regular expression

April 29, 2010 50

Copyright © All Rights Reserved by Yuan-Hao Chang

Lex Program for the Tokens (Cont.)
• Declarations section

– Anything between %{ and %} is copied directly to the file lex.yy.c
directly.
- The manifest constants are usually defined by C #define to associate

unique integer code.
– A sequence of regular definitions

- Curly braces { } are to surround the used regular definitions.
- Parentheses () are grouping metasymbols and don’t stand for

themselves.
- \. Represents the dot, since . is a metasymbol representing any character.

• Auxiliary function
– Everything in the auxiliary section is copied directly to file lex.yy.c,

but may be used in the actions.

April 29, 2010 51

Copyright © All Rights Reserved by Yuan-Hao Chang

Lex Program for the Tokens (Cont.)
• Translation rules

– The action taken when id is matched is threefold:
- Function installID() is called to place the lexeme found in the

symbol table.
- This function returns a pointer to the symbol table, placed in

global variable yylval, which is used by the parser.
· This function has two variables that are set automatically:

» yytext is a pointer to the beginning of the lexeme.
» yyleng is the length of the lexeme found.

- The token name ID is return to the parser.

April 29, 2010 52

Copyright © All Rights Reserved by Yuan-Hao Chang

Conflict Resolution in Lex
• When several prefixes of the input match one or
more patterns, Lex
– Always prefers a longer prefix.
– Always prefers the pattern listed first in the program if the

longest possible prefix matches two or more patterns.

• E.g.,
– <= is a single lexeme instead of two lexemes.
– The lexeme then is determined as the keyword then.

April 29, 2010 53

Copyright © All Rights Reserved by Yuan-Hao Chang

The Lookahead Operator
• The lookahead operator in Lex

– Automatically reads one character ahead of the last character that
forms the selected lexeme, and

– Retracts the input when the lexeme is consumed from the input.

• Sometimes we want a certain pattern to be matched to the
input when it is followed by a certain other characters.

– We use the slash in a pattern to indicate the end of the pattern that
matches the lexeme.

– What follows / is additional pattern that must be matched before we
can decide.

– E.g., a Fortran statement: IF(I,J) = 3 (IF is the name of an array)
a Fortran statement: IF(A<(B+C)*D)THEN… (IF is a keyword)

» The keyword IF always followed by a left parenthesis, a right parenthesis,
and a letter. We can write a Lex rule for the keyword IF like

IF / \(.* \) {letter} .* means any string without a newline

April 29, 2010 54

Copyright © All Rights Reserved by Yuan-Hao Chang

An Flex Program to Print the File Content
/*** Definition section ***/
%{
/* C code to be copied verbatim */
#include <stdio.h>
%}

/* This tells flex to read only one input file */
%option noyywrap

%%
/*** Rules section ***/

.|\n { printf("%s",yytext); }

%%
/*** C Code section ***/
int main(void) {

/* Call the lexer, then quit. */
yylex();
return 0;

}

Declarations section

Translation rules

Auxiliary functions

Finite AutomataFinite Automata

April 29, 2010 56

Copyright © All Rights Reserved by Yuan-Hao Chang

Finite Automata
• Finite automata formulation is the heart of the
transition from the input program into a lexical
analyzer.
– Finite automata are recognizers that say “yes” or “no”

about each possible input string.
– Finite automata consist of two forms:

- Nondeterministic finite automata (NFA):
· No restrictions on the labels of their edges

» A symbol can label several edges out of a state.
» ε is a possible label.

- Deterministic finite automata (DFA):
· Exactly one edge with that symbol leaving that state

– NFA and DFA are usually represented by a transition
graph.

April 29, 2010 57

Copyright © All Rights Reserved by Yuan-Hao Chang

Nondeterministic Finite Automata (NFD)
• An NFA consists of

– A finite set of states S.
– A set of input symbols ∑ (the input alphabet), excluding ε.
– A transition function that gives a set of next states for each state

among the symbols in ∑ U {ε}.
– A state s0 from S as the start state (or initial state).
– A subest F of S is distinguished as the accepting states (or final

states).

• The transition graph to represent NFA
– Nodes are states
– Labeled edges represent the transition functions.

• The transition graph for NFA is similar to a transition
diagram, except:

– A symbol can label edges of one state to several states.
– An edge could be labeled by ε.

April 29, 2010 58

Copyright © All Rights Reserved by Yuan-Hao Chang

Nondeterministic Finite Automata (NFD) (Cont.)

Regular expression: (a|b)*abb

0 1
start a b

3

a

b

2
b

The NFA for (a|b)*abb

STATE a b ε
0 {0, 1} {0}

{2}
{3}
ø

ø
1 ø ø
2 ø ø
3 ø ø

Transition table for the NFA

state

Input
symbol

Value of the transition
function with the given
state and input symbol

The advantage of transition table
is easy to find the transitions on a
given state and input.
The disadvantage of transition
table takes a lot of space when
the input alphabet is large.

April 29, 2010 59

Copyright © All Rights Reserved by Yuan-Hao Chang

Acceptance of Input Strings by Automata
• An NFA accepts input string x if and only if there is some

path in the transition graph from the start state to one of the
accepting states, such that the symbols along the path spell
out x.

0 1
a b

32
b

aabb 0
a

0 0
a b

00
b

0
a

Accepting
path

Not accepting
path

The NFA for (a|b)*abb

April 29, 2010 60

Copyright © All Rights Reserved by Yuan-Hao Chang

Acceptance of Input Strings by Automata (Cont.)

• We use L(A) to stand for the language accepted by
automation A.
– E.g.,

0

1
start

ε a
2

a

3
b

4

b

ε

The NFA accepting L(aa*|bb*)

String aaa is accepted

0 2
ε a

22
a

1
a

ε is disappeared in
a concatenation

April 29, 2010 61

Copyright © All Rights Reserved by Yuan-Hao Chang

Deterministic Finite Automata (DFA)
• DFA is a special case of an NFA where

– There are no moves on input ε, and
– For each state s and input symbol a, there is exactly one edge

labeled a out of s. (No curly brace is needed in the entries of the
transition table.)

• If we use a transition table to represent a DFA, each entry is
a single state. (In practice, we usually adopt DFA instead of
NFA for simplicity).

• DFA is a simple, concrete algorithm for recognizing strings,
while NFA is an abstract algorithm for recognizing strings.

• Each NFA can be converted to a DFA accepting the same
language.

April 29, 2010 62

Copyright © All Rights Reserved by Yuan-Hao Chang

Simulating a DFA
• Algorithm:

– Simulating a DFA

• INPUT:
– An input string x terminated by an end-of-file character eof. A DFA D with

start state s0, accepting states F, and transition function move.

• OUTPUT:
– Answer “yes” if D accepts x; “no” otherwise.

• METHOD: s = s0;
c = nextChar();
while (c != eof) {

s = move (s,c);
c = nextChar ();

}
if (s is in F) return “yes”;
else return “no”;

Return the next character
of the input string x.

Move to the next state from
state s through edge c.

April 29, 2010 63

Copyright © All Rights Reserved by Yuan-Hao Chang

From NFA to DFA that Accepts (a|b)*abb

0 1
start a b

3

b

2
b

The NFA for (a|b)*abb

a

0 1
start a b

3

a

2
b

The DFA for (a|b)*abb

b

a
a

b

STATE a b ε

0 {0, 1} {0}
{2}
{3}
ø

ø
1 ø ø
2 ø ø
3 ø ø

STATE a b ε

0 1 0
2
3
0

ø
1 1 ø
2 1 ø
3 1 ø

Transition table for the NFA

Transition table for the DFA

move (0, a)

From Regular Expressions
to Automata

From Regular Expressions
to Automata

April 29, 2010 65

Copyright © All Rights Reserved by Yuan-Hao Chang

Subset Construction
• Subset construction is the technique to convert an NFA to a

DFA.
– Each state of the constructed DFA corresponds to a set of NFA

states.
– After reading input a1a2…an, the DFA is in that state which

corresponds to the set of states that the NFA can reach (from its
start state, following paths labeled a1a2…an).

• The number of DFA states could be exponential in the
number of NFA states.

– The maximal number of DFA states is 2n where n is the number of
states in NFA.

– In pratice, the NFA and DFA have approximately the same number
of states.

April 29, 2010 66

Copyright © All Rights Reserved by Yuan-Hao Chang

Subset Construction (Cont.)
• Algorithm:

– The subset construction of a DFA from an NFA

• INPUT:
– An NFA N.

• OUTPUT:
– A DFA D accepting the same language as N.

• METHOD:
– Construct a transition table DtranDtran for D so that D will simulate “in

parallel” all possible moves that N can make on a given input string.
(Note that the ε-transition problem of N should be solved.)

April 29, 2010 67

Copyright © All Rights Reserved by Yuan-Hao Chang

Subset Construction (Cont.)
• Operations on NFA states:

– s is a single state of N, while T is a set of states of N.

Operation Description

ε-closure (s) Set of NFA states reachable from NFA state s
on ε-transition alone.

ε-closure (T)
Set of NFA states reachable from some NFA
state s in set T on ε-transition alone.

ε-closure (T) = Us in T ε-closure (s)

move (T, a) Set of NFA states to which there is a transition
on input symbol a from some state s in T.

April 29, 2010 68

Copyright © All Rights Reserved by Yuan-Hao Chang

Subset Construction (Cont.)
• The process of the subset construction:

– Before reading the first input symbol, N can be in any of
the states of ε-closure (s0), where s0 is the start state.
- Suppose that N can be in set of states T after reading input string x. If it

next reads input a, then N can immediately go to any of the states in
move (T, a).

- After reading a, it may make several ε-transitions; thus, N could be in any
state of ε-closure (move (T, a)).

– The start state of D is ε-closure (s0).
– The accepting states of D are all those sets of N’s states that include

at least one accepting state of N.

April 29, 2010 69

Copyright © All Rights Reserved by Yuan-Hao Chang

Algorithm of Subset Construction
• Structure definition:

– Dstates is the set of D’s states.
– Dtran is the transition table.
– move(T, a) is the transition function

Initially, ε-closure (s0) is the only state in Dstates, and it is unmarked.
while (there is an unmarked state T in Dstates) {

mark T;
for (each input symbol a) {

U = ε-closure (move (T, a))
if (U is not in Dstates)

add U as an unmarked state to
Dstates;

Dtran[T, a] = U;
}

}

push all states of T onto stack; // T = move(T, a)
initialize ε-closure(T) to T;
while (stack is not empty) {

pop the top element t off stack;
for (each state u with an edge from t to u labeled ε)

if (u is not in ε-closure(T)) {
add u to ε-closure(T);
push u onto stack;

}
}Subset construction

Computing ε-closure(T)

The complexity to process a symbol
is O(n+m).

n: the number of states in NFA
m: the number of transitions in NFA

April 29, 2010 70

Copyright © All Rights Reserved by Yuan-Hao Chang

An Example of Subset Construction

1

2
ε

ε a
3

4
b

5ε

0
start ε

6

ε

ε

a
7

b
98

b

10ε

ε
• Alphabet is {a, b}

• The start state A = ε-closure(0) = {0, 1, 2, 4, 7}

• Dtran[A, a] = ε-closure(move(A, a))
= ε-closure({3, 8})
= {1, 2, 3, 4, 6, 7, 8} = B

• Dtran[A, b] = ε-closure(move(A, b))
= ε-closure({5})
= {1, 2, 4, 5, 6, 7} = C

NFA N for (a|b)*abb

NFA State DFA
State a b

{0, 1, 2, 4, 7} A B
B
B
B

{1, 2, 4, 5, 6, 7, 10} E B C

C
{1, 2, 3, 4, 6, 7, 8} B D

{1, 2, 4, 5, 6, 7} C C
{1, 2, 4, 5, 6, 7, 9} D E

DTran for DFA D

April 29, 2010 71

Copyright © All Rights Reserved by Yuan-Hao Chang

An Example of Subset Construction (Cont.)

DTran for DFA D

A B
start a b

ED
b

C

b

b
b

a

a

a

a
Result of subset construction
by converting the NFA N for

(a|b)*abb

{1, 2, 4, 5, 6, 7}

NFA State DFA
State a b

{0, 1, 2, 4, 7} A B
B
B
B

{1, 2, 4, 5, 6, 7, 10} E B C

C
{1, 2, 3, 4, 6, 7, 8} B D

{1, 2, 4, 5, 6, 7} C C
{1, 2, 4, 5, 6, 7, 9} D E

April 29, 2010 72

Copyright © All Rights Reserved by Yuan-Hao Chang

Big-Oh: O()
• Definition

– Given a f(n), the running time is O(g(n)) if there are some
constants c and n0, such that f(n)≤cg(n) whenever n ≥ n0.

• Example:
– O(n): at most some

constant times n
– O(1): some constant

April 29, 2010 73

Copyright © All Rights Reserved by Yuan-Hao Chang

Simulation of an NFA
• Algorithm:

– Simulating an NFA

• INPUT:
– An input string x terminated by an end-of-file character eof.
– An NFA N with start state s0, accepting states F, and transition function

move.

• OUTPUT:
– Answer “yes” if N accepts x; “no” otherwise.

• METHOD:
– Keep a set of current states S that are

reached from s0 following the path
labeled by the inputs read so far.

1) S = ε-closure(s0);
2) c = nextChar();
3) while (c != eof) {
4) S = ε-closure(move(S,c));
5) c = nextChar();
6) }
7) if (S∩F != ø) return “yes”;
8) else return “no”;

April 29, 2010 74

Copyright © All Rights Reserved by Yuan-Hao Chang

Efficiency of NFA Simulation
• The data structures we need are:

– Two stacks:
- oldStates holds the current set of states (S on the right side of line

(4))
- newStates holds the next set of states (S on the left side of line(4))

– A boolean array
- alreadyOn indexed by the NFA states is to indicate which states

are in newStates.
- Array more efficient to search for a given state.

– A two-dimensional array
- move[s, a] holds the transition table of the NFA. Each entry of this

table points to a set of states and is represented by a linked list.

1) S = ε-closure(s0);
2) c = nextChar();
3) while (c != eof) {
4) S = ε-closure(move(S,c));
5) c = nextChar();
6) }
7) if (S∩F != ø) return “yes”;
8) else return “no”;

April 29, 2010 75

Copyright © All Rights Reserved by Yuan-Hao Chang

9) addState(s) {
10) push s onto newStates;
11) alreadyOn[s] = TRUE;
12) for (t on move[s, ε])
13) if (!alreadyOn(t))
14) addState(t);
15) }

1) S = ε-closure(s0);
2) c = nextChar();
3) while (c != eof) {
4) S = ε-closure(move(S,c));
5) c = nextChar();
6) }
7) if (S∩F != ø) return “yes”;
8) else return “no”;

Efficiency of NFA Simulation (Cont.)
• Transition graph: n states with m edges (or transitions)

• Initialization:
– Set each entry of alreayOn to FALSE.
– Put each state s in ε-closure(s0) to the oldStage.

Compute
ε-closure(s)

16) for (s on oldStates) {
17) for (t on move[s, c])
18) if (!alreadyOn[t])
19) addState(t);
20) pop s from oldStates;
21) }
22) for (s on newStates) {
23) pop s from newStates;
24) push s onto oldStates;
25) alreadyOn[s] = FALSE;
21) }

Implementation of line (4)

At most n
times

At most m
times in total

At most
called for n

times in total

At most m
times over

n calls

The complexity to process a character is O(n+m)

April 29, 2010 76

Copyright © All Rights Reserved by Yuan-Hao Chang

Construction of an NFA from a Regular
Expression
• Algorithm:

– The McNaughton-Yamada-Thompson algorithm to convert a
regular expression to an NFA

• INPUT:
– A regular expression r over alphabet ∑.

• OUTPUT:
– An NFA N accepting L(r).

• METHOD:
– Begin by parsing r into its constituent subxpressions with basis

rules and inductive rules.
- 2 basis rules: handle subexpressions with no operators
- 4 inductive rules: construct larger NFAs from the NFAs for the

subexpression of a given expression.

April 29, 2010 77

Copyright © All Rights Reserved by Yuan-Hao Chang

Basis Rules
• For expression ε, construct the NFA

• For any subexpression a in ∑, constuct the NFA

f
ε

i
start

f
a

i
start

New state, the
start state

New state, the
accepting state

New state, the
start state

New state, the
accepting state

April 29, 2010 78

Copyright © All Rights Reserved by Yuan-Hao Chang

Induction Rules
• Suppose N(s) and N(t) are NFAs for regular expressions s

and t that denote languages L(s) and L(t), respectively.
– Suppose r = s | t. N(r) accepts L(s) U L(t), and is an NFA for r=s | t.

– Suppose r = st. N(r) accepts L(s)L(t), and is an NFA for r=st.

i
ε N(s)

ε

start f
ε

εN(t)

i N(s) fN(t)
start

The accepting
state of N(s) and
the start state of
N(t) are merged

together.

April 29, 2010 79

Copyright © All Rights Reserved by Yuan-Hao Chang

Induction Rules (Cont.)
– Suppose r = s*. N(r) accepts L(s*), and is an NFA for r=s*.

– Suppose r = (s). Then L(r) = L(s), and therefore N(s) = N(r).

N(s)εi
start ε f

ε

ε

April 29, 2010 80

Copyright © All Rights Reserved by Yuan-Hao Chang

Properties of the McNaughton-Yamada-
Thompson Algorithm
• N(r) has at most twice as many states as there are
operators and operands in r.
– Each step of the algorithm creates at most two new states.

• N(r) has one start state and one accepting state.
– The accepting state has no outgoing transitions.
– The start state has no incoming transitions.

• Each state of N(r) other than the accepting state has
– Either one outing transition on a symbol in ∑
– Or two outgoing ε-transitions.

April 29, 2010 81

Copyright © All Rights Reserved by Yuan-Hao Chang

NFA Construction with McNaughton-
Yamada-Thompson (MYT) Algorithm

Construct an NFA for r = (r = (a|ba|b))**abbabb

r1 r2+

r3

a b

()

r4 *

r5 r6

r7

a

r8

r9

b

r10

r11

b

A parse tree for r 2 a
3

start

subexpression
4 b

5
start

subexpression r1=a

subexpression r2=b

1

2ε a
3

4
b

5ε

6

ε

ε
ε

start

subexpression r3=a|b

April 29, 2010 82

Copyright © All Rights Reserved by Yuan-Hao Chang

NFA Construction with McNaughton-
Yamada-Thompson (MYT) Algorithm (Cont.)

Construct an NFA for r = (r = (a|ba|b))**abbabb

1

2
ε

ε a
3

4
b

5ε

0
start ε

6

ε

ε

7

ε
subexpression

r5=(a|b)*

1

2
ε

ε a
3

4
b

5ε

0
start ε

6

ε

ε

7

ε
subexpression

r7=(a|b)*a
a

8

April 29, 2010 83

Copyright © All Rights Reserved by Yuan-Hao Chang

Extreme Case of Regular Expression
Ln = (a|b)*a(a|b)n-1

0 1
start a a, b

b

2
a, b

a

0 1
start a

b

a, b … n
a, b

(n+1)-state NFA

a

b

2

3

a

b

a

b

…

…
…

…

n

At least 2n-state DFA

The number of
states is reduced

by some state
minimization

algorithm

April 29, 2010 84

Copyright © All Rights Reserved by Yuan-Hao Chang

Complexity of NFA and DFA

Automation Initial time Time to recognize
string x

NFA O(|r|) O(|r|×|x|)
DFA O(|r|2s) O(|x|)

DFA typical case O(|r|3) O(|x|)
DFA worst case O(|r|22|r|) O(|x|)

The time to construct
the parse tree is O(|r|)

|x| = the size of input string x = the length of x
|r| = the size of r

= # of operators in r + # of operands in r

• The NFA for a regular expression r
consists of at most 2|r| states and 4|r|
transitions.

– n ≤ 2|r|
– m ≤ 4|r|

• The time to recognize string x with
NFA is |x| times the size of the NFA’s
transition graph, i.e, O((n+m)|x|) =
O(|r|×|x|).

• Initial time for a DFA = Initial time for
an NFA + time for subset construction

– The key step U=ε-closure(move(T,a))
in the subset construction takes
O(n+m) = O(|r|) to construct a set of
states U from a set of states T.

– There are at most r symbols in the
regular expression r.

– There are s states in the DFA

Time for subset construction = O(|r|×|r|×s)

r symbols s statesTime for one symbol

Avg. case: s ≈ r
Worst case: s ≈ 2|r|

April 29, 2010 85

Copyright © All Rights Reserved by Yuan-Hao Chang

NFA or DFA
• Choose to convert a regular expression to an NFA
or DFA.
– Convert to an NFA when the regular expression is used

for several times.
- E.g., the grep command: Users specify one regular expression to

search one or several files for one pattern.

– Convert to an NFA when the transition table of DFA is
too large to fit in main memory.

– Convert to a DFA when the regular expression is used
frequently.
- E.g., a lexical analyzer that uses each specified regular

expression for many times to search the patterns of tokens.

Design of a Lexical-Analyzer
Generator

Design of a Lexical-Analyzer
Generator

April 29, 2010 87

Copyright © All Rights Reserved by Yuan-Hao Chang

declarations section
%%
translation rules
%%
auxiliary functions

The Architecture of a Lexical Analyzer
• A Lex program is turned into a transition

table and actions, which are used by a
finite-automation simulator.

• Components in the lexical analyzer:
– A transition table for the automation
– The functions that are directly passed to

the output from the Lex program
– The actions from the input Lex program,

which appears as fragments of code to be
invoked by the automation simulator.

lexeme
Input buffer

Automation
simulator

Transition
table

Actions

lexemeBegin forward

Lex
compiler

Lex program
Pattern {actions}

April 29, 2010 88

Copyright © All Rights Reserved by Yuan-Hao Chang

Automation Construction in LexLex
• Steps to construct the automation:

– 1. Take each regular-expression pattern in the Lex program and
convert it to an NFA by using the McNaughton-Yamada-
Thompson algorithm.

– 2. Combine all the NFAs into one by introducing a new start state
with ε-transitions to the start state of each NFA Ni for pattern pi.

ε
N(p1)

ε
N(p2)

ε

N(pn)

…

s0

April 29, 2010 89

Copyright © All Rights Reserved by Yuan-Hao Chang

An Example of an NFA Construction
• String abb matches both the p2

and p3, but we shall consider it
a lexeme for p2.

• String aabbb matches p3.

a { action A1 for pattern p1 }
abb { action A2 for pattern p2 }
a*b+ { action A3 for pattern p3 }

Regular expression in Lex

Match the
longest prefix

Match first
matched rule

1
ε

3
ε

7

ε

0
start

2
a

4
a

5
b

6
b

8
b

a b

a

abb

a*b+

April 29, 2010 90

Copyright © All Rights Reserved by Yuan-Hao Chang

Pattern Matching Based on NFAs
• Pattern matching in NFAs:

– 1. Adopt the “Simulating an NFA”
algorithm to analyze the input string
until there are no next states. (The
algorithm should be adjusted.)

– 2. Then decide the longest prefix:
- Look backwards in the sequence of

sets of states, until a set that includes
one or more accepting states is found.

1) S = ε-closure(s0);
2) c = nextChar();
3) while (c != eof) {
4) S = ε-closure(move(S,c));
5) c = nextChar();
6) }
7) if (S∩F != ø) return “yes”;
8) else return “no”;

“Simulating an NFA” algorithm

0

1

3

7

2

4

7

7 8

a a b a

none

a a*b+
Match input

aaba

S = e-closure(s0);

No next
stage

Return aab as
the lexeme

April 29, 2010 91

Copyright © All Rights Reserved by Yuan-Hao Chang

DFAs for Lexical Analyzers
• Pattern matching in DFAs:

– 1. Conver NFAs to DFAs by the subset
construction.

– 2. Adopt the “Simulating a DFA”
algorithm to analyze the input string
until there are no next states, i.e., ø or
dead state.

– 3. Look backwards in the sequence of
sets of states, until a set that includes
one or more accepting states is found.

• If there are more than one accepting
states in a DFA state, determine the
first pattern whose accepting state is
represented in the Lex program, and
return the matched pattern.

– E.g., The state {6, 8} has two accepting
states abb and a*b+, but only the
former is matched.

0137 247

58

7

8

a

b
aa

68
b

b

b b

b

start

abba*b+ a*b+

a

Subset construction

Match input
abba

0137 247 58 68
No next
stage

a b b a

April 29, 2010 92

Copyright © All Rights Reserved by Yuan-Hao Chang

Implementing the Lookahead Operator
• Lookahead operator / is sometimes necessary.

– When converting the pattern r1/r2 to an NFA, we treat the / as if it were
ε, so we do not actually look for a / on the input.

– If the NFA recognizes a prefix xy of the input buffer as matching this
regular expression, the end occurs when the NFA enters a state s
such that:
- 1. s has an ε-transition on the (imaginary) /,
- 2. There is a path from the start state of the NFA to state s that spells out x.
- 3. There is a path from state s to the accepting state that spells out y.
- 4. x is as long as possible for any xy satisfying conditions 1-3.

IF / \(.* \) {letter}

0 1
start I F

2
ε(/)

3
(

4
)

5
letter

6

any

The lexeme IF is found by scanning backwards to the last
occurrence of state 2, whenever state 6 is entered.

s

x y

Optimization of DFA-Based
Pattern Matchers

Optimization of DFA-Based
Pattern Matchers

April 29, 2010 94

Copyright © All Rights Reserved by Yuan-Hao Chang

Optimize DFA-Based Pattern Matchers

• Three algorithms are widely adopted to optimize
pattern matchers constructed from regular
expressions.
– 1. Converting a regular expression directly to a DFA

- Construct DFA directly from a regular expression. This is useful in
a Lex compiler.

– 2. Minimizing the number of states of a DFA
- Combine states that have the same future behavior.
- The state minimization is with the time complexity O(n log n)

where n is the number of states in the DFA.

– 3. Trading time for space in DFA simulation
- Compact the representations of translation tables

April 29, 2010 95

Copyright © All Rights Reserved by Yuan-Hao Chang

Important States of an NFA
• Important state

– A state of an NFA is an important state if it has a non-ε out-transition.

• When the NFA is constructed from McNaughton-Yamada-
Thompson algorithm,

– Each important state corresponds to a particular operand in the
regular expression.
- Each important state of the NFA corresponds directly to the position in

the regular expression that holds symbols of the alphabet.
– Only the important states in a set T are used when it computes ε-

closure(move(T, a)).
- Because the set of states move(s, a) is nonempty only if state s is

important.
– Two sets of NFA states can be treated as if they were the same set

if they
- 1. Have the same important states, and
- 2. Either both have accepting states or neither does.

April 29, 2010 96

Copyright © All Rights Reserved by Yuan-Hao Chang

Augmented Regular Expression
• The augmented regular expression (r)#

– Give the accepting state for a transition on #
to make the accepting state an important
state.

Syntax tree of (a|b)*abb#

a b

|

1 2

* a

o b

o

4

b

o

5

#

o

6

Cat-node

3

Star-node

Or-node
Position of

the symbol in
(a|b)*abb#

B

1
ε

ε a
C

2
b

Dε

A
start

ε

E

ε

ε

a 3b
5 4

b
F

ε

ε

6
#

April 29, 2010 97

Copyright © All Rights Reserved by Yuan-Hao Chang

Functions Computed from the Syntax Tree
• To construct a DFA from a regular expression, we construct

its syntax tree with four functions:
– nullable(n)

- Is true for a syntex-tree node n iff the subexpression represented by n
has ε in its language. That is, the subexpression can be the null string.

– firstpos(n)
- Is the set of positions (in the subtree rooted at n) that can be the first

symbol of at least one string in the subexpression rooted at n.
– lastpos(n)

- Is the set of positions (in the subtree rooted at n) that can be the last
symbol of at least one string in the subexpression rooted at n.

– followpos(p)
- Is the set of positions q (in the entire syntax tree) that could follows p.

April 29, 2010 98

Copyright © All Rights Reserved by Yuan-Hao Chang

An Example of the Four Functions
• Consider the cat-node n that corresponds to the expression

(a|b)*a
– nullable(n) = false since it ends in an a.

- nullable((a|b)*)=true: only star-node or ε is nullable
– firstpos(n) = {1, 2, 3}

- E.g.,
· The string aa could start from position 1.
· The string ba could start from position 2.
· The string a could start from position 3.

– lastpos(n) = {3}
- E.g., any string match this expression ends

at position 3.
– followpos(1) = {1, 2, 3}

- Consider a string ac.
· c is either a (position 1) or b (position 2) according to (a|b)*.
· c comes from position 3 if a is the last in the string generated by (a|b)*.

a b

|

* a

o

3

Cat-node n

1 2

April 29, 2010 99

Copyright © All Rights Reserved by Yuan-Hao Chang

Rules for Computing the Four Functions

NODE n nullable(n) firstpos(n) lastpos(n)

A leaf labeld ε true
false

nullable(c1)
or
nullable(c2)

nullable(c1) and
nullable(c2)

true

ø
A leaf with position i

ø
{ i }

firstpos(c1) U
firstpos(c2)

A cat-node n = c1 c2

if (nullable(c1))
firstpos(c1) U
firstpos(c2)

else
firstpos(c1)

if (nullable(c2))
lastpos(c1) U
lastpos(c2)

else
lastpos(c2)

{ i }

An or-node n = c1 | c2
lastpos(c1) U
lastpos(c2)

firstpos(c) A star-node n = c* lastpos(c)

a b

|

* a

o b

o

4

b

o

5

#

o

6

3

Syntax tree of (a|b)*abb#
Position: 1 2 3456

1 2{1} {2}{2}{1}

{1,2}{1,2}

{1,2}{1,2}
{3}{3}

{3}{1,2,3}
{4}{4}

{5}{5}
{4}{1,2,3}

{5}{1,2,3}
{6}{6}

{6}{1,2,3}

firstpos lastpos

April 29, 2010 100

Copyright © All Rights Reserved by Yuan-Hao Chang

Rules for Computing the Four Functions
(Cont.)

a b

|

* a

o b

o

4

b

o

5

#

o

6

3

Syntax tree of (a|b)*abb#

1 2{1} {2}{2}{1}

{1,2}{1,2}

{1,2}{1,2}
{3}{3}

{3}{1,2,3}
{4}{4}

{5}{5}

{6}{6}
{4}{1,2,3}

{5}{1,2,3}

{6}{1,2,3}
• Only two ways that a position of a regular

expression can be made to follow another:
– 1. If n is a cat-node with left child c1 and right child

c2, for every position i in lastpos(c1), all positions in
firstpos(c2) are in followpos(i).

– 2. If n is a start-node, and i is a position in
lastpos(n), then all positions in firstpos(n) are in
followpos(i).

NODE
n followpos(n)

1 {1,2,3}
{1,2,3}

{4}
{5}

5 {6}
6 ø

2
3
4

c1 c2

o

lastpos(c1)=
{1,2}

firstpos(c2)
= {3}

followpos(1) = {3}
followpos(2) = {3}

Node
3

|

*

a b

|

1 2

lastpos(*)=
{1,2}

(a|b)*

firstpos(*)=
{1,2}

followpos(1) = {1,2}
followpos(2) = {1,2}

April 29, 2010 101

Copyright © All Rights Reserved by Yuan-Hao Chang

Directed Graph for the Function followpos
• The directed graph for followpos is almost an NFA without

ε-transitions. We can convert it to an NFA by
– Making all positions in firstpos of the root be initial states.
– Labeling each arc from i to j by the symbol at position i.
– Making the position associated with endmarker # be the only

accepting state.

1

2

3 4 5 F

Directed graph for followpos of (a|b)*abb#

Start
state

a

b

a b

a

b
a b b 6

#

NODE n followpos(n)

1 (a) {1,2,3}
{1,2,3}

{4}
{5}

5 (b) {6}
6 (#) ø

2 (b)
3 (a)
4 (b)

April 29, 2010 102

Copyright © All Rights Reserved by Yuan-Hao Chang

Converting a Regular Expression to a DFA Directly
• Algorithm: Construction of a DFA from a regular expression r.
• INPUT: A regular expression r.
• OUTPUT: A DFA D that recognizes L(r).
• METHOD:

– 1. Construct a syntax tree T from the augmented r(#).
– 2. Compute nullable, firstpos, lastpos, and followpos for T.
– 3. Construct Dstates (the set of states of DFA D) and Dtran (the transition function for D).

- The states of D are sets of positions in T.
- The start state of D is firstpos(n0), where n0 is the root node of T.
- The accepting states are those containing the endmarker #.
- Initially, each state is unmarked and a state becomes marked when evaluated.

Initialize Dstates to contain only the unmarked state firstpos(n0), where n0 is the root of syntax tree T for (r)# ;
while (there is an unmarked state S in Dstates) {

mark S;
for (each input symbol a) {

let U be the union of followpos(p) for all p in S that correspond to a;
if (U is not in Dstates) add U as an unmarked state to Dstates;
Dtran[S, a] = U;

}
}

April 29, 2010 103

Copyright © All Rights Reserved by Yuan-Hao Chang

Converting a Regular Expression to a DFA
Directly (Cont.)

• firstpos(n0) = {1, 2, 3} = A
• Transition of A {1, 2, 3}

– Dtran[A, a] = followpos(1) U followpos(3) = {1, 2, 3, 4} = B
– Dtran[A, b] = followpos(2) = {1, 2, 3} = A

• Transition of B {1, 2, 3, 4}
– Dtran[B, a] = followpos(1) U followpos(3) = {1, 2, 3, 4} = B
– Dtran[B, b] = followpos(2) U followpos(4) = {1, 2, 3, 5} = C

• Transition of C {1, 2, 3, 5}
– Dtran[C, a] = followpos(1) U followpos(3) = {1, 2, 3, 4} = B
– Dtran[C, b] = followpos(2) U followpos(5) = {1, 2, 3, 6} = D

• Transition of D {1, 2, 3, 6}
– Dtran[D, a] = followpos(1) U followpos(3) = {1, 2, 3, 4} = B
– Dtran[D, b] = followpos(2) = {1, 2, 3} = A

123 1236
a

a
start

1234

b
b

1235

a

b

a

b

A B C D

DFA
State a b

A B
B
B
B

B
A
C
DC

D A Dtran

DFA of (a|b)*abb#

NODE
n followpos(n)

1 (a) {1,2,3}
{1,2,3}

{4}
{5}

5 (b) {6}
6 (#) ø

2 (b)
3 (a)
4 (b)

Correspond
to a

Correspond
to a

April 29, 2010 104

Copyright © All Rights Reserved by Yuan-Hao Chang

Minimizing the Number of States of a DFA
• There can be many DFAs that recognize the same language.

• Two automata are the same if one can be transformed into the other by
doing nothing more than changing the names of states.

• There is always a unique minimum state DFA for any regular language.
• State A and C are equivalent because they transfer to the same state on

any input. Both A and C behave like state 123.
• State B behaves like state 1234.
• State D behaves like state 1235.
• State E behaves like state 1236.

DFAs of (a|b)*abb#

Minimum-state DFA = {A, C} {B} {D} {E}

April 29, 2010 105

Copyright © All Rights Reserved by Yuan-Hao Chang

Distinguishing States
• State s is distinguishable from state t if there is
some string that distinguishes them.
– String x distinguishes state s from state t if exactly one of

the states reached from s and t by following the path with
label x is an accepting state.

– E.g., string bb distinguishes state A from state B.
- String bb takes

· A to the non-accepting state C.
· B to the accepting state E.

April 29, 2010 106

Copyright © All Rights Reserved by Yuan-Hao Chang

State Minimization for DFA
• State minimization

– Partition the states of a DFA into groups of states that can’t be
distinguished.

– Then merge states of each group into a single state of the minimum-
state DFA.

• State-minimization algorithm
– Maintain a partition, whose groups are sets of states that have not

yet been distinguished.
- Note that any two states from different groups are distinguishable.

– When the partition can’t be refined by breaking any group into
smaller groups, the minimum-state DFA is derived.
- In practice, the initial partition usually consists of two groups: the

nonaccepting states A={s1, s2, …, sk} and accepting states F.
- Then take some input symbol to see whether the input symbol can

distinguish between any states in group A, and split A into groups.

April 29, 2010 107

Copyright © All Rights Reserved by Yuan-Hao Chang

State-Minimization Algorithm for DFA
• Algorithm: Minimizing the number of states of a DFA.
• INPUT: A DFA D with set of states S, input alphabet ∑, start state s0,

and set of accepting states F.

• OUTPUT: A DFA D’ accepting the same language as D and having as
few states as possible.

• METHOD:
– 1. Start with an initial partition Π with two groups, F (the accepting states)

and S-F (the non-accepting states).
– 2. Construct a new partition Πnew.

Let Πnew = Π;
for (each group G of Π) {

partition G into subgroups such that two stats s and t are in the same subgroup iff
for all input symbols a, states s and t have transitions on a to states in the same group of Π;
/* at worst, a state will be in a subgroup by it self */
replace G in Πnew by the set of all subgroups formed;

}

April 29, 2010 108

Copyright © All Rights Reserved by Yuan-Hao Chang

State-Minimization Algorithm for DFA (Cont.)
– 3. If Πnew = Π, let Πfinal = Π. Otherwise repeat step (2) with Πnew in place of Π.
– 4. Choose one state in each group of Πfinal as the representative for that

group. The representatives will be the stats of the minimum-state DFA D’.
- (a) The start state of D’ is the representative of the group containing the start state

of D.
- (b) the accepting states of D’ are the representatives of those groups that contain

an accepting state of D.
· Note that each group contains either only accepting states or only nonaccepting states

because the initial partition separates those into two groups.
- (c) Let s be the representative of some group G of Πfinal, and let the transition of D

from s on input a be to state t. Let r be the representative of t’s group H. Then in
D’, there is a transition from s to r on input a.

· Note that in D, every state in group G must go to some state of group H on input a, or else,
group G would have been split.

s
(G’s rep.)

G

r
(H’s rep.)

H
tDD

a
s

(G’s rep.)
r

(H’s rep.)

DD’’

a

April 29, 2010 109

Copyright © All Rights Reserved by Yuan-Hao Chang

An Example of the DFA State Minimization
• Step 1: Initial partition: {A, B, C, D} {E}
• Step 2 – first iteration with partition {A, B, C, D} {E}

– Group {E} can’t be split because it has only one state.
– Group {A, B, C, D}

- On input a, A, B, C, and D go to the same group {A, B, C, D}.
- On input b, A, B, and C go to the same group {A, B, C, D}, but

D goes to the other group {E}.
Split {A, B, C, D} into {A, B, C} {D}

• Step 2 – second iteration with partition {A, B, C} {D} {E}
– Groups {D} and {E} can’t be split.
– Group {A, B, C}

- On input a, A, B, and C go to the same group {A, B, C}
- On input b, A and C go to the same group {A, B, C}, but B goes

to the other group {D}.
Split {A, B, C} into {A, C} {B}

• Step 2 – third iteration with partition {A, C} {B} {D} {E}
– Groups {B}, {D}, and {E} can’t be split.
– Group {A, C}

- On input a, A and C go to the same group {B}
- On input b, A and C go to the same group {C}

No further split

• Step 3: Πnew = Π, let Πfinal = Π = {A, C} {B} {D} {E}
• Step 4: Choose representatives to construct D’

DFA
State a b

A B
B
B
B

E B C

C
B D
C C
D E

DTran for DFA D

DFA
State a b

A B
B
B

E B A

A
B D
D E

DTran for DFA D’

Let’s pick
A here.

April 29, 2010 110

Copyright © All Rights Reserved by Yuan-Hao Chang

State Minimization in Lexical Analyzer

• Step 1:
Initial partition: {0137, 7} {247} {8, 58} {68} {φ}

– Group all states that recognize a particular
token, and also

– Group those states that do not indicate any
token

• Step 2: Split step
– Split {0137, 7} because they go to different

groups on input a.
– Split {8, 58} because they go to different

groups on input b.

0137 247

58

7

8

a

b
aa

68
b

b

b b

b

start

abba*b+ a*b+

a

Subset construction

Indicate no token a a*b+ abb

Dead
state

- Dead state is to target the missing transitions on a
from states 8, 58, and 68.
- The dead state is dropped so that we treat missing
transitions as a signal to end token recognition.

April 29, 2010 111

Copyright © All Rights Reserved by Yuan-Hao Chang

Trading Time for Space in DFA Simulation
• The transition table is the main memory overhead to

construct a DFA.
– The simplest and fastest way is to use a two-dimensional table

indexed by states and characters.
- E.g., Dtran[state, character]

– A typical lexical analyzer has several hundred states and involves the
ASCII alphabet of 128 input characters.
- The array size consumes less than 1 megabyte.

• In small devices, the transition table should be compacted.
– E.g., Each state represented by a list of transitions ended by a default

state for any input characters not on the list.

April 29, 2010 112

Copyright © All Rights Reserved by Yuan-Hao Chang

Trading Time for Space in DFA Simulation (Cont.)

• Another table compaction method:
– Combine the speed of array access with the compression of lists

with defaults.

default base

qs

next check

r t

a

int nextState(s,a) {
if (check[base[s] + a] = s)

return next[base[s] + a];
else

return nextState(default[s], a);
}

Process as if q were the
current state.

q a

l q

t
qu
… …

Make the next-check arrays short by taking advantage of the
similarities among states.

	Outline
	Lexical Analyzer (Scanner)
	Lexical Analyzer (Cont.)
	Lexical Analyzer (Cont.)
	Lexical Analysis vs. Parsing
	Tokens, Patterns, and Lexemes
	Example of Tokens
	Classes of Tokens
	Attributes of Tokens
	Token Names and Associated Attribute Values
	Lexical Errors
	Error-Recovery Strategies
	The Problem of Recognizing Lexemes
	Two-Buffer Scheme
	Two-Buffer Scheme with Sentinels
	Lookahead Code with Sentinels
	Strings and Languages
	Terms for Parts of Strings
	Operations on Languages
	Operations on Languages (Cont.)
	Regular Expressions
	Induction (歸納) of Regular Expressions
	Induction of Regular Expressions (Cont.)
	Algebraic Laws for Regular Expressions
	Regular Definitions
	Regular Definition for C Languages
	Extensions of Regular Expressions
	Regular Definition with Shorthand
	Patterns for Tokens
	Whitespace
	Patterns and Attribute Values of Tokens
	Transition Diagrams
	Transition Diagrams (Cont.)
	Transition Diagram for relop
	Recognition of Keywords and Identifiers
	Transition Diagrams for Unsigned Numbers and Whitespace
	Transition-Diagram-Based Lexical Analyzer
	Transition Diagrams in Lexical Analysis
	The Combined Transition Diagram
	Lexical-Analyzer Generator Lex
	Structure of Lex Programs
	Use of Lex
	Lex Program for the Tokens
	Lex Program for the Tokens (Cont.)
	Lex Program for the Tokens (Cont.)
	Conflict Resolution in Lex
	The Lookahead Operator
	An Flex Program to Print the File Content
	Finite Automata
	Nondeterministic Finite Automata (NFD)
	Nondeterministic Finite Automata (NFD) (Cont.)
	Acceptance of Input Strings by Automata
	Acceptance of Input Strings by Automata (Cont.)
	Deterministic Finite Automata (DFA)
	Simulating a DFA
	From NFA to DFA that Accepts (a|b)*abb
	Subset Construction
	Subset Construction (Cont.)
	Subset Construction (Cont.)
	Subset Construction (Cont.)
	Algorithm of Subset Construction
	An Example of Subset Construction
	An Example of Subset Construction (Cont.)
	Big-Oh: O()
	Simulation of an NFA
	Efficiency of NFA Simulation
	Efficiency of NFA Simulation (Cont.)
	Construction of an NFA from a Regular Expression
	Basis Rules
	Induction Rules
	Induction Rules (Cont.)
	Properties of the McNaughton-Yamada-Thompson Algorithm
	NFA Construction with McNaughton-Yamada-Thompson (MYT) Algorithm
	NFA Construction with McNaughton-Yamada-Thompson (MYT) Algorithm (Cont.)
	Extreme Case of Regular Expression
	Complexity of NFA and DFA
	NFA or DFA
	The Architecture of a Lexical Analyzer
	Automation Construction in Lex
	An Example of an NFA Construction
	Pattern Matching Based on NFAs
	DFAs for Lexical Analyzers
	Implementing the Lookahead Operator
	Optimize DFA-Based Pattern Matchers
	Important States of an NFA
	Augmented Regular Expression
	Functions Computed from the Syntax Tree
	An Example of the Four Functions
	Rules for Computing the Four Functions
	Rules for Computing the Four Functions (Cont.)
	Directed Graph for the Function followpos
	Converting a Regular Expression to a DFA Directly
	Converting a Regular Expression to a DFA Directly (Cont.)
	Minimizing the Number of States of a DFA
	Distinguishing States
	State Minimization for DFA
	State-Minimization Algorithm for DFA
	State-Minimization Algorithm for DFA (Cont.)
	An Example of the DFA State Minimization
	State Minimization in Lexical Analyzer
	Trading Time for Space in DFA Simulation
	Trading Time for Space in DFA Simulation (Cont.)

