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Outline
• The role of the lexical analyzer
• Input buffering
• Specification of tokens
• Recognition of tokens
• The lexical-analyzer generator Lex
• Finite automata
• From regular expressions to automata
• Design of a lexical-analyzer generator
• Optimization of DFA-based pattern matchers
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Lexical Analyzer (Scanner)
• The main tasks of the lexical analyzer

– Read the input characters of the source program,
– Group them, and
– Produce a sequence of tokens for each lexeme in the 

source program.
- When a lexeme constituting an identifier is found, the lexeme is

put to the symbol table.

• Other tasks of the lexical analyzer
– Strip out comments and whitespace (blank, newline, tab, 

and other characters that separate tokens in the input)
– Correlate error messages generated by the compiler with 

the source program. (e.g., line number for error message)
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Lexical Analyzer (Cont.)
• The parser calls the lexical analyzer that reads 
characters from its input until it can identify the next 
lexeme and produce the next token for the 
compiler.

ParserLexical 
Analyzer getNextToken

token
To semantic 

analysis
Source 
program

Symbol 
Table

1

2
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Lexical Analyzer (Cont.)
• Lexical analyzers are sometimes divided into two 
processes:
– Scanning: 

- Consist of the simple processes (that do not require tokenization 
of the input).

- E.g., deletion of comments, compaction of consecutive 
whitespace characters into one

– Lexical analysis:
- Produce the sequence of tokens as output.
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Lexical Analysis vs. Parsing
• Reasons to separate lexical analysis from syntax 
analysis:
– Simplicity of the design

- A parse that has to deal with comments and whitespace would be 
considerably more complex.

– Compiler efficiency
- A separate lexical analyzer allows to adopt specialized buffering 

techniques to speed up reading input characters.

– Compiler portability
- Input-device-specific peculiarities (特質) can be restricted to the 

lexical analyzer.
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Tokens, Patterns, and Lexemes
• Token

– A token is a pair consisting of a token name and an optional attribute value.
- The token name is an abstract symbol representing a kind of lexical unit (e.g., 

keyword) or a sequence of input characters (e.g., identifier).
- The token names are the input symbols that the parser processes.

• Pattern
– A pattern is a description of the lexeme forms that a token may take.

- In the case of a keyword as a token, the pattern is just the sequence of characters 
that form the keyword.

- For identifiers, the pattern is a more complex structure matched by many string.

• Lexeme
– A lexeme

- Is a sequence of characters in the source program matches the pattern for a token, 
and

- Is identified by the lexical analyzer as an instance of that token.
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Example of Tokens
Token name

(or referred to as token) Informal description Sample lexemes

if characters i, f if

else characters e, l, s, e else

comparison < or > or <= or >= or == 
or != <=, !=

id letter followed by letters 
and digits pi, score, D2

number Any numeric constant 3.12159, 0, 6.02e23

literal Anything but 
surrounded by “ “core dumped”

- We often refer to a token by its token name.
- We generally write token names in boldface.
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Classes of Tokens
• Classes for most tokens:

– One token for one keyword
- The pattern for a keyword  is the same as the keyword itself.

– Tokens for the operators
- Either individually or in classes (e.g., comparison)

– One token representing all identifiers
- E.g., id

– One or more tokens representing constants
- E.g., number for numeric constants, and literal for strings constants

– Tokens for each punctuation symbol
- E.g., left and right parentheses, comma, and semicolon

• E.g., printf(“Total = %d\n”, score);
– printf and score are lexemes matching the pattern for token id.
– “Total = %d\n” is a lexeme matching token literal.
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Attributes of Tokens
• When more than one lexeme can match a pattern, 
the lexical analyzer must provide additional 
information.
– In many cases, the lexical analyzer returns to the parser

- Not only a token name,
- But also an attribute value that describes the lexeme represented 

by the token.

– Assume each token has at most one associated attribute:
- The attribute may have a structure that combines several pieces 

of information.
- E.g., The token id whose attribute is a pointer pointing to the 

symbol table for its corresponding information (e.g., a structure for 
its lexeme, its type, and the location at which it is first found)
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Token Names and Associated Attribute 
Values
• A Fortran statement: E = M * C ** 2 can be written 
as a sequence of pairs (i.e., tokens):

<id, pointer to symbol-table entry for E>
<assign_op>
<id, pointer to symbol-table entry for M>
<mult_op>
<id, pointer to symbol-table entry for C>
<exp_op>
<number, integer value 2>

Token name attribute
Operators, 
punctuation, and 
keywords don’t need 
an attribute value.

In practice, a typical 
compiler stores a 
character string for 
the constant with a 
pointer pointing to the 
string.
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Lexical Errors
• Lexical analyzers are hard to tell source-code 
errors without the aid of other components.
– E.g., fi (a == f(x)) …

The string fi is a transposition of the keyword if or a valid 
lexeme for the token id?

– The parse could help identify a transposition error.
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Error-Recovery Strategies
• When the lexical analyzer is unable to proceed because no 

pattern for tokens matches any prefix of the remaining input, the 
following error-recovery strategies could be adopted:

1. Delete successive characters from the remaining input until the 
lexical analyzer can find a well-formed token. (panic mode recovery)

2. Delete one character from the remaining input.
3. Insert a missing character into the remaining input.
4. Replace a character by another character.
5. Transpose two adjacent characters.

– The simplest strategy is to see whether a prefix of the remaining input 
can be transformed into a valid lexeme by a single transformation. 
(because most lexical errors involve a single character)



Input BufferingInput Buffering
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The Problem of Recognizing Lexemes
• We often have to look one or more characters 
beyond the next lexeme.
– E.g., an identifier can’t be identified until we see a 

character that is not a letter or digit.
– E.g., In C, single-character operators like -, =, or < could 

also be the beginning of a two-character operator like ->, 
==, or <=.

• Two-buffer scheme could handle large lookaheads
safely so as to improve the speed on reading the 
source program.
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Two-Buffer Scheme
• Two buffers reloaded alternately to reduce the amount of overhead 

required to process a single input character.
– E.g., Each buffer is of the same size N, and N is usually the size of a disk 

block (e.g., 4096 bytes). 
- One system read command can read N characters into a buffer.
- If fewer than N characters remain in the input file, then a special character (i.e., 

eof) marks the end of the source file.
– Once the next lexeme is determined, 

- The lexeme is recorded as an attribute value of a token returned to the parser.
- Then, forward is set to the character at its right end, and lexemeBegin is set to the 

character immediately after the lexeme just found.

E = M * eofC * * 2

lexemeBegin
forward

First buffer Second buffer
Mark the beginning of 

the current lexeme
Scan ahead until a pattern match 
is found: “2” should be retracted
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eofeof

• Whenever we advance forward, we make two tests:
– Test the end of the buffer
– Then, determine what character is read (a multiway branch)

• To combine the two tests in one, we can add a sentinel
character (Sentinel is a special character that can’t be part 
of the source program.)

– at the end of each buffer and 
– at the end of the entire input.

Two-Buffer Scheme with Sentinels

E = M * eofC * * 2

lexemeBegin
forward

First buffer Second buffer
Mark the beginning of 

the current lexeme
Scan ahead until a pattern match 
is found: “2” should be retracted

If a long string (> N) is encountered, we 
can treat the long string as a concatenation 
of strings to prevent buffer overflow.
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Lookahead Code with Sentinels

Switch (*forward++) {
case eof:

if (forward is at the end of the first buffer) {
reload secnod buffer;
forward = beginning of second buffer;

}
else if (forward is at end of the second buffer) {

reload first buffer;
forward = beginning of first buffer;

}
else // eof within a buffer marks the end of input
break;

Cases for the other characters
}

Multiway branch:
In practice, a multiway
branch depending on 
the input character 
that is the index of an 
array of addresses. 
Only a jump to the 
indexed address is 
needed for a selected 
case.
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Strings and Languages
• An alphabet (字母) is any finite set of symbols. Typical 

examples are:
– Binary (alphabet): the set {0, 1}
– ASCII (alphabet): important alphabet used in many systems
– Unicode (alphabet): including approximately 100,000 characters

• A string over an alphabet is a finite sequence of symbols 
drawn from that alphabet.

– In language theory, “sentence” and “word” are often used as 
synonyms for “string.”

– |s| is the length of a string s.
- E.g., banana is a string of length six. 
- E.g., ε denotes the empty string whose length is zero.

• A language is any countable set of strings over some fixed 
alphabet.
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Terms for Parts of Strings
• A prefix of string s is any string obtained by removing zero 

or more symbols from the end of s.
– E.g., ban, banana, and ε are prefixes of banana.

• A suffix of string s is any string obtained by removing zero 
or more symbols from the beginning of s.

– E.g., nana, banana, and ε are suffixes of banana.

• A substring of s is obtained by deleting any prefix and suffix 
from s. 

– E.g., banana, nan, and ε are substrings of banana.

• A proper prefix, suffix or substring of a string s doesn’t 
include ε and s.

• A subsequence of string s is any string fromed by deleting 
zero or more characters from s.

– E.g., baan is a subsequence of banana.
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Operations on Languages
Operation Definition and Notation

Union of L and M L U M = {s | s is in L or in M}
Concatenation of L and M LM = {st | s is in L and t is in M}
(Kleene) closure of L
Positive closure of L

i
i LL ∞
=∪= 0

*

i
i LL ∞
=

+ ∪= 1

• E.g., x = dog and y = house
– xy = doghouse

• For any string s,
– εs = sε = s
– s0 = ε
– s1 = s, s2 = ss, s3 = sss, si = si-1s

Concatenation of L
one or more times

Concatenation of L
zero or more times
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Operations on Languages (Cont.)
• E.g., 

– Let L be the set of letters {A, B, …, Z, a, b, …, z} and let 
D be the set if digits {0, 1, …, 9}
- L U D is the set of letters and digits (62 strings of length one)
- LD is the set of 520 strings of length two (one letter and one digit)
- L4 is the set of all 4-letter strings
- L(L U D)* is the set of all strings of letters and digits beginning with 

a letter
- D+ is the set of all strings of one or more digits
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Regular Expressions
• Regular expressions are an important notation for 
specifying lexeme patterns.

• For example:
– If letter_ is established to stand for any letter or the 

underscore, and digit is established to stand for any digit,
then the language of C identifiers is described as

• Two basic rules over some alphabet ∑ :
– ε is a regular expression, and L(ε) is {ε}, the empty string.
– If a is a symbol in the alphabet ∑, then a is regular 

expression and L(a) = {a}.

letter_(letter_ | digit)*

Boldface for regular expression italics for regular symbols
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Induction (歸納) of Regular Expressions
• Suppose r and s are regular expressions denoting languages L(r) 

and L(s), respectively.
– (r)|(s) denotes the language L(r) U L(s)
– (r)(s) denotes the language L(r)L(s)
– (r)* denotes the language (L(r))*

– (r) denotes L(r) we can add additional pairs of parenthesses around 
expressions

• Unnecessary pairs of parentheses can be dropped if we adopt 
the following conventions:

– The unary operator * has the highest precedence and is left associative.
– Concatenation has the second highest precedence and is left associative.
– | has the lowest precedence and is left associative.

E.g., (a)|((b)*(c)) = a|b*c
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Induction of Regular Expressions (Cont.)

• Let the alphabet ∑ = {a, b}
– The regular expression a|b denotes the language {a, b}.
– (a|b)(a|b) denotes {aa, ab, ba, bb}, the language of all 

strings of length two over the alphabet ∑. (= aa|ab|ba|bb)
– a* denotes the language consisting of all strings of zero 

or more a’s. I.e., {ε, a, aa, aaa, …}
– (a|b)* denotes the language consisting of zero or more 

instances of a or b. I.e., all strings of a’s and b’s {ε, a, b, 
aa, ab, ba, bb, aaa, …} (= (a*b*)* )
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Algebraic Laws for Regular Expressions
• A language that can be defined by a regular expression is 

call a regular set.
– If two regular expressions r and s denote the same regular set, then 

r = s. E.g., (a|b) = (b|a)
Law Description

r|s = s|r | is commutative (交換律)
r|(s|t) = (r|s)|t | is associative (結合律)
r(st) = (rs)t Concatenation is associative
r(s|t) = rs|rt; (s|t)r = sr|tr Concatenation distributions (分配律) over |
εr = rε = r ε is the identity for concatenation
r* = (r|ε)* ε is guaranteed in a closure

r** = r* * is idempotent (i.e., applied multiple times 
without changing the result )



April 29, 2010 29

Copyright © All Rights Reserved by Yuan-Hao Chang

Regular Definitions
• If ∑ is an alphabet of basic symbols, then a regular definition

is a sequence of definitions of the form:

where
– Each di is a new symbol that is not in ∑ and not the same as any 

other of the d’s, and
– Each ri is a regular expression over the alphabet ∑ U {d1, d2, …, di-1}.

• By restricting ri to ∑ and the previous defined d’s, 
– The recursive definitions can be avoided, and 
– A regular expression can be constructed for each ri over ∑ alone.

d1 r1
d2 r2

…
dn rn
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Regular Definition for C Languages
• Regulation definition for C’s Identifiers

• Regulation definition for C’s unsigned numbers
(e.g., 5280, 0.01234, 6.3366E4, or 1.89E-4)

letter_ A | B | … | Z | a | b | … | z | _
digit 0 | 1 | … | 9
id letter_ ( letter_ | digit )*

digit
digits
optionalFraction
optionalExponent
number

0 | 1 | … | 9
digit digit*
. digits | ε
( E ( + | - | ε ) digits ) | ε
digits optionalFraction optionalExponent

At least one 
digit must 

follow the dot
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Extensions of Regular Expressions
• Extensions of the regular expression introduced by Kleene:

– One or more instances
- The unary postfix operator ++ represents the positive closure of a regular 

expression and its language.
- i.e., if r is a regular expression, then (r)+ denotes the language (L(r))+.
- Two useful algebraic laws:

· r* = r* | ε
· r+ = rr* = r*r

– Zero or one instance
- The unary postfix operator ? ? means “zero or one occurrence.”
- E.g., r? = r | ε  or L(r?) = L(r) U {ε}
- ? has the same precedence and associativity as * and +

– Character classes (shorthand regular expression)
- A regular expression a1 | a2 | … | an =  [a1a2…an]
- If a1, a2, …, an form a logical sequence (e.g., consecutive uppercase 

letters), then a1 | a2 | … | an =  [a1-an]
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Regular Definition with Shorthand

letter_ A | B | … | Z | a | b | … | z | _
digit 0 | 1 | … | 9
id letter_ ( letter_ | digit )*

letter_ [A-Za-z_]
digit [0-9]
id letter_ ( letter_ | digit )*

digit
digits
optionalFraction
OptionalExponent
number

0 | 1 | … | 9
digit digit*
. digits | ε
( E ( + | - | ε ) digits ) | ε
digits optionalFraction OptionalExponent

digit
digits
number

[0-9]
digit+
digits (. digits)? (E [+-]? digits )?



Recognition of TokensRecognition of Tokens



April 29, 2010 34

Copyright © All Rights Reserved by Yuan-Hao Chang

• The terminals of the grammar (which are if, then, else, relop, id, and 
number) are the names of tokens as far as the lexical analyzer is 
concerned.

Patterns for Tokens

stmt if expr then stmt
|   if expr then stmt else stmt
|   ε

expr term relop term
|   term

term id
|   number

A Grammar for branching 
statements (similar to Pascal)

[0-9]
digit+
digits (. digits)? ( E[+-]? digits )?
[A-Za-z]
letter ( letter | digit )*

if
then
else
< | > | <= | >= | = | <>
Patterns for tokens

digit
digits
number
letter
id
if
then
else
relop

The lexical analyzer recognizes the keywords (i.e., reserved words) if, then, and 
else, as well as lexemes that match the patterns for relop, id, and number.
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Whitespace
• The lexical analyzer also strips out whitespace by 

recognizing the “token” ws defined by:

• Token ws is different from the other tokens in that the 
lexical analyzer does not return it to the parser, but rather 
restarts the lexical analysis from the character following the 
whitespace.

ws ( blank | tab | newline)+
Abstract symbols to 
express ASCII characters 
of the same names.
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Patterns and Attribute Values of Tokens
Lexemes Token Name Attribute Value
Any ws - -

if if -
Then then -
Else else -

Any id id Pointer to table entry
Any number number Pointer to table entry

< relop LT
<= relop LE
= relop EQ
<> relop NE
> relop GT
>= relop GE
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Transition Diagrams
• An intermediate step of a lexical analyzer is to convert 

patterns into stylized flowcharts called transition diagrams. 
– Transition diagrams have a collection of nodes or circles called

states.
- Each state represents a condition that could occur during the process of 

scanning the input looking for a lexeme that matches one of several 
patterns.

- Each edge is directed from one state to another and is labeled by a 
symbol or a set of symbols.

– We assume that each transition diagram is deterministic (at this
stage).
- That is, there is never more than one edge out of a given state with a 

given symbol among its labels.
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Transition Diagrams (Cont.)
• Conventions of transition diagrams

– Accepting states indicate that a lexeme has been found. 
An accepting state is indicated by a double circle.
- Once the accepting state is reached, a token and attribute value

are typically returned to the parser.

– If it is necessary to retract the forward pointer one 
position, we shall place a * near that accepting state.

– The start state is indicated by an edge labeled “start”, 
entering from nowhere.
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Transition Diagram for reloprelop

0 1 2

3

4

5

6 7

8

start < =

>

other
=

>

other

*

*

return (relop, GE)

return (relop, GT)

return (relop, EQ)

=

return (relop, LE)

return (relop, NE)

return (relop, LT)
Retract one character
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Recognition of Keywords and Identifiers

• Keywords are not identifiers, but look like identifiers.

• There are two ways to recognize keywords and identifiers:
– Install the reserved words in the symbol table initially.

- A field of the symbol-table entry indicates that these strings are never ordinary identifiers.
– Create separate transition diagrams for each keyword.

- No character can be the continuation of an keyword.
· E.g., “then” is a keyword, but “thenextvalue” is an identifier.

9 10 11
start letter other

return ( getToken(), installID() )

letter or digit

*
Identify both identifiers and keywords

Get token’s lexeme
Get the pointer to symbol-table 

entry for the found lexeme

start t h e n Nonletter-or-digit *
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Transition Diagrams for Unsigned 
Numbers and Whitespace

12 13 19
start digit *.

14 15
digit E

16 17
+ or - digit

18
other

digit

digit

digit

20 21
E

digit

* *other other

A Transition diagram for unsigned numbers

22 23
start delim other

24

delim

*

A Transition diagram for whitespace

delimiter

digit
digits
number

[0-9]
digit+
digits (. digits)? (E [+-]? digits )?
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Transition-Diagram-Based Lexical Analyzer
• A lexical analyzer can be 

built by a collection of 
transition diagrams.

– A switch based on the current 
state value.

– The code for a state is a switch 
statement or multi-way branch.

relop transition diagram (with C++)

TOKEN* getRelop() {
TOKEN* retToken = new RELOP; //token object
while (1) { // repeat until a return or failure occurs

switch (state) {
case 0: c = nextChar();

if (c == ‘<‘) state = 1;
else if (c == ‘=‘) state = 5;
else if (c == ‘>’) state = 6;
else fail(); // lexeme is not a relop
break;

case 1: …
…
case 8: retract (); 

retToken.attribute = GT; // attribute
return (retToken);

}
}

}

Reset forward
pointer to 

lexemeBegin
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Transition Diagrams in Lexical Analysis
• There are several ways to recognize tokens through 

transition diagrams:
1. Arrange the transition diagrams for each token to be tried 

sequentially. Then, the function fail() resets the pointer forward to 
start the next transition diagram.

– We should use transition diagrams for keywords before using the 
transition diagram for identifiers.

2. Run various transition diagrams in parallel, and take the longest 
prefix of the input that matches any pattern.

– This rule allows us to prefer 
– Identifier “thenext” to keyword “then”, or 
– The operator -> to -.

3. Combine all the transition diagrams into one.
– The combination is easy if no two tokens start with the same character.
– In general, the problem of combining transition diagram for several 

tokens is complex.
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The Combined Transition Diagram

Combine states 
0, 9, 12, and 22 
together



The Lexical-Analyzer 
Generator Lex

The Lexical-Analyzer 
Generator Lex
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Lexical-Analyzer Generator LexLex
• Lex (or Flex, fast Lex) allows users to specify regular 

expressions to describe patterns for tokens.
– Input notation for the Lex tool is the Lex language, and the tool is the 
Lex compiler.

– The Lex compiler 
- Transforms the input patterns into a transition diagram and
- Generates code (lex.yy.c) to simulate this transition diagram.

Lex Compiler 
(e.g., flex)lex.l lex.yy.c

C compiler
(e.g., gcc)lex.yy.c a.out (lexical analyzer)

a.outInput stream Sequence of tokens
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Structure of Lex Programs
• Declarations section

– Include declarations of variables, manifest 
constants (常數清單), e.g., the names of 
tokens, and regular definitions.

• Translation rules
– Each rule has the form: 

- Each pattern is a regular expression that uses 
the regular definitions in the declaration section.

- The actions are fragments of code, typically 
written in C.

• Additional functions
– Hold whatever additional functions used in 

the actions.
– These functions can be compiled separately 

and loaded with the lexical analyzer.

declarations section
%%
translation rules
%% 
auxiliary functions
Structure of a Lex program

The symbol 
to separate 
two sections

Pattern   { Action }
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Use of Lex
• The lexical analyzer created by Lex behaves in 
concert with the parser:
– When the lexical analyzer is called by the parser, it 

begins reading its remaining input until it finds the 
longest prefix matching the pattern Pi.

– Then the lexical analyzer executes the associated action 
Ai.

– Typically, Ai will return to the parser if Pi is not a 
whitespace or comments.

– The lexical analyzer returns a single value (i.e., the token 
name) to the parser, but use the shared integer variable 
(i.e., yylval) to pass additional information about the 
lexeme found.
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Lex Program for the Tokens
%{

/* definitions of manifest constants
LT, LE, EQ, NE, GT, GE,
IF, THEN, ELSE, ID, NUMBER, RELOP */

%}

/* regular definitions */
delim [ \t\n]
ws {delim}+
letter     [A-Za-z]
digit      [0-9] 
id          {letter}({letter}|{digit})*
number {digit}+(\.{digit}+)?(E[+-]?{digit}+)?

%%

{ws}      {/* no action and no return */}
if           {return(IF);}
then      {return{THEN);}
else      {return{ELSE);}

{id}          {yylval = (int) installID(); return(ID);}
{number} {yylval = (int) installNum(); 

return(NUMBER);}
“<“ {yylval = LT; return(RELOP);}
“>“ {yylval = LE; return(RELOP);}
“=“ {yylval = EQ; return(RELOP);}
“<>“ {yylval = NE; return(RELOP);}
“>“ {yylval = GT; return(RELOP);}
“>=“ {yylval = GE; return(RELOP);}

%%

int installID()  { /* function to install the lexeme,
whose first character is pointed
by yytext, and whose length is 
yyleng, into symbol table and 
return a pointer */ }

int installNum() {/* similar to installID, but puts
numerical constants into a
separate table */ }

dot

space

Pass value to 
the parser

Regular expression
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Lex Program for the Tokens (Cont.)
• Declarations section

– Anything between %{ and %} is copied directly to the file lex.yy.c
directly.
- The manifest constants are usually defined by C #define to associate 

unique integer code.
– A sequence of regular definitions

- Curly braces { } are to surround the used regular definitions.
- Parentheses ( ) are grouping metasymbols and don’t stand for 

themselves.
- \. Represents the dot, since . is a metasymbol representing any character.

• Auxiliary function
– Everything in the auxiliary section is copied directly to file lex.yy.c, 

but may be used in the actions.
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Lex Program for the Tokens (Cont.)
• Translation rules

– The action taken when id is matched is threefold:
- Function installID() is called to place the lexeme found in the 

symbol table.
- This function returns a pointer to the symbol table, placed in 

global variable yylval, which is used by the parser.
· This function has two variables that are set automatically:

» yytext is a pointer to the beginning of the lexeme.
» yyleng is the length of the lexeme found.

- The token name ID is return to the parser.
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Conflict Resolution in Lex
• When several prefixes of the input match one or 
more patterns, Lex
– Always prefers a longer prefix.
– Always prefers the pattern listed first in the program if the 

longest possible prefix matches two or more patterns.

• E.g.,
– <= is a single lexeme instead of two lexemes.
– The lexeme then is determined as the keyword then.
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The Lookahead Operator
• The lookahead operator in Lex

– Automatically reads one character ahead of the last character that 
forms the selected lexeme, and 

– Retracts the input when the lexeme is consumed from the input.

• Sometimes we want a certain pattern to be matched to the 
input when it is followed by a certain other characters.

– We use the slash in a pattern to indicate the end of the pattern that 
matches the lexeme.

– What follows / is additional pattern that must be matched before we 
can decide.

– E.g., a Fortran statement: IF(I,J) = 3 (IF is the name of an array)
a Fortran statement: IF(A<(B+C)*D)THEN… (IF is a keyword)

» The keyword IF always followed by a left parenthesis, a right parenthesis, 
and a letter. We can write a Lex rule for the keyword IF like

IF / \( .* \) {letter} .* means any string without a newline
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An Flex Program to Print the File Content
/*** Definition section ***/
%{
/* C code to be copied verbatim */
#include <stdio.h>
%}

/* This tells flex to read only one input file */
%option noyywrap

%%
/*** Rules section ***/

.|\n       {   printf("%s",yytext); }

%%
/*** C Code section ***/
int main(void) {

/* Call the lexer, then quit. */
yylex();
return 0;

}

Declarations section

Translation rules

Auxiliary functions



Finite AutomataFinite Automata
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Finite Automata
• Finite automata formulation is the heart of the 
transition from the input program into a lexical 
analyzer.
– Finite automata are recognizers that say “yes” or “no”

about each possible input string.
– Finite automata consist of two forms:

- Nondeterministic finite automata (NFA):
· No restrictions on the labels of their edges

» A symbol can label several edges out of a state.
» ε is a possible label.

- Deterministic finite automata (DFA):
· Exactly one edge with that symbol leaving that state

– NFA and DFA are usually represented by a transition 
graph.
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Nondeterministic Finite Automata (NFD)
• An NFA consists of 

– A finite set of states S.
– A set of input symbols ∑ (the input alphabet), excluding ε.
– A transition function that gives a set of next states for each state 

among the symbols in ∑ U {ε}. 
– A state s0 from S as the start state (or initial state).
– A subest F of S is distinguished as the accepting states (or final 

states).

• The transition graph to represent NFA
– Nodes are states
– Labeled edges represent the transition functions.

• The transition graph for NFA is similar to a transition 
diagram, except:

– A symbol can label edges of one state to several states.
– An edge could be labeled by ε.
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Nondeterministic Finite Automata (NFD) (Cont.)

Regular expression: (a|b)*abb

0 1
start a b

3

a

b

2
b

The NFA for (a|b)*abb

STATE a b ε
0 {0, 1} {0}

{2}
{3}
ø

ø
1 ø ø
2 ø ø
3 ø ø

Transition table for the NFA

state

Input 
symbol

Value of the transition 
function with the given 
state and input symbol

The advantage of transition table 
is easy to find the transitions on a 
given state and input.
The disadvantage of transition 
table takes a lot of space when 
the input alphabet is large.



April 29, 2010 59

Copyright © All Rights Reserved by Yuan-Hao Chang

Acceptance of Input Strings by Automata
• An NFA accepts input string x if and only if there is some 

path in the transition graph from the start state to one of the 
accepting states, such that the symbols along the path spell 
out x.

0 1
a b

32
b

aabb 0
a

0 0
a b

00
b

0
a

Accepting 
path

Not accepting 
path

The NFA for (a|b)*abb
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Acceptance of Input Strings by Automata (Cont.)

• We use L(A) to stand for the language accepted by 
automation A.
– E.g., 

0

1
start

ε a
2

a

3
b

4

b

ε

The NFA accepting L(aa*|bb*)

String aaa is accepted

0 2
ε a

22
a

1
a

ε is disappeared in 
a concatenation
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Deterministic Finite Automata (DFA)
• DFA is a special case of an NFA where

– There are no moves on input ε, and 
– For each state s and input symbol a, there is exactly one edge 

labeled a out of s. (No curly brace is needed in the entries of the 
transition table.)

• If we use a transition table to represent a DFA, each entry is 
a single state. (In practice, we usually adopt DFA instead of 
NFA for simplicity).

• DFA is a simple, concrete algorithm for recognizing strings, 
while NFA is an abstract algorithm for recognizing strings.

• Each NFA can be converted to a DFA accepting the same 
language.
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Simulating a DFA
• Algorithm: 

– Simulating a DFA

• INPUT:
– An input string x terminated by an end-of-file character eof. A DFA D with 

start state s0, accepting states F, and transition function move.

• OUTPUT:
– Answer “yes” if D accepts x; “no” otherwise.

• METHOD: s = s0;
c = nextChar();
while (c != eof) {

s = move (s,c);
c = nextChar ();

}
if (s is in F) return “yes”;
else return “no”;

Return the next character 
of the input string x.

Move to the next state from 
state s through edge c.
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From NFA to DFA that Accepts (a|b)*abb

0 1
start a b

3

b

2
b

The NFA for (a|b)*abb

a

0 1
start a b

3

a

2
b

The DFA for (a|b)*abb

b

a
a

b

STATE a b ε

0 {0, 1} {0}
{2}
{3}
ø

ø
1 ø ø
2 ø ø
3 ø ø

STATE a b ε

0 1 0
2
3
0

ø
1 1 ø
2 1 ø
3 1 ø

Transition table for the NFA

Transition table for the DFA

move (0, a)



From Regular Expressions 
to Automata

From Regular Expressions 
to Automata
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Subset Construction
• Subset construction is the technique to convert an NFA to a 

DFA.
– Each state of the constructed DFA corresponds to a set of NFA 

states.
– After reading input a1a2…an, the DFA is in that state which 

corresponds to the set of states that the NFA can reach (from its 
start state, following paths labeled a1a2…an).

• The number of DFA states could be exponential in the 
number of NFA states. 

– The maximal number of DFA states is 2n where n is the number of 
states in NFA.

– In pratice, the NFA and DFA have approximately the same number 
of states.
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Subset Construction (Cont.)
• Algorithm:

– The subset construction of a DFA from an NFA

• INPUT:
– An NFA N.

• OUTPUT:
– A DFA D accepting the same language as N.

• METHOD:
– Construct a transition table DtranDtran for D so that D will simulate “in 

parallel” all possible moves that N can make on a given input string.
(Note that the ε-transition problem of N should be solved.)
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Subset Construction (Cont.)
• Operations on NFA states:

– s is a single state of N, while T is a set of states of N.

Operation Description

ε-closure (s) Set of NFA states reachable from NFA state s
on ε-transition alone.

ε-closure (T)
Set of NFA states reachable from some NFA 
state s in set T on ε-transition alone. 

ε-closure (T) = Us in T ε-closure (s)

move (T, a) Set of NFA states to which there is a transition 
on input symbol a from some state s in T.



April 29, 2010 68

Copyright © All Rights Reserved by Yuan-Hao Chang

Subset Construction (Cont.)
• The process of the subset construction:

– Before reading the first input symbol, N can be in any of 
the states of ε-closure (s0), where s0 is the start state.
- Suppose that N can be in set of states T after reading input string x. If it 

next reads input a, then N can immediately go to any of the states in 
move (T, a).

- After reading a, it may make several ε-transitions; thus, N could be in any 
state of ε-closure (move (T, a)).

– The start state of D is ε-closure (s0).
– The accepting states of D are all those sets of N’s states that include 

at least one accepting state of N.
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Algorithm of Subset Construction
• Structure definition:

– Dstates is the set of D’s states.
– Dtran is the transition table.
– move(T, a) is the transition function

Initially, ε-closure (s0) is the only state in Dstates, and it is unmarked.
while ( there is an unmarked state T in Dstates ) {

mark T;
for (each input symbol a) {

U = ε-closure (move (T, a))
if (U is not in Dstates)

add U as an unmarked state to 
Dstates;

Dtran[T, a] = U;
}

}

push all states of T onto stack; // T = move(T, a)
initialize ε-closure(T) to T;
while (stack is not empty) {

pop the top element t off stack;
for (each state u with an edge from t to u labeled ε) 

if (u is not in ε-closure(T) ) {
add u to ε-closure(T);
push u onto stack;

}
}Subset construction

Computing ε-closure(T)

The complexity to process a symbol 
is O(n+m).

n: the number of states in NFA
m: the number of transitions in NFA
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An Example of Subset Construction

1

2
ε

ε a
3

4
b

5ε

0
start ε

6

ε

ε

a
7

b
98

b

10ε

ε
• Alphabet is {a, b}

• The start state A = ε-closure(0) = {0, 1, 2, 4, 7}

• Dtran[A, a] = ε-closure(move(A, a))
= ε-closure({3, 8})
= {1, 2, 3, 4, 6, 7, 8} = B

• Dtran[A, b] = ε-closure(move(A, b))
= ε-closure({5})
= {1, 2, 4, 5, 6, 7} = C

NFA N for (a|b)*abb

NFA State DFA 
State a b

{0, 1, 2, 4, 7} A B
B
B
B

{1, 2, 4, 5, 6, 7, 10} E B C

C
{1, 2, 3, 4, 6, 7, 8} B D

{1, 2, 4, 5, 6, 7} C C
{1, 2, 4, 5, 6, 7, 9} D E

DTran for DFA D
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An Example of Subset Construction (Cont.)

DTran for DFA D

A B
start a b

ED
b

C

b

b
b

a

a

a

a
Result of subset construction 
by converting the NFA N for 

(a|b)*abb

{1, 2, 4, 5, 6, 7}

NFA State DFA 
State a b

{0, 1, 2, 4, 7} A B
B
B
B

{1, 2, 4, 5, 6, 7, 10} E B C

C
{1, 2, 3, 4, 6, 7, 8} B D

{1, 2, 4, 5, 6, 7} C C
{1, 2, 4, 5, 6, 7, 9} D E
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Big-Oh: O()
• Definition

– Given a f(n), the running time is O(g(n)) if there are some 
constants c and n0, such that f(n)≤cg(n) whenever n ≥ n0.

• Example:
– O(n): at most some 

constant times n
– O(1): some constant
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Simulation of an NFA
• Algorithm:

– Simulating an NFA

• INPUT:
– An input string x terminated by an end-of-file character eof.
– An NFA N with start state s0, accepting states F, and transition function 

move.

• OUTPUT:
– Answer “yes” if N accepts x; “no” otherwise.

• METHOD:
– Keep a set of current states S that are

reached from s0 following the path
labeled by the inputs read so far.

1)  S = ε-closure(s0);
2)  c = nextChar();
3) while (c != eof) {
4)      S = ε-closure(move(S,c));
5)      c = nextChar();
6)  }
7) if (S∩F != ø) return “yes”;
8) else return “no”;
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Efficiency of NFA Simulation
• The data structures we need are:

– Two stacks:
- oldStates holds the current set of states (S on the right side of line 

(4))
- newStates holds the next set of states (S on the left side of line(4))

– A boolean array
- alreadyOn indexed by the NFA states is to indicate which states 

are in newStates.
- Array more efficient to search for a given state.

– A two-dimensional array
- move[s, a] holds the transition table of the NFA. Each entry of this 

table points to a set of states and is represented by a linked list.

1)  S = ε-closure(s0);
2)  c = nextChar();
3) while (c != eof) {
4)      S = ε-closure(move(S,c));
5)      c = nextChar();
6)  }
7) if (S∩F != ø) return “yes”;
8) else return “no”;
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9)  addState(s) {
10)      push s onto newStates;
11) alreadyOn[s] = TRUE;
12)      for ( t on move[s, ε] )
13)          if ( !alreadyOn(t) ) 
14)              addState(t);
15) }

1)  S = ε-closure(s0);
2)  c = nextChar();
3) while (c != eof) {
4)      S = ε-closure(move(S,c));
5)      c = nextChar();
6)  }
7) if (S∩F != ø) return “yes”;
8) else return “no”;

Efficiency of NFA Simulation (Cont.)
• Transition graph: n states with m edges (or transitions)

• Initialization:
– Set each entry of alreayOn to FALSE.
– Put each state s in ε-closure(s0) to the oldStage. 

Compute 
ε-closure(s)

16)  for ( s on oldStates) {
17)      for (t on move[s, c] )
18) if ( !alreadyOn[t])
19)              addState(t);
20)      pop s from oldStates;
21) }
22)  for ( s on newStates) {
23)      pop s from newStates;
24)      push s onto oldStates;
25)      alreadyOn[s] = FALSE;
21) }

Implementation of line (4)

At most n
times

At most m
times in total

At most 
called for n

times in total

At most m
times over 

n calls

The complexity to process a character is O(n+m) 
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Construction of an NFA from a Regular 
Expression
• Algorithm:

– The McNaughton-Yamada-Thompson algorithm to convert a 
regular expression to an NFA

• INPUT: 
– A regular expression r over alphabet ∑.

• OUTPUT: 
– An NFA N accepting L(r).

• METHOD: 
– Begin by parsing r into its constituent subxpressions with basis 

rules and inductive rules. 
- 2 basis rules: handle subexpressions with no operators
- 4 inductive rules: construct larger NFAs from the NFAs for the 

subexpression of a given expression.
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Basis Rules
• For expression ε, construct the NFA

• For any subexpression a in ∑, constuct the NFA

f
ε

i
start

f
a

i
start

New state, the 
start state

New state, the 
accepting state

New state, the 
start state

New state, the 
accepting state
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Induction Rules
• Suppose N(s) and N(t) are NFAs for regular expressions s

and t that denote languages L(s) and L(t), respectively. 
– Suppose r = s | t. N(r) accepts L(s) U L(t), and is an NFA for r=s | t.

– Suppose r = st. N(r) accepts L(s)L(t), and is an NFA for r=st.

i
ε N(s)

ε

start f
ε

εN(t)

i N(s) fN(t)
start

The accepting 
state of N(s) and 
the start state of 
N(t) are merged 

together.
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Induction Rules (Cont.)
– Suppose r = s*. N(r) accepts L(s*), and is an NFA for r=s*.

– Suppose r = (s). Then L(r) = L(s), and therefore N(s) = N(r).

N(s)εi
start ε f

ε

ε
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Properties of the McNaughton-Yamada-
Thompson Algorithm
• N(r) has at most twice as many states as there are 
operators and operands in r.
– Each step of the algorithm creates at most two new states.

• N(r) has one start state and one accepting state.
– The accepting state has no outgoing transitions.
– The start state has no incoming transitions.

• Each state of N(r) other than the accepting state has
– Either one outing transition on a symbol in ∑
– Or two outgoing ε-transitions.
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NFA Construction with McNaughton-
Yamada-Thompson (MYT) Algorithm

Construct an NFA for r = (r = (a|ba|b))**abbabb

r1 r2+

r3

a b

( )

r4 *

r5 r6

r7

a

r8

r9

b

r10

r11

b

A parse tree for r 2 a
3

start

subexpression
4 b

5
start

subexpression r1=a

subexpression r2=b

1

2ε a
3

4
b

5ε

6

ε

ε
ε

start

subexpression r3=a|b
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NFA Construction with McNaughton-
Yamada-Thompson (MYT) Algorithm (Cont.)

Construct an NFA for r = (r = (a|ba|b))**abbabb

1

2
ε

ε a
3

4
b

5ε

0
start ε

6

ε

ε

7

ε
subexpression

r5=(a|b)*

1

2
ε

ε a
3

4
b

5ε

0
start ε

6

ε

ε

7

ε
subexpression

r7=(a|b)*a
a

8
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Extreme Case of Regular Expression
Ln = (a|b)*a(a|b)n-1

0 1
start a a, b

b

2
a, b

a

0 1
start a

b

a, b … n
a, b 

(n+1)-state NFA

a

b

2

3

a

b

a

b

…

…
…

…

n

At least 2n-state DFA

The number of 
states is reduced 

by some state 
minimization 

algorithm
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Complexity of NFA and DFA

Automation Initial time Time to recognize 
string x

NFA O( |r| ) O( |r|×|x| )
DFA O( |r|2s ) O( |x| )

DFA typical case O( |r|3 ) O( |x| )
DFA worst case O( |r|22|r| ) O( |x| )

The time to construct 
the parse tree is O( |r| )

|x| = the size of input string x = the length of x
|r| = the size of r

= # of operators in r + # of operands in r

• The NFA for a regular expression r
consists of at most 2|r| states and 4|r| 
transitions. 

– n ≤ 2|r|
– m ≤ 4|r|

• The time to recognize string x with 
NFA is |x| times the size of the NFA’s
transition graph, i.e, O((n+m)|x| ) = 
O( |r|×|x| ).

• Initial time for a DFA = Initial time for 
an NFA + time for subset construction

– The key step U=ε-closure(move(T,a))
in the subset construction takes 
O(n+m) = O(|r|) to construct a set of 
states U from a set of states T.

– There are at most r symbols in the 
regular expression r.

– There are s states in the DFA

Time for subset construction = O(|r|×|r|×s )

r symbols s statesTime for one symbol

Avg. case: s ≈ r
Worst case: s ≈ 2|r|
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NFA or DFA
• Choose to convert a regular expression to an NFA 
or DFA.
– Convert to an NFA when the regular expression is used 

for several times.
- E.g., the grep command: Users specify one regular expression to 

search one or several files for one pattern. 

– Convert to an NFA when the transition table of DFA is 
too large to fit in main memory.

– Convert to a DFA when the regular expression is used 
frequently.
- E.g., a lexical analyzer that uses each specified regular 

expression for many times to search the patterns of tokens.



Design of a Lexical-Analyzer 
Generator

Design of a Lexical-Analyzer 
Generator
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declarations section
%%
translation rules
%% 
auxiliary functions

The Architecture of a Lexical Analyzer
• A Lex program is turned into a transition 

table and actions, which are used by a 
finite-automation simulator.

• Components in the lexical analyzer:
– A transition table for the automation
– The functions that are directly passed to 

the output from the Lex program
– The actions from the input Lex program, 

which appears as fragments of code to be 
invoked by the automation simulator.

lexeme
Input buffer

Automation 
simulator

Transition 
table

----------
Actions

lexemeBegin forward

Lex
compiler

Lex program
Pattern {actions}
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Automation Construction in LexLex
• Steps to construct the automation:

– 1. Take each regular-expression pattern in the Lex program and 
convert it to an NFA by using the McNaughton-Yamada-
Thompson algorithm.

– 2. Combine all the NFAs into one by introducing a new start state 
with ε-transitions to the start state of each NFA Ni for pattern pi.

ε
N(p1)

ε
N(p2)

ε

N(pn)

…

s0
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An Example of an NFA Construction
• String abb matches both the p2

and p3, but we shall consider it 
a lexeme for p2.

• String aabbb matches p3.

a { action A1 for pattern p1 }
abb { action A2 for pattern p2 }
a*b+ { action A3 for pattern p3 }

Regular expression in Lex

Match the 
longest prefix

Match first 
matched rule

1
ε

3
ε

7

ε

0
start

2
a 

4
a 

5
b 

6
b 

8
b 

a b

a

abb

a*b+
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Pattern Matching Based on NFAs
• Pattern matching in NFAs:

– 1. Adopt the “Simulating an NFA”
algorithm to analyze the input string 
until there are no next states. (The 
algorithm should be adjusted.)

– 2. Then decide the longest prefix:
- Look backwards in the sequence of 

sets of states, until a set that includes 
one or more accepting states is found.

1)  S = ε-closure(s0);
2)  c = nextChar();
3) while (c != eof) {
4)      S = ε-closure(move(S,c));
5)      c = nextChar();
6)  }
7) if (S∩F != ø) return “yes”;
8) else return “no”;

“Simulating an NFA” algorithm

0

1

3

7

2

4

7

7 8

a a b a

none

a a*b+
Match input 

aaba

S = e-closure(s0);

No next 
stage

Return aab as 
the lexeme
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DFAs for Lexical Analyzers
• Pattern matching in DFAs:

– 1. Conver NFAs to DFAs by the subset 
construction.

– 2. Adopt the “Simulating a DFA”
algorithm to analyze the input string 
until there are no next states, i.e., ø or 
dead state.

– 3. Look backwards in the sequence of 
sets of states, until a set that includes 
one or more accepting states is found.

• If there are more than one accepting 
states in a DFA state, determine the 
first pattern whose accepting state is 
represented in the Lex program, and 
return the matched pattern. 

– E.g., The state {6, 8} has two accepting 
states abb and a*b+, but only the 
former is matched.

0137 247

58

7

8

a

b
aa

68
b

b

b b

b

start

abba*b+ a*b+

a

Subset construction

Match input 
abba

0137  247  58  68
No next 
stage

a b b a
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Implementing the Lookahead Operator
• Lookahead operator / is sometimes necessary.

– When converting the pattern r1/r2 to an NFA, we treat the / as if it were 
ε, so we do not actually look for a / on the input.

– If the NFA recognizes a prefix xy of the input buffer as matching this 
regular expression, the end occurs when the NFA enters a state s
such that:
- 1. s has an ε-transition on the (imaginary) /, 
- 2. There is a path from the start state of the NFA to state s that spells out x.
- 3. There is a path from state s to the accepting state that spells out y.
- 4. x is as long as possible for any xy satisfying conditions 1-3.

IF / \( .* \) {letter}

0 1
start I F

2
ε(/)

3
(

4
)

5
letter

6

any

The lexeme IF is found by scanning backwards to the last 
occurrence of state 2, whenever state 6 is entered.

s

x y



Optimization of DFA-Based 
Pattern Matchers

Optimization of DFA-Based 
Pattern Matchers
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Optimize DFA-Based Pattern Matchers

• Three algorithms are widely adopted to optimize 
pattern matchers constructed from regular 
expressions.
– 1. Converting a regular expression directly to a DFA

- Construct DFA directly from a regular expression. This is useful in 
a Lex compiler.

– 2. Minimizing the number of states of a DFA
- Combine states that have the same future behavior.
- The state minimization is with the time complexity O(n log n)

where n is the number of states in the DFA.

– 3. Trading time for space in DFA simulation
- Compact the representations of translation tables
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Important States of an NFA
• Important state

– A state of an NFA is an important state if it has a non-ε out-transition.

• When the NFA is constructed from McNaughton-Yamada-
Thompson algorithm,

– Each important state corresponds to a particular operand in the 
regular expression.
- Each important state of the NFA corresponds directly to the position in 

the regular expression that holds symbols of the alphabet.
– Only the important states in a set T are used when it computes ε-

closure(move(T, a)).
- Because the set of states move(s, a) is nonempty only if state s is 

important.
– Two sets of NFA states can be treated as if they were the same set 

if they
- 1. Have the same important states, and
- 2. Either both have accepting states or neither does.
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Augmented Regular Expression
• The augmented regular expression (r)#

– Give the accepting state for a transition on #
to make the accepting state an important 
state.

Syntax tree of (a|b)*abb#

a b

|

1 2

* a

o b

o

4

b

o

5

#

o

6

Cat-node

3

Star-node

Or-node
Position of 

the symbol in 
(a|b)*abb#

B

1
ε

ε a
C

2
b

Dε

A
start

ε

E

ε

ε

a 3b
5 4

b
F

ε

ε

6
#
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Functions Computed from the Syntax Tree
• To construct a DFA from a regular expression, we construct 

its syntax tree with four functions:
– nullable(n)

- Is true for a syntex-tree node n iff the subexpression represented by n
has ε in its language. That is, the subexpression can be the null string.

– firstpos(n)
- Is the set of positions (in the subtree rooted at n) that can be the first 

symbol of at least one string in the subexpression rooted at n.
– lastpos(n)

- Is the set of positions (in the subtree rooted at n) that can be the last 
symbol of at least one string in the subexpression rooted at n.

– followpos(p)
- Is the set of positions q (in the entire syntax tree) that could follows p.



April 29, 2010 98

Copyright © All Rights Reserved by Yuan-Hao Chang

An Example of the Four Functions
• Consider the cat-node n that corresponds to the expression 

(a|b)*a
– nullable(n) = false since it ends in an a. 

- nullable((a|b)*)=true: only star-node or ε is nullable
– firstpos(n) = {1, 2, 3}

- E.g., 
· The string aa could start from position 1.
· The string ba could start from position 2.
· The string a could start from position 3.

– lastpos(n) = {3}
- E.g., any string match this expression ends 

at position 3.
– followpos(1) = {1, 2, 3}

- Consider a string ac. 
· c is either a (position 1) or b (position 2) according to (a|b)*.
· c comes from position 3 if a is the last in the string generated by (a|b)*.

a b

|

* a

o

3

Cat-node n

1 2
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Rules for Computing the Four Functions

NODE n nullable(n) firstpos(n) lastpos(n)

A leaf labeld ε true
false

nullable(c1)
or
nullable(c2)

nullable(c1) and
nullable(c2)

true

ø
A leaf with position i

ø
{ i }

firstpos(c1) U 
firstpos(c2)

A cat-node n = c1 c2

if (nullable(c1))
firstpos(c1) U 
firstpos(c2)

else
firstpos(c1) 

if (nullable(c2))  
lastpos(c1) U 
lastpos(c2)

else
lastpos(c2) 

{ i }

An or-node n = c1 | c2
lastpos(c1) U 
lastpos(c2)

firstpos(c) A star-node n = c* lastpos(c) 

a b

|

* a

o b

o

4

b

o

5

#

o

6

3

Syntax tree of (a|b)*abb#
Position: 1 2   3456

1 2{1} {2}{2}{1}

{1,2}{1,2}

{1,2}{1,2}
{3}{3}

{3}{1,2,3}
{4}{4}

{5}{5}
{4}{1,2,3}

{5}{1,2,3}
{6}{6}

{6}{1,2,3}

firstpos lastpos
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Rules for Computing the Four Functions 
(Cont.)

a b

|

* a

o b

o

4

b

o

5

#

o

6

3

Syntax tree of (a|b)*abb#

1 2{1} {2}{2}{1}

{1,2}{1,2}

{1,2}{1,2}
{3}{3}

{3}{1,2,3}
{4}{4}

{5}{5}

{6}{6}
{4}{1,2,3}

{5}{1,2,3}

{6}{1,2,3}
• Only two ways that a position of a regular 

expression can be made to follow another:
– 1. If n is a cat-node with left child c1 and right child 

c2, for every position i in lastpos(c1), all positions in 
firstpos(c2) are in followpos(i).

– 2. If n is a start-node, and i is a position in 
lastpos(n), then all positions in firstpos(n) are in 
followpos(i).

NODE
n followpos(n)

1 {1,2,3}
{1,2,3}

{4}
{5}

5 {6}
6 ø

2
3
4

c1 c2

o

lastpos(c1)= 
{1,2}

firstpos(c2)
= {3}

followpos(1) = {3}
followpos(2) = {3}

Node 
3

|

*

a b

|

1 2

lastpos(*)= 
{1,2}

(a|b)*

firstpos(*)= 
{1,2}

followpos(1) = {1,2}
followpos(2) = {1,2}
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Directed Graph for the Function followpos
• The directed graph for followpos is almost an NFA without 

ε-transitions. We can convert it to an NFA by
– Making all positions in firstpos of the root be initial states.
– Labeling each arc from i to j by the symbol at position i.
– Making the position associated with endmarker # be the only 

accepting state.

1

2

3 4 5 F

Directed graph for followpos of (a|b)*abb#

Start
state

a

b

a b

a

b
a b b 6

#

NODE n followpos(n)

1 (a) {1,2,3}
{1,2,3}

{4}
{5}

5 (b) {6}
6 (#) ø

2 (b)
3 (a)
4 (b)
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Converting a Regular Expression to a DFA Directly
• Algorithm: Construction of a DFA from a regular expression r.
• INPUT: A regular expression r.
• OUTPUT: A DFA D that recognizes L(r).
• METHOD:

– 1. Construct a syntax tree T from the augmented r(#).
– 2. Compute nullable, firstpos, lastpos, and followpos for T.
– 3. Construct Dstates (the set of states of DFA D) and Dtran (the transition function for D).

- The states of D are sets of positions in T.
- The start state of D is firstpos(n0), where n0 is the root node of T.
- The accepting states are those containing the endmarker #.
- Initially, each state is unmarked and a state becomes marked when evaluated.

Initialize Dstates to contain only the unmarked state firstpos(n0), where n0 is the root of syntax tree T for (r)# ; 
while (there is an unmarked state S in Dstates) {

mark S;
for (each input symbol a) {

let U be the union of followpos(p) for all p in S that correspond to a;
if ( U is not in Dstates ) add U as an unmarked state to Dstates;
Dtran[S, a] = U;

}
}
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Converting a Regular Expression to a DFA 
Directly (Cont.)

• firstpos(n0) = {1, 2, 3} = A
• Transition of A {1, 2, 3}

– Dtran[A, a] = followpos(1) U followpos(3) = {1, 2, 3, 4} = B
– Dtran[A, b] = followpos(2) = {1, 2, 3} = A

• Transition of B {1, 2, 3, 4}
– Dtran[B, a] = followpos(1) U followpos(3) = {1, 2, 3, 4} = B
– Dtran[B, b] = followpos(2) U followpos(4) = {1, 2, 3, 5} = C

• Transition of C {1, 2, 3, 5}
– Dtran[C, a] = followpos(1) U followpos(3) = {1, 2, 3, 4} = B
– Dtran[C, b] = followpos(2) U followpos(5) = {1, 2, 3, 6} = D

• Transition of D {1, 2, 3, 6}
– Dtran[D, a] = followpos(1) U followpos(3) = {1, 2, 3, 4} = B
– Dtran[D, b] = followpos(2) = {1, 2, 3} = A

123 1236
a

a
start

1234

b
b

1235

a

b

a

b

A B C D

DFA 
State a b

A B
B
B
B

B
A
C
DC

D A Dtran

DFA of (a|b)*abb#

NODE
n followpos(n)

1 (a) {1,2,3}
{1,2,3}

{4}
{5}

5 (b) {6}
6 (#) ø

2 (b)
3 (a)
4 (b)

Correspond 
to a

Correspond 
to a
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Minimizing the Number of States of a DFA
• There can be many DFAs that recognize the same language.

• Two automata are the same if one can be transformed into the other by 
doing nothing more than changing the names of states.

• There is always a unique minimum state DFA for any regular language. 
• State A and C are equivalent because they transfer to the same state on 

any input. Both A and C behave like state 123.
• State B behaves like state 1234.
• State D behaves like state 1235.
• State E behaves like state 1236.

DFAs of (a|b)*abb#

Minimum-state DFA = {A, C} {B} {D} {E}
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Distinguishing States
• State s is distinguishable from state t if there is 
some string that distinguishes them.
– String x distinguishes state s from state t if exactly one of 

the states reached from s and t by following the path with 
label x is an accepting state.

– E.g., string bb distinguishes state A from state B.
- String bb takes 

· A to the non-accepting state C.
· B to the accepting state E.
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State Minimization for DFA
• State minimization 

– Partition the states of a DFA into groups of states that can’t be 
distinguished.

– Then merge states of each group into a single state of the minimum-
state DFA.

• State-minimization algorithm
– Maintain a partition, whose groups are sets of states that have not 

yet been distinguished. 
- Note that any two states from different groups are distinguishable.

– When the partition can’t be refined by breaking any group into 
smaller groups, the minimum-state DFA is derived.
- In practice, the initial partition usually consists of two groups: the 

nonaccepting states A={s1, s2, …, sk} and accepting states F. 
- Then take some input symbol to see whether the input symbol can 

distinguish between any states in group A, and split A into groups.
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State-Minimization Algorithm for DFA
• Algorithm: Minimizing the number of states of a DFA.
• INPUT: A DFA D with set of states S, input alphabet ∑, start state s0, 

and set of accepting states F.

• OUTPUT: A DFA D’ accepting the same language as D and having as 
few states as possible.

• METHOD:
– 1. Start with an initial partition Π with two groups, F (the accepting states) 

and S-F (the non-accepting states). 
– 2. Construct a new partition Πnew.

Let Πnew = Π;
for ( each group G of Π ) {

partition G into subgroups such that two stats s and t are in the same subgroup iff
for all input symbols a, states s and t have transitions on a to states in the same group of Π;
/* at worst, a state will be in a subgroup by it self */
replace G in Πnew by the set of all subgroups formed;

}
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State-Minimization Algorithm for DFA (Cont.)
– 3. If Πnew = Π, let Πfinal = Π. Otherwise repeat step (2) with Πnew in place of Π.
– 4. Choose one state in each group of Πfinal as the representative for that 

group. The representatives will be the stats of the minimum-state DFA D’.
- (a) The start state of D’ is the representative of the group containing the start state 

of D.
- (b) the accepting states of D’ are the representatives of those groups that contain 

an accepting state of D.
· Note that each group contains either only accepting states or only nonaccepting states 

because the initial partition separates those into two groups.
- (c) Let s be the representative of some group G of Πfinal, and let the transition of D 

from s on input a be to state t. Let r be the representative of t’s group H. Then in 
D’, there is a transition from s to r on input a.

· Note that in D, every state in group G must go to some state of group H on input a, or else, 
group G would have been split. 

s
(G’s rep.)

G

r 
(H’s rep.)

H
tDD

a
s

(G’s rep.)
r 

(H’s rep.)

DD’’

a
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An Example of the DFA State Minimization
• Step 1: Initial partition: {A, B, C, D} {E}
• Step 2 – first iteration with partition {A, B, C, D} {E}

– Group {E} can’t be split because it has only one state.
– Group {A, B, C, D}

- On input a, A, B, C, and D go to the same group {A, B, C, D}.
- On input b, A, B, and C go to the same group {A, B, C, D}, but 

D goes to the other group {E}.
Split {A, B, C, D} into {A, B, C} {D}

• Step 2 – second iteration with partition {A, B, C} {D} {E}
– Groups {D} and {E} can’t be split.
– Group {A, B, C}

- On input a, A, B, and C go to the same group {A, B, C}
- On input b, A and C go to the same group {A, B, C}, but B goes 

to the other group {D}.
Split {A, B, C} into {A, C} {B}

• Step 2 – third iteration with partition {A, C} {B} {D} {E}
– Groups {B}, {D}, and {E} can’t be split.
– Group {A, C}

- On input a, A and C go to the same group {B}
- On input b, A and C go to the same group {C}

No further split

• Step 3: Πnew = Π, let Πfinal = Π = {A, C} {B} {D} {E}
• Step 4: Choose representatives to construct D’

DFA 
State a b

A B
B
B
B

E B C

C
B D
C C
D E

DTran for DFA D

DFA 
State a b

A B
B
B

E B A

A
B D
D E

DTran for DFA D’

Let’s pick 
A here.
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State Minimization in Lexical Analyzer

• Step 1: 
Initial partition: {0137, 7} {247} {8, 58} {68} {φ}

– Group all states that recognize a particular 
token, and also 

– Group those states that do not indicate any 
token

• Step 2: Split step
– Split {0137, 7} because they go to different 

groups on input a.
– Split {8, 58} because they go to different 

groups on input b.

0137 247

58

7

8

a

b
aa

68
b

b

b b

b

start

abba*b+ a*b+

a

Subset construction

Indicate no token a a*b+ abb

Dead 
state

- Dead state is to target the missing transitions on a 
from states 8, 58, and 68.
- The dead state is dropped so that we treat missing 
transitions as a signal to end token recognition.
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Trading Time for Space in DFA Simulation
• The transition table is the main memory overhead to 

construct a DFA.
– The simplest and fastest way is to use a two-dimensional table

indexed by states and characters. 
- E.g., Dtran[state, character]

– A typical lexical analyzer has several hundred states and involves the 
ASCII alphabet of 128 input characters.
- The array size consumes less than 1 megabyte.

• In small devices, the transition table should be compacted.
– E.g., Each state represented by a list of transitions ended by a default 

state for any input characters not on the list.
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Trading Time for Space in DFA Simulation (Cont.)

• Another table compaction method:
– Combine the speed of array access with the compression of lists 

with defaults.

default base

qs

next check

r t

a

int nextState(s,a) {
if (check[base[s] + a] = s) 

return next[ base[s] + a ];
else

return nextState(default[s], a);
}

Process as if q were the 
current state.

q a

l q

t
qu
… …

Make the next-check arrays short by taking advantage of the 
similarities among states.
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