
Structure–Conforming XML Document Transformation
Based on Graph Homomorphism∗

Tyng–Ruey Chuang
Institute of Information Science

Academia Sinica
Nangang 115, Taipei, Taiwan

Hui–Yin Wu
†

Program in Digital Contents and Technologies
National Chengchi University
Wenshan 116, Taipei, Taiwan

ABSTRACT
We propose a principled method to specify XML document
transformation so that the outcome of a transformation can
be ensured to conform to certain structural constraints as
required by the target XML document type. We view XML
document types as graphs, and model transformations as re-
lations between the two graphs. Starting from this abstrac-
tion, we use and extend graph homomorphism as a formal-
ism for the specifications of transformations between XML
document types. A specification can then be checked to en-
sure whether results from the transformation will always be
structure–conforming.

Categories and Subject Descriptors
I.7.2 [Document and Text Processing]: Document Prepa-
ration—Markup languages; G.2.2 [Discrete Mathemat-
ics]: Graph Theory—Graph labeling ; D.2.4 [Software En-
gineering]: Software/Program Verification—Validation

General Terms
Design, Theory, Verification

Keywords
Document Transformation, Graph Homomorphism, XML

1. INTRODUCTION
In XML document processing, one often faces the problem

of ensuring the correctness of the structure of a program–
generated document. As an example, Figure 1 shows the
structural constraints of two XML document types (named
DocBook Tiny and XHTML Tiny). Each of the two graphs

∗An extended version of this paper is freely available from
the authors’ websites under a Creative Commons License.
†Hui–Yin Wu is also a research student at the Institute of
Information Science, Academia Sinica.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’12, September 4–7, 2012, Paris, France.
Copyright 2012 ACM 978-1-4503-1116-8/12/09 ...$15.00.

show what kinds of elements can appear as the children of
other kinds of elements. If an element of type parent can
have elements of type child as its children, then there is an
edge from node parent to child in the graph.

For the graphs in Figure 1, it is natural for us to find
mappings between nodes that are semantically close. For
example, we may transform orderedlist elements in Doc-
Book Tiny into ol elements in XHTML Tiny, and listitem

elements into li elements. It too seems fitting to map para

elements into p elements. However, such a straightforward
mapping could transform DocBook Tiny documents into ill–
structured XHTML Basic documents. Take the following
DocBook Tiny document fragment as an example.

<orderedlist>

<orderedlist>

<para>A preface here and ... </para>

</orderedlist>

<listitem><para>...A list item</para></listitem>

</orderedlist>

By the proposed straightforward mapping, this structure–
conforming DocBook Tiny document fragment will be trans-
formed into the following XHTML document fragment which
is ill-structured.

<p>A preface here and ... </p>

<p>...A list item</p>

The output is ill–structured because according to the parent–
child constraints for XHTML Tiny element types, ol ele-
ment cannot have ol or p elements as children.

In this paper, we propose to use and extend graph homo-
morphism as a formalism for the specifications of mappings
between XML document types, so that the results can be
ensured to be always structure–conforming.

2. RELATED WORKS
There is a wealth of research on the modeling of XML

document types, and on the techniques and languages for
expressing XML document transformations. Since the late
1990s, there have been many works on using formal lan-
guages for modeling SGML/XML document editing and trans-
formation [2, 4, 6, 7]. This paper continues these efforts by
using graph homomorphisms, a formalism relatively new to
the document engineering community.

article

section

paraorderedlist

emphasis

link

pcdata

listitem

(1)

html

body

p

div

ol

a em

span

pcdata

li

(2)

Figure 1: Parent-child constraints among DocBook Tiny (1) element types and among XHTML Tiny (2)
element types. Double–circled nodes denote types whose elements may appear as leaves in document trees.

Programming languages have been designed and imple-
mented to accommodate XML content models as native data
types [1]. Many of these languages are high–level languages
with expressive type systems to help detect type errors at
compile–time. XML query and transformation languages
such as XPath, XSLT, and XQuery have long been devel-
oped, standardized, and put into use; but these languages do
not have a notion of document types for the input and out-
put documents. Our method models XML document trans-
formation before the transformation itself is programmed,
and is not specific to particular programming languages.

Researchers in the database community have used graph
homomorphism for matching data schema and for match-
ing navigation paths [3]. These works focus on the simi-
larity among graphs; ours is on expressing transformation
using graphs. Some works analyze web applications in order
to verify if they produce valid HTML/XML documents [9].
These works seem to concentrate on the target document
types, but not the source document types.

3. GRAPH HOMOMORPHISM
This section provides a brief introduction to graph ho-

momorphism and some basic graph theory [8]. We use the
notations that g, h, . . . are graphs, Vg is the set of nodes in
graph g, and Eg is the set of edges in graph g. The graphs
are directed and, if not noted otherwise, without multiple
edges. That is, Eg ⊆ Vg × Vg is a relation on Vg. We write
u → v to denote an edge (u, v) ∈ Eg. An edge u → v is
a loop if u = v. A function f : Vg → Vh is a graph ho-
momorphism from graph g to graph h if f(u) → f(v) is an
edge in Eh for all edges u → v in Eg. That is, a graph

homomorphism is a node–to–node function that preserves
edge connectivity. A graph is strongly connected if there
is a path from each node to each other node in the graph.
The strongly connected components (SCCs) of a graph are
its maximal strongly connected subgraphs.

We extend the notion of graph homomorphism by the fol-
lowing. A function f : Vg → Vh is an extended graph homo-
morphism from g to h if, for all edges u→ v in Eg, there is
a path f(u) ; f(v) connected by edges in Eh. That is, an
extended graph homomorphism preserves path connectiv-
ity. One can see that a function f : Vg → Vh is an extended
graph homomorphism from g to h if and only if f is a graph
homomorphism from g to the transitive closure of h.

In the context of XML document transformation, often we
are mapping documents from a particular document type
(the source) to those of another document type (the tar-
get). In this paper, we focus on the parent–child constraints
among element types as imposed by their content models,
using graph homomorphism as a formalism to guide and
specify document transformations. It leads to a general
method for mapping elements types from the source docu-
ment type to those in the target document as the following.

• Produce the source graph g and target graph h re-
spectively from the source and target document types.
Nodes in the graphs are element types. Edges are
parent–child constraints.

• Decompose g and h, respectively, into their SCCs. Find
a graph homomorphism from the condensation of g to
the condensation of h. Note that,

– Each SCC node in the condensation of g must be

article

section

paralistitem, orderedlist

emphasis, link

pcdata

(1)

html

body

pdiv, li, ol

a, em, span

pcdata

(2)

Figure 2: The condensations, and the related
strongly connected components, of the two graphs.

mapped to a SCC node in the condensation of h
(to preserve cycles inside the source SCC);

– One–to–one function is preferred when mapping
SCC nodes in the condensation of g to those in h
(to preserve structural information).

• For each pair of source and target SCCs, find a graph
homomorphism for nodes in the source SCC to those
in the target SCC.

• A loop in the source SCC must be mapped to a loop
in the target SCC.

Figure 2 shows the condensations of the two graphs in
Figure 1. The SCCs in DocBook Tiny (1) are colored in
yellow = {section}, green = {listitem, orderedlist}, and
violet = {emphasis, link}. Those in the XHTML Tiny (2)
are colored in orange = {div, li, ol} and pink = {a, em,
span}. For a graph homomorphism from the condensation
of DocBook Tiny to the condensations of XHTML Tiny, we

use the following mapping f :

f(article) = body

f(yellow) = orange

f(green) = orange

f(para) = p

f(violet) = pink

f(pcdata) = pcdata

It can be verified this is indeed a graph homomorphism. For
the mapping from the yellow SCC to the orange SCC, one
has no choice but to map section to div as node section

forms a loop and div is the only looping node in the target
SCC. The same goes for the mapping from orderedlist to
div. From the above, listitem can only be mapped to div

too. For the mapping from the violet SCC to the pink SCC,
we map emphasis to em, and map link to span instead of a
because both link and span are looping nodes but a is not.

Also, since all documents we are mapping from the Doc-
Book Tiny document type to the XHTML Tiny document
type are tree–shaped, we must make sure that whatever can
appear as leaf elements in the input, will only be mapped
to leaf elements in the output, and that the root element is
mapped to the root element. That is, we will be transform-
ing an XML document tree to a complete XML document
tree, not just to some fragments of a tree.

For leaf nodes in the graph for DocBook Tiny (that is,
para, emphasis, link, and pcdata), indeed they are mapped
to leaf nodes in the graph for XHTML Tiny (that is, p, em,
span, and pcdata). The root node article is mapped to
body. But the root node in the target graph is html, not
body. This is easy to fix in an extended graph homomor-
phism, as there is a path from html to body. That is, we
map the node article to the subgraph consisting of the
edge html→ body.

4. INDUCTIVE TRANSFORMATION
The solution we arrive at in the previous section is not

satisfactory as much information is lost. The element types
orderedlist and listitem are mapped to the element type
div. We also do not get to use element a in the target
graph to express element link in the source. In an extended
graph homomorphism, an edge is mapped to a path (as il-
lustrated by mapping the edge article → section to the
path html → body → div). In this section, we aim to de-
velop refined mappings for element types in which paths in
the target graph are used to connect the parent–and–child
pairs of nodes mapped from the source graph.

In the following, we show we can still map orderedlist

to ol, and listitem to li. Node orderedlist has children
listitem, orderedlist, and para in the source graph. We
map them respectively to li, ol, and p in the target graph.
But in the target graph node ol only has li as its child.
What do we do with ol and p? A solution is to connect
node ol to ol by a path ol → li → ol, and to connect
node ol to p by a path ol→ li→ p. Note that by insisting
nodes in a SCC in the source graph are mapped to nodes in
a SCC in the target, for any edge u→ v in the source SCC,
we are ensured there is a path u ; v in the target SCC.

We use the following notation to describe such a mapping:

orderedlist{@li, @ol, @p} = ol{@li, li/@ol, li/@p}

article = html/body

section = div

para = p
orderedlist{@li, @ol, @p}
= ol{@li, li/@ol, li/@p}

emphasis = em

link{@a, @em, @pcdata}
= a{span/@a, @em, @pcdata}

pcdata = pcdata

listitem = li

Figure 3: A structure–conforming mapping from
DocBook Tiny to XHTML Tiny.

In the above, @element on the left hand side of the equation
is a pattern that matches a node labeled with element (in
the target); on the right hand side, it is the matched node.
The pattern element{. . .} on the left hand side represents
a mapping for the node labeled element (in the source) and
for its transformed children (matched by using patterns in-
side the bracket). The expression element{. . .} on the right
hand side represents the result in the target, which is a node
labeled element. The node’s children are inside the bracket.
The notation p/q expresses a node p with a single child q.
That is, p/q is a subgraph connecting two nodes p and q.
This notation can be easily extended to express a subgraph
consisting of a longer path, such as u1/u2/ . . . /un.

Figure 3 shows a mapping from DocBook Tiny element
types to XHTML Tiny, based on an extended graph homo-
morphism. This mapping is more refined than the one given
at the end of Section 3.

This mapping describes an inductive transformation on
XML document trees. It leads naturally to a bottom–up
transformation of DocBook Tiny documents: It maps leaf
elements in DocBook Tiny to leaf elements in XHTML Tiny,
and it specifies how to convert any (non–leaf) DocBook Tiny
element to an XHTML Tiny element depending on the type
of the element and its converted child elements. It is also
a typed specification; the mappings are expressed in terms
of element types (and their expressions) in the source and
target document types. Further, the specification can be
checked to see if it will always transform documents of the
source type to documents of the target type.

The specifications are checked as the following. For each
node u in the source graph, one first looks into the mapping
equation

vi{ . . . } = yi{ . . . }

that is associated to each node vi to which u→ vi is an edge.
Nodes y1, y2, . . . , yn are in the target graph, and they are u’s
children when u is being transformed. Then, one checks if
each of the nodes yi, 1 ≤ i ≤ n, appears as a pattern @yi in
pattern in the mapping equation associated to node u:

u{ pattern } = x{ expression }

If so, the pattern–matching is exhaustive, and one proceeds
to check if each of the corresponding expressions in expression
leads to an edge or a path from x to yi in the target graph.
In cases where the mapping equation associated to node u
is just u = x, one simply checks if x → yi is an edge in the
target graph.

This method of describing an inductive transformation
based on an extended graph transformation can be further
applied to cases where a node in the source graph is mapped
to multiple nodes in the target graph. This is often neces-
sary when one needs to break a SCC in the source graph into
several subgraphs which are then mapped to different SCCs
in the target graphs. In these scenarios, a node in the source
SCC, depending on its already transformed child nodes, can
be mapped to nodes in different SCC in the target graph.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have proposed a method for transform-

ing XML documents that takes into account both the source
and target document types. We shall end this paper by men-
tioning that our method can be further generalized. Until
now we use only paths in the target graphs as the results
from inductive mappings. Actually we can use any subgraph
in the target graph as an inductive outcome. That is, from
the already transformed child elements, we can assemble any
XML document fragment as the inductive result, as long as
it is a subgraph in the target graph.

6. REFERENCES
[1] V. Benzaken, G. Castagna, and A. Frisch. CDuce: An

XML–centric general-purpose language. In Int’l Conf.
on Functional Programming, pp. 51–63, 2003.

[2] T.–R. Chuang and J.–L. Lin. On modular
transformation of structural content. In ACM Symp.
on Document Engineering, pp. 201–210, 2004.

[3] W. Fan, J. Li, S. Ma, H. Wang, and Y. Wu. Graph
homomorphism revisited for graph matching. Proc. of
the VLDB Endowment, 3:1161–1172, Sept. 2010.

[4] E. Kuikka, P. Leinonen, and M. Penttonen. Towards
automating of document structure transformations. In
ACM Symp. on Document Engineering, pp. 103–110,
2002.

[5] E. Meijer, M. Fokkinga, and R. Paterson. Functional
programming with bananas, lenses, envelopes and
bared wire. In Functional Programming Languages and
Computer Architecture, pp. 124–144, Aug. 1991.

[6] M. Murata. Transformation of documents and
schemas by patterns and contextual conditions. In
Principles of Document Processing, pp. 153–169, 1996.

[7] E. Pietriga, J. Vion–Dury, and V. Quint. VXT: A
visual approach to XML transformations. In ACM
Symp. on Document Engineering, pp. 1–10, 2001.

[8] A. Shapira and N. Alon. Homomorphisms in graph
property testing — a survey. Electronic Colloquium on
Computational Complexity, 12(085), 2005.

[9] R. Stone. Validation of dynamic web pages generated
by an embedded scripting language. Software:
Practice & Experience, 35(13):1259–1274, 2005.

[10] M. Wallace and C. Runciman. Haskell and XML:
Generic combinators or type-based translation? In
Int’l Conference on Functional Programming, pp.
148–159, Sept. 1999.

