Syntax Analyzer — Parser

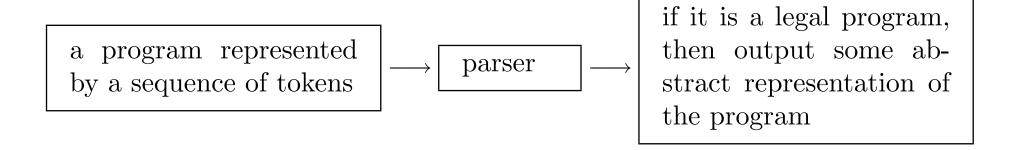
ALSU Textbook Chapter 4.1–4.7

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

Main tasks



- Abstract representations of the input program:
 - abstract-syntax tree + symbol table
 - intermediate code
 - object code
- Context free grammar (CFG) is used to specify the structure of legal programs.
- Deals with errors.
 - Syntactic errors.
 - Static semantic errors .
 - ▶ Example: a variable is not declared or declared twice in a language where a variable must be declared before its usage.

Error handling

Goals:

- Report errors clearly and accurately.
- Recover from errors quickly enough to detect subsequent errors.
- Spend minimal overhead.

Strategies:

- Panic-mode recovery: skip until synchronizing tokens are found.
 - ▶ ";" marks the end of a C-sentence;
 - ▷ "}" closes a C-scope.
- Phrase-level recovery: perform local correction and then continue.
 - ▶ Assume a un-declared variable is declared with the default type "int."
- Error productions: anticipating common errors using grammars.
 - ▶ Example: write a grammar rule for the case when ";" is missing between two var-declarations in C.
- Global correction: choose a minimal sequence of changes to obtain a globally least-cost correction.
 - ▶ A very difficult task!
 - ▶ May have more than one interpretations.
 - \triangleright C example: In "y = *x;", whether an operand is missing in multiplication or the type of x should be pointer?

Context free grammar (CFG)

- **Definitions:** G = (T, N, P, S).
 - \triangleright T: a set of terminals;
 - \triangleright N: a set of nonterminals;
 - ▶ P: productions of the form $A \to \alpha_1 \alpha_2 \cdots \alpha_m$, where $A \in N$ and $\alpha_i \in T \cup N$;
 - \triangleright S: the starting nonterminal where $S \in N$.

Notations:

- terminals: strings with lower-cased English letters and printable characters.
 - \triangleright Examples: $a, b, c, int and int_1$.
- nonterminals: strings started with an upper-cased English letter.
 - \triangleright Examples: A, B, C and Procedure.
- $\alpha, \beta, \gamma, \ldots \in (T \cup N)^*$
 - $\triangleright \alpha, \beta, \gamma$ and ϵ : alpha, beta, gamma and epsilon.

$$\left. \begin{array}{ccc} A & \to & \alpha_1 \\ A & \to & \alpha_2 \end{array} \right\} \equiv A \to \alpha_1 \mid \alpha_2 \mid \alpha_2$$

How does a CFG define a language?

- The language defined by the grammar is the set of strings (sequence of terminals) that can be "derived" from the starting nonterminal.
- How to "derive" something?
 - Start with:
 - \triangleright "current sequence" = the starting nonterminal.
 - Repeat
 - \triangleright find a nonterminal X in the current sequence;
 - ▶ find a production in the grammar with X on the left of the form $X \to \alpha$, where α is ϵ or a sequence of terminals and/or nonterminals;
 - \triangleright create a new "current sequence" in which α replaces X;
 - Until "current sequence" contains no nonterminals;
- We derive either ϵ or a string of terminals.
- This is how we derive a string of the language.

Example

Grammar:

•
$$E \rightarrow int$$

•
$$E \rightarrow E - E$$

•
$$E \rightarrow E / E$$

•
$$E \rightarrow (E)$$

$$\Longrightarrow E - E$$

$$\implies 1 - E$$

$$\implies 1 - E/E$$

$$\implies 1 - E/2$$

$$\implies 1 - 4/2$$

Details:

- The first step was done by choosing the second production.
- The second step was done by choosing the first production.

• • • •

Conventions:

- $\stackrel{+}{\Longrightarrow}$: means "derives in one or more steps";
- *: means "derives in zero or more steps";
- In the above example, we can write $E \stackrel{+}{\Longrightarrow} 1 4/2$.

Language

lacktriangle The language defined by a grammar G is

$$L(G) = \{ w \mid S \stackrel{+}{\Longrightarrow} \omega \},\$$

where S is the starting nonterminal and ω is a sequence of terminals or ϵ .

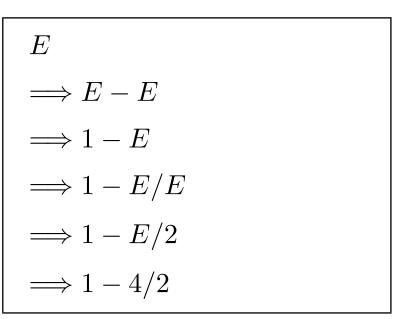
- An element in a language is ϵ or a sequence of terminals in the set defined by the language.
- More terminology:
 - $E \Longrightarrow \cdots \Longrightarrow 1-4/2$ is a derivation of 1-4/2 from E.
 - There are several kinds of derivations that are important:
 - The derivation is a leftmost one if the leftmost nonterminal always gets to be chosen (if we have a choice) to be replaced.
 - ▶ It is a rightmost one if the rightmost nonterminal is replaced all the times.

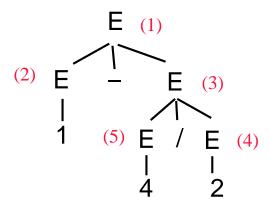
A way to describe derivations

- Construct a derivation or parse tree as follows:
 - start with the starting nonterminal as a single-node tree
 - Repeat
 - \triangleright choose a leaf nonterminal X
 - \triangleright choose a production $X \rightarrow \alpha$
 - ightharpoonup symbols in α become the children of X
 - Until no more leaf nonterminal left
- This is called top-down parsing or expanding of the parse tree.
 - Construct the parse tree starting from the root.
 - Other parsing methods, such as bottom-up, are known.

Top-down parsing

Need to annotate the order of derivation on the nodes.





- It is better to keep a systematic order in parsing for the sake of performance or ease-to-understand.
 - leftmost
 - rightmost

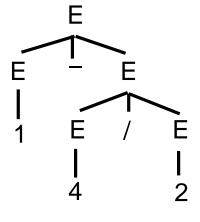
Parse tree examples

Example:

Grammar:

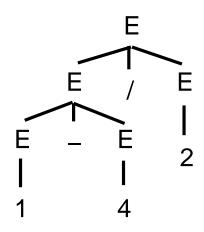
$$E \rightarrow int$$
 $E \rightarrow E - E$
 $E \rightarrow E/E$

 $E \to (E)$



leftmost derivation

- Using 1-4/2 as the input, the left parse tree is derived.
- A string is formed by reading the leaf nodes from left to right, which gives 1-4/2.
- The string 1-4/2 has another parse tree on the right.



rightmost derivation

Some standard notations:

- Given a parse tree and a fixed order (for example leftmost or rightmost)
 we can derive the order of derivation.
- For the "semantic" of the parse tree, we normally "interpret" the meaning in a bottom-up fashion. That is, the one that is derived last will be "serviced" first.

Ambiguous grammar

- If for grammar G and string α , there are
 - more than one leftmost derivation for α , or
 - more than one rightmost derivation for α , or
 - more than one parse tree for α ,

then G is called ambiguous .

- Note: the above three conditions are equivalent in that if one is true, then all three are true.
- Q: How to prove this?
 - ▶ Hint: Any un-annotated tree can be annotated with a leftmost numbering.
- Problems with an ambiguous grammar:
 - Ambiguity can make parsing difficult.
 - Underlying structure is ill-defined.
 - ▶ In the previous example, the precedence is not uniquely defined, e.g., the leftmost parse tree groups 4/2 while the rightmost parse tree groups 1-4, resulting in two different semantics.

How to use CFG

- Breaks down the problem into pieces.
 - Think about a C program:
 - ▶ Declarations: typedef, struct, variables, . . .
 - ▶ Procedures: type-specifier, function name, parameters, function body.
 - ▶ function body: various statements.
 - Example:
 - $ightharpoonup Procedure
 ightarrow TypeDef id OptParams OptDecl {OptStatements}$
 - ightharpoonup TypeDef ightharpoonup integer | char | float | \cdots
 - ightharpoonup OptParams
 ightarrow (ListParams)
 - ightharpoonup ListParams $ightarrow \epsilon \mid NonEmptyParList$
 - $ightharpoonup NonEmptyParList \rightarrow NonEmptyParList, id \mid id$
 - \triangleright · · ·
- One of purposes to write a grammar for a language is for others to understand. It will be nice to break things up into different levels in a top-down easily understandable fashion.

Non-context free grammars

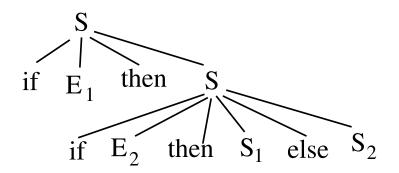
- Some grammar is not CFG, that is, it may be context sensitive.
- Expressive power of grammars (in the order of small to large):
 - Regular expression ≡ FA.
 - Context-free grammar
 - Context-sensitive grammar
 - • •
- $\{\omega c\omega \mid \omega \text{ is a string of } a \text{ and } b\text{'s}\}\$ cannot be expressed by CFG.

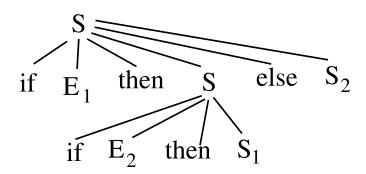
Common grammar problems (CGP)

- A grammar may have some bad "styles" or ambiguity.
- Some common grammar problems (CGP's) are:
 - Ambiguity;
 - Left factor;
 - Left recursion.
- Need to rewrite a grammar G_1 into another grammar G_2 so that G_2 has no CGP's and the two grammars are equivalent and G_2 contains no CGP's.
 - G_1 and G_2 must accept the same set of strings, that is, $L(G_1) = L(G_2)$.
 - The "semantic" of a given string α must stay the same using G_2 .
 - ▶ The "main structure" of the parse tree may need to stay unchanged.

CGP: ambiguity (1/2)

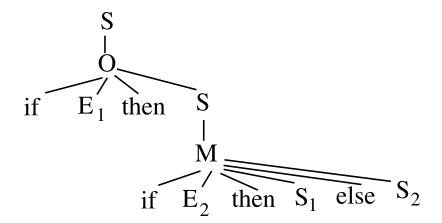
- Sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity.
- Example:
 - \bullet G_1
- \triangleright $S \rightarrow if E then S$
- \triangleright $S \rightarrow if E then S else S$
- \triangleright $S \rightarrow Others$
- Input: if E_1 then if E_2 then S_1 else S_2
- G_1 is ambiguous given the above input.
 - ▶ Have two parse trees.
 - Dangling-else ambiguity.





CGP: ambiguity (2/2)

- Rewrite G_1 into the following:
 - G_2 $S \to M \mid O$ $M \to if \ E \ then \ M \ else \ M \mid Others$ $O \to if \ E \ then \ S$ $O \to if \ E \ then \ M \ else \ O$
 - Only one parse tree for the input if E_1 then if E_2 then S_1 else S_2 using grammar G_2 .
 - Intuition: "else" is matched with the nearest "then."



CGP: left factor

- Left factor: a grammar G has two productions whose right-hand-sides have a common prefix.
 - ▶ Have left-factors.
 - ▶ Potentially difficult to parse.
- **Example:** $S \rightarrow (S) \mid ()$
- In this example, the common prefix is "(".
- This problem can be solved by using the left-factoring trick.
 - $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$
 - Transform to:

$$\triangleright A \rightarrow \alpha A'$$

$$\triangleright A' \rightarrow \beta_1 \mid \beta_2$$

- Example:
 - $\tilde{S} \rightarrow (S) \mid ()$
 - Transform to

$$\triangleright S \rightarrow (S')$$

$$\triangleright S' \rightarrow S) \mid)$$

Algorithm for left-factoring

- Input: context free grammar G
- ullet Output: equivalent | left-factored | context-free grammar G'
- for each nonterminal A do
 - find the longest non- ϵ prefix α that is common to right-hand sides of two or more productions;
 - replace

$$A \to \alpha\beta_1 \mid \cdots \mid \alpha\beta_n \mid \gamma_1 \mid \cdots \mid \gamma_m$$

with

$$A \to \alpha A' \mid \gamma_1 \mid \dots \mid \gamma_m$$

$$A' \to \beta_1 \mid \dots \mid \beta_n$$

- repeat the above step until the grammar has no two productions with a common prefix;
- Example:
 - $\tilde{S} \rightarrow aaWaa \mid aaaa \mid aaTcc \mid bb$
 - Transform to

CGP: left recursion

Definitions:

 \bullet recursive grammar: a grammar is recursive if this grammar contains a nonterminal X such that

$$X \stackrel{+}{\Longrightarrow} \alpha X \beta$$
.

- G is left-recursive if $X \stackrel{+}{\Longrightarrow} X\beta$.
- G is immediately left-recursive if $X \Longrightarrow X\beta$.
- Why left recursion is bad?
 - Potentially difficult to parse if you read input from left to right.
 - Difficult to know when recursion should be stopped.

Example of removing immediate left-recursion

Example:

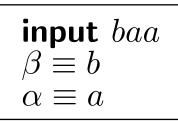
- Grammar $G: A \to A\alpha \mid \beta$, where β does not start with A
- Revised grammar G':

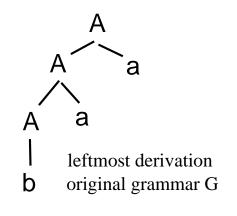
$$A \to \beta A'$$

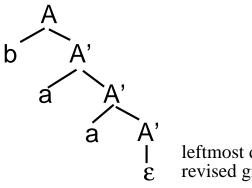
$$A' \to \alpha A' \mid \epsilon$$

• The above two grammars are equivalent. That is $L(G) \equiv L(G')$.

Example:







revised grammar G'

Rule for removing immediate left-recursion

- Both grammars recognize the same string, but G' is not left-recursive.
- However, *G* is clear and intuitive.
- General rule for removing immediately left-recursion:
 - Replace $A \to A\alpha_1 \mid \cdots \mid A\alpha_m \mid \beta_1 \mid \cdots \mid \beta_n$
 - with
 - $A \to \beta_1 A' \mid \dots \mid \beta_n A'$ $A' \to \alpha_1 A' \mid \dots \mid \alpha_m A' \mid \epsilon$
- This rule does not work if $\alpha_i = \epsilon$ for some i.
 - This is called a direct cycle in a grammar.
- May need to worry about whether the semantics are equivalent between the original grammar and the transformed grammar.

Algorithm 4.19

■ Algorithm 4.19 systematically eliminates left recursion and works only if the input grammar has no cycles or ϵ -productions.

- \triangleright Cycle: $A \stackrel{+}{\Longrightarrow} A$
- \triangleright ϵ -production: $A \rightarrow \epsilon$
- \triangleright Can remove cycles and all but one ϵ -production using other algorithms.
- Input: grammar G without cycles and ϵ -productions.
- Output: An equivalent grammar without left recursion.
- Number the nonterminals in some order A_1,A_2,\ldots,A_n
- for i=1 to n do
 - for j=1 to i-1 do
 - ▶ replace $A_i \to A_j \gamma$ with $A_i \to \delta_1 \gamma \mid \cdots \mid \delta_k \gamma$ where $A_j \to \delta_1 \mid \cdots \mid \delta_k$ are all the current A_j -productions.
 - Eliminate immediate left-recursion for A_i
 - \triangleright New nonterminals generated above are numbered A_{i+n}

Algorithm 4.19 — Discussions

Intuition:

- Consider only the productions where the leftmost item on the right hand side are nonterminals.
- If it is always the case that

$$ightharpoonup A_i \stackrel{+}{\Longrightarrow} A_j \alpha \text{ implies } i < j, \text{ then } i$$

it is not possible to have left-recursion.

- Why cycles are not allowed?
 - For the procedure of removing immediate left-recursion.
- Why ϵ -productions are not allowed?
 - Inside the loop, when $A_j \to \epsilon$, that is some $\delta_g = \epsilon$, and the prefix of γ is some A_k where k < i, it generates $A_i \to A_k$, k < i.
- Time and space complexities:
 - The size may be blowed up exponentially.
 - Works well in real cases.

Trace an instance of Algorithm 4.19

- After each i-loop, only productions of the form $A_i \to A_k \gamma$, i < k remain.
- i=1
 - allow $A_1 \to A_k \alpha$, $\forall k$ before removing immediate left-recursion
 - remove immediate left-recursion for A_1
- i=2
 - j=1: replace $A_2 \to A_1 \gamma$ by $A_2 \to (A_{k_1}\alpha_1 \mid \cdots \mid A_{k_p}\alpha_p) \gamma$, where $A_1 \to (A_{k_1}\alpha_1 \mid \cdots \mid A_{k_p}\alpha_p)$ and $k_j > 1 \ \forall k_j$
 - remove immediate left-recursion for A_2
- i = 3
 - j=1: replace $A_3 \to A_1 \gamma_1$
 - j=2: replace $A_3 \rightarrow A_2 \gamma_2$
 - remove immediate left-recursion for A_3
- . . .

Example

- Original Grammar:
 - (1) $S \to Aa \mid b$
 - (2) $A \rightarrow Ac \mid Sd \mid e$
- Ordering of nonterminals: $S \equiv A_1$ and $A \equiv A_2$.
- i=1
 - ullet do nothing as there is no immediate left-recursion for S
- i=2
 - replace $A \to Sd$ by $A \to Aad \mid bd$
 - hence (2) becomes $A \rightarrow Ac \mid Aad \mid bd \mid e$
 - after removing immediate left-recursion:
 - $ightharpoonup A
 ightharpoonup bdA' \mid eA'$
 - $ightharpoonup A'
 ightharpoonup cA' \mid adA' \mid \epsilon$
- Resulting grammar:
 - $\triangleright S \rightarrow Aa \mid b$
 - $\triangleright A \rightarrow bdA' \mid eA'$
 - $ightharpoonup A'
 ightharpoonup cA' \mid adA' \mid \epsilon$

Left-factoring and left-recursion removal

Original grammar:

$$S \rightarrow (S) \mid SS \mid ()$$

- To remove immediate left-recursion, we have
 - $S \rightarrow (S)S' \mid ()S'$
 - $S' \rightarrow SS' \mid \epsilon$
- To do left-factoring, we have
 - $S \rightarrow (S'')$
 - $S'' \rightarrow S)S' \mid S'$
 - $S' \rightarrow SS' \mid \epsilon$

Top-down parsing

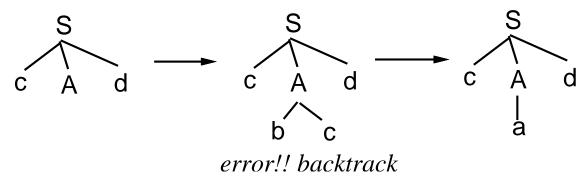
- There are $O(n^3)$ -time algorithms to parse a language defined by CFG, where n is the number of input tokens.
- For practical purpose, we need faster algorithms. Here we make restrictions to CFG so that we can design O(n)-time algorithms.
- Recursive-descent parsing : top-down parsing that allows backtracking.
 - Top-down parsing naturally corresponds to leftmost derivation.
 - Attempt to find a leftmost derivation for an input string.
 - Try out all possibilities, that is, do an exhaustive search to find a parse tree that parses the input.

Example for recursive-descent parsing

$$S \to cAd$$

$$A \to bc \mid a$$

Input: cad



- Problems with the above approach:
 - still too slow!
 - want to select a derivation without ever causing backtracking!
 - > Predictive parser: a recursive-descent parser needing no backtracking.

Predictive parser — (1/2)

- Goal: Find a rich class of grammars that can be parsed using predictive parsers.
- The class of LL(1) grammars [Lewis & Stearns 1968] can be parsed by a predictive parser in O(n) time.
 - First "L": scan the input from left-to-right.
 - Second "L": find a leftmost derivation.
 - Last "(1)": allow one lookahead token!
- Based on the current lookahead symbol, pick a derivation when there are multiple choices.
 - Using a STACK during implementation to avoid recursion.
 - Build a PARSING TABLE T, using the symbol X on the top of STACK and the lookahead symbol s as indexes, to decide the production to be used.
 - \triangleright If X is a terminal, then X = s. Input s is matched.
 - ▶ If X is a nonterminal, then T(X, s) tells you the production to be used in the next derivation.

Predictive parser — (2/2)

- How a predictive parser works:
 - start by pushing the starting nonterminal into the STACK and calling the scanner to get the first token.

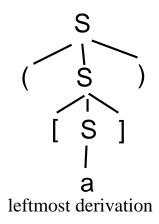
LOOP: if top-of-STACK is a nonterminal, then

- ▶ use the current token and the PARSING TABLE to choose a production
- ▶ pop the nonterminal from the STACK
- push the above production's right-hand-side to the STACK from right to left
- **▶** GOTO LOOP.
- if top-of-STACK is a terminal and matches the current token, then
 - ▶ pop STACK and ask scanner to provide the next token
 - ▶ GOTO LOOP.
- if STACK is empty and there is no more input, then ACCEPT!
- If none of the above succeed, then FAIL!
 - ▶ STACK is empty and there is input left.
 - ▶ top-of-STACK is a terminal, but does not match the current token
 - ▶ top-of-STACK is a nonterminal, but the corresponding PARSING TA-BLE entry is ERROR!

Example for parsing an LL(1) grammar

• grammar: $S \rightarrow a \mid (S) \mid [S]$ input: ([a])

STACK	INPUT	ACTION
\overline{S}	([a])	pop, push " (S) "
$\stackrel{)}{S}($	([a])	pop, match with input
)S	[a])	pop, push " $[S]$ "
)]S[[a])	pop, match with input
)]S	a])	pop, push " a "
)]a	a])	pop, match with input
)]])	pop, match with input
		pop, match with input
	·	accept



 Use the current input token to decide which production to derive from the top-of-STACK nonterminal.

About LL(1) — (1/2)

- It is not always possible to build a predictive parser given a CFG; It works only if the CFG is LL(1)!
 - LL(1) is a proper subset of CFG.
- For example, the following grammar is not LL(1), but is LL(2).
- Grammar: $S \rightarrow (S) \mid [S] \mid () \mid [$ Try to parse the input ().

STACK INPUT ACTION S () pop, but use which production?

- In this example, we need 2-token look-ahead.
 - If the next token is), push "()" from right to left.
 - If the next token is (, push "(S)" from right to left.

About LL(1) — (2/2)

- lacksquare A grammar is not LL(1) if it
 - is ambiguous,
 - is left-recursive, or
 - has left-factors.
- However, grammars that are not ambiguous, are not left-recursive and have no left-factors may still not be LL(1).
 - Q: Any examples?
- Two questions:
 - How to tell whether a grammar G is LL(1)?
 - How to build the PARSING TABLE if it is LL(1)?

Definition of LL(1) grammars

- To see if a grammar is LL(1), we need to compute its FIRST and FOLLOW sets, which are used to build its parsing table.
- FIRST sets:
 - Definition: let α be a sequence of terminals and/or nonterminals or ϵ
 - ▶ FIRST(α) is the set of terminals that begin the strings derivable from α ;
 - $\triangleright \ \epsilon \in FIRST(\alpha)$ if and only if α can derive ϵ .
- FIRST $(\alpha) = \{t \mid (t \text{ is a terminal and } \alpha \stackrel{*}{\Longrightarrow} t\beta) \text{ or } (t = \epsilon \text{ and } \alpha \stackrel{*}{\Longrightarrow} \epsilon)\}$

How to compute FIRST(X)? (1/2)

- X is a terminal:
 - $FIRST(X) = \{X\}$
- lacksquare X is ϵ :
 - FIRST $(X) = \{\epsilon\}$
- ullet X is a nonterminal: must check all productions with X on the left-hand side.
- lacksquare That is, for all $X o Y_1 Y_2 \cdots Y_k$ perform the following steps:
 - $FIRST(X) = \overline{FIRST(Y_1) \{\epsilon\}};$
 - if $\epsilon \in \mathsf{FIRST}(Y_1)$, then
 - \triangleright put FIRST $(Y_2) \{\epsilon\}$ into FIRST(X);
 - if $\epsilon \in \mathsf{FIRST}(Y_1) \cap \mathsf{FIRST}(Y_2)$, then
 - \triangleright put FIRST $(Y_3) \{\epsilon\}$ into FIRST(X);
 - • •
 - if $\epsilon \in \cap_{i=1}^{k-1} \mathsf{FIRST}(Y_i)$, then
 - ightharpoonup put $FIRST(Y_k) \{\epsilon\}$ into FIRST(X);
 - if $\epsilon \in \bigcap_{i=1}^k \mathsf{FIRST}(Y_i)$, then
 - \triangleright put ϵ into FIRST(X).

How to compute FIRST(X)? (2/2)

- Algorithm to compute FIRST's for all non-terminals.
 - compute FIRST's for ϵ and all terminals;
 - initialize FIRST's for all non-terminals to ∅;
 - Repeat

for all nonterminals X do

- \triangleright apply the steps to compute FIRST(X)
- Until no items can be added to any FIRST set;
- What to do when recursive calls are encountered?
 - Types of recursive calls: direct or indirect recursive calls.
 - Actions: do not go further.
 - ▶ why?
- The time complexity of this algorithm.
 - at least one item, terminal or ϵ , is added to some FIRST set in an iteration:
 - ightharpoonup maximum number of items in all FIRST sets are $(|T|+1)\cdot |N|$, where T is the set of terminals and N is the set of nonterminals.
 - Each iteration takes O(|N| + |T|) time.
 - $O(|N| \cdot |T| \cdot (|N| + |T|))$.

Example for computing FIRST(X)

Start with computing FIRST for the last production and walk your way up.

Grammar

$$E \to E'T$$

$$E' \to -TE' \mid \epsilon$$

$$T \to FT'$$

$$T' \rightarrow / FT' \mid \epsilon$$

$$F \rightarrow int \mid (E)$$

$$FIRST(F) = \{int, (\}$$

$$\mathsf{FIRST}(T') = \{/, \epsilon\}$$

$$FIRST(T) = \{int, (\},$$

since $\epsilon \notin \mathsf{FIRST}(F)$, that's all.

$$\mathsf{FIRST}(E') = \{-, \epsilon\}$$

$$\mathsf{FIRST}(E) = \{-, int, (\},$$
 since $\epsilon \in \mathsf{FIRST}(E').$

How to compute FIRST(α)?

- To build a parsing table, we need FIRST(α) for all α such that $X \to \alpha$ is a production in the grammar.
 - Need to compute FIRST(X) for each nonterminal X first.
- Let $\alpha = X_1 X_2 \cdots X_n$. Perform the following steps in sequence:
 - $FIRST(\alpha) = FIRST(X_1) \{\epsilon\};$
 - if $\epsilon \in \mathsf{FIRST}(X_1)$, then
 - \triangleright put FIRST $(X_2) \{\epsilon\}$ into FIRST (α) ;
 - if $\epsilon \in \mathsf{FIRST}(X_1) \cap \mathsf{FIRST}(X_2)$, then
 - \triangleright put FIRST $(X_3) \{\epsilon\}$ into FIRST (α) ;
 - • •
 - if $\epsilon \in \bigcap_{i=1}^{n-1} \mathsf{FIRST}(X_i)$, then

 $\mathsf{put} \; \mathsf{FIRST}(X_n) \{\epsilon\} \; \mathsf{into} \; \mathsf{FIRST}(\alpha);$
 - if $\epsilon \in \bigcap_{i=1}^n \mathsf{FIRST}(X_i)$, then • $\mathsf{put}\ \{\epsilon\}\ \mathsf{into}\ \mathsf{FIRST}(\alpha)$.
- What to do when recursive calls are encountered?
- What are the time and space complexities?

Example for computing $FIRST(\alpha)$

Grammar

$$E \to E'T$$

$$E' \rightarrow -TE' \mid \epsilon$$

$$T \to FT'$$

$$T' \to /FT' \mid \epsilon$$

$$F \rightarrow int \mid (E)$$

$$FIRST(F) = \{int, (\}$$

$$FIRST(T') = \{/, \epsilon\}$$

$$FIRST(T) = \{int, (\}$$

$$FIRST(E') = \{-, \epsilon\}$$

$$FIRST(E) = \{-, int, (\}$$

$$FIRST(E'T) = \{-, int, (\}\}$$

$$FIRST(-TE') = \{-\}$$

$$FIRST(\epsilon) = \{\epsilon\}$$

$$FIRST(FT') = \{int, (\}$$

$$FIRST(/FT') = \{/\}$$

$$FIRST(\epsilon) = \{\epsilon\}$$

$$FIRST(int) = \{int\}$$

$$FIRST((E)) = \{(\}$$

- FIRST(T'E') =
 - $\triangleright (FIRST(T') \{\epsilon\}) \cup$
 - $\triangleright (FIRST(E') \{\epsilon\}) \cup$
 - $\triangleright \{\epsilon\}$

Why do we need $FIRST(\alpha)$?

- ullet During parsing, suppose top-of-STACK is a nonterminal A and there are several choices
 - $A \rightarrow \alpha_1$
 - $A \rightarrow \alpha_2$
 - • •
 - $A \to \alpha_k$

for derivation, and the current lookahead token is a

- If $a \in \mathsf{FIRST}(\alpha_i)$, then pick $A \to \alpha_i$ for derivation, pop, and then push α_i .
- If a is in several FIRST (α_i) 's, then the grammar is not LL(1).
- Question: if a is not in any FIRST (α_i) , does this mean the input stream cannot be accepted?
 - Maybe not!
 - What happen if ϵ is in some FIRST (α_i) ?

FOLLOW sets

- Assume there is a special EOF symbol "\$" ends every input.
- Add a new terminal "\$".
- Definition: for a nonterminal X, $\mathsf{FOLLOW}(X)$ is the set of terminals that can appear immediately to the right of X in some partial derivation.
 - That is, $S \stackrel{+}{\Longrightarrow} \alpha_1 X t \alpha_2$, where t is a terminal.
- If X can be the rightmost symbol in a derivation, then \$ is in FOLLOW(X).
- FOLLOW $(X) = \{t \mid (t \text{ is a terminal and } S \xrightarrow{+} \circ_{V} Y t \circ_{V}\} \text{ or } (t \text{ is \mathfrak{S} and } S \xrightarrow{+} \circ_{V} Y)\}$

 $\{t \mid (t \text{ is a terminal and } S \stackrel{+}{\Longrightarrow} \alpha_1 X t \alpha_2) \text{ or } (t \text{ is \$ and } S \stackrel{+}{\Longrightarrow} \alpha X)\}.$

How to compute FOLLOW(X)?

Initialization:

- If X is the starting nonterminal, initial value of FOLLOW(X) is $\{\$\}$.
- If X is not the starting nonterminal, initial value of FOLLOW(X) is \emptyset .

Repeat

for all nonterminals X do

- ullet Find the productions with X on the right-hand-side.
- for each production of the form $Y \to \alpha X \beta$, put $\mathsf{FIRST}(\beta) \{\epsilon\}$ into $\mathsf{FOLLOW}(X)$.
- if $\epsilon \in \mathsf{FIRST}(\beta)$, then put $\mathsf{FOLLOW}(Y)$ into $\mathsf{FOLLOW}(X)$.
- for each production of the form $Y \to \alpha X$, put FOLLOW(Y) into FOLLOW(X).

until nothing can be added to any FOLLOW set.

Questions:

- What to do when recursive calls are encountered?
- What are the time and space complexities?

Examples for FIRST's and FOLLOW's

Grammar

- $S \rightarrow Bc \mid DB$
- $B \rightarrow ab \mid cS$
- $D \rightarrow d \mid \epsilon$

α	$FIRST(\alpha)$	FOLLOW(lpha)
\overline{D}	$\{d,\epsilon\}$	$\{a,c\}$
B	$\{a,c\}$	$\{c,\$\}$
S	$\{a,c,d\}$	$\{c,\$\}$
Bc	$\{a,c\}$	
DB	$\{d,a,c\}$	
ab	$\{a\}$	
cS	$\{c\}$	
d	$\{d\}$	
ϵ	$\{\epsilon\}$	

Why do we need FOLLOW sets?

- Note FOLLOW(S) always includes \$.
- Situation:
 - During parsing, the top-of-STACK is a nonterminal X and the lookahead symbol is a.
 - Assume there are several choices for the nest derivation:

```
 X \to \alpha_1 
 X \to \alpha_1 
 X \to \alpha_k
```

- If $a \in \mathsf{FIRST}(\alpha_i)$ for exactly one i, then we use that derivation.
- If $a \in \mathsf{FIRST}(\alpha_i)$, $a \in \mathsf{FIRST}(\alpha_j)$, and $i \neq j$, then this grammar is not LL(1).
- If $a \notin \mathsf{FIRST}(\alpha_i)$ for all i, then this grammar can still be LL(1)!
- If there exists some i such that $\alpha_i \stackrel{*}{\Longrightarrow} \epsilon$ and $a \in \mathsf{FOLLOW}(X)$, then we can use the derivation $X \to \alpha_i$.
 - $\alpha_i \stackrel{*}{\Longrightarrow} \epsilon$ if and only if $\epsilon \in \mathsf{FIRST}(\alpha_i)$.

Whether a grammar is LL(1)? (1/2)

- ullet To see whether a given grammar is LL(1), or to build its parsing table:
 - Compute FIRST(α) for every α such that $X \to \alpha$ is a production;
 - \triangleright Need to first compute FIRST(X) for every nonterminal X.
 - Compute FOLLOW(X) for all nonterminals X;
 - ▶ Need to compute $FIRST(\alpha)$ for every α such that $Y \to \beta X \alpha$ is a production.
- Note that FIRST and FOLLOW sets are always sets of terminals, plus, perhaps, ϵ for some FIRST sets.
- lacktriangle A grammar is not LL(1) if there exists productions

$$X \to \alpha \mid \beta$$

and any one of the followings is true:

- FIRST(α) \cap FIRST(β) $\neq \emptyset$.
 - ▶ It may be the case that $\epsilon \in FIRST(\alpha)$ and $\epsilon \in FIRST(\beta)$.
- $\epsilon \in \mathsf{FIRST}(\alpha)$, and $\mathsf{FIRST}(\beta) \cap \mathsf{FOLLOW}(X) \neq \emptyset$.

Whether a grammar is LL(1)? (2/2)

- If a grammar is not LL(1), then
 - you cannot write a linear-time predictive parser as described previously.
- If a grammar is not LL(1), then we do not know to use the production $X\to \alpha$ or the production $X\to \beta$ when the lookahead symbol is a in any of the following cases:
 - $a \in \mathsf{FIRST}(\alpha) \cap \mathsf{FIRST}(\beta)$;
 - $\epsilon \in \mathsf{FIRST}(\alpha)$ and $\epsilon \in \mathsf{FIRST}(\beta)$;
 - $\epsilon \in \mathsf{FIRST}(\alpha)$, and $a \in \mathsf{FIRST}(\beta) \cap \mathsf{FOLLOW}(X)$.

A complete example (1/2)

Grammar:

- ProgHead $\rightarrow prog \ id$ Parameter semicolon
- Parameter $\rightarrow \epsilon \mid id \mid l_paren$ Parameter r_paren

FIRST and FOLLOW sets:

lpha	$FIRST(\alpha)$	$\mathrm{FOLLOW}(\alpha)$
ProgHead	$\{prog\}$	$\overline{\{\$\}}$
Parameter	$\{\epsilon, id, l_paren\}$	$\{semicolon, r_paren\}$
prog id Parameter semicolon	$\{prog\}$	
l_paren Parameter r_paren	$\{l_paren\}$	

A complete example (2/2)

Input: prog id semicolon

STACK	INPUT	ACTION
\$ ProgHead	$prog\ id\ semicolon\ \$$	pop, push
\$ semicolon Parameter id $prog$	$prog\ id\ semicolon\ \$$	match with input
\$ semicolon Parameter id	$id\ semicolon\ \$$	match with input
\$ semicolon Parameter	semicolon~\$	WHAT TO DO?

Last actions:

- Three choices:
 - ightharpoonup Parameter ightharpoonup Parameter r_paren
- $semicolon \notin \mathsf{FIRST}(\epsilon)$ and $semicolon \notin \mathsf{FIRST}(id)$ and $semicolon \notin \mathsf{FIRST}(l_paren \ \mathsf{Parameter}\ r_paren)$
- Parameter $\stackrel{*}{\Longrightarrow} \epsilon$ and $semicolon \in FOLLOW(Parameter)$
- Hence we use the derivation Parameter $\rightarrow \epsilon$

LL(1) parsing table (1/2)

Grammar:

•
$$S \to XC$$

•
$$X \rightarrow a \mid \epsilon$$

•
$$C \rightarrow a \mid \epsilon$$

α	$FIRST(\alpha)$	$FOLLOW(\alpha)$
\overline{S}	$\{a,\epsilon\}$	$\{\$\}$
X	$\{a,\epsilon\}$	$\{a,\$\}$
C	$\{a,\epsilon\}$	$\{\$\}$
ϵ	$\{\epsilon\}$	
a	$\{a\}$	
XC	$\{a,\epsilon\}$	

- **■** Check for possible conflicts in $X \rightarrow a \mid \epsilon$.
 - $FIRST(a) \cap FIRST(\epsilon) = \emptyset$
 - $\epsilon \in \mathsf{FIRST}(\epsilon)$ and $\mathsf{FOLLOW}(X) \cap \mathsf{FIRST}(a) = \{a\}$ Conflict!!
 - $\epsilon \notin \mathsf{FIRST}(a)$
- Check for possible conflicts in $C \to a \mid \epsilon$.
 - $FIRST(a) \cap FIRST(\epsilon) = \emptyset$
 - $\epsilon \in \mathsf{FIRST}(\epsilon)$ and $\mathsf{FOLLOW}(C) \cap \mathsf{FIRST}(a) = \emptyset$
 - $\epsilon \notin \mathsf{FIRST}(a)$

LL(1) parsing table (2/2)

Bottom-up parsing (Shift-reduce parsers)

Intuition: construct the parse tree from the leaves to the root.

Grammar:

$$S \to AB$$

$$A \rightarrow x \mid Y$$

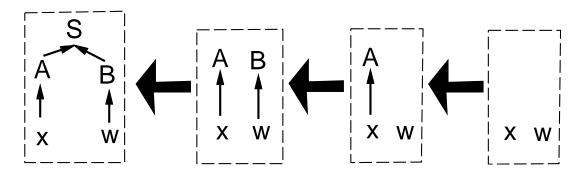
Example:

$$B \to w \mid Z$$

$$Y \to xb$$

$$Z \to wp$$

- lacksquare Input xw.
- This grammar is not LL(1).
 - Why?
 - It can be written into an LL(1) grammar.



Definitions (1/2)

- Rightmost derivation:
 - $S \Longrightarrow_{rm} \alpha$: the rightmost nonterminal is replaced.
 - $S \stackrel{+}{\Longrightarrow} \alpha$: α is derived from S using one or more rightmost derivations.
 - ightharpoonup lpha is called a right-sentential form .
 - In the previous example:

$$S \Longrightarrow_{rm} AB \Longrightarrow_{rm} Aw \Longrightarrow_{rm} xw$$
.

- Define similarly for leftmost derivation and left-sentential form.
- **Handle**: a handle for a right-sentential form γ
 - is the combining of the following two information:
 - \triangleright a production rule $A \rightarrow \beta$ and
 - \triangleright a position w in γ where β can be found.
 - Let γ' be obtained by replacing β at the position w with A in γ .
 - ho $\gamma = \alpha \beta \eta$ and is a right-sentential form.
 - $\triangleright \gamma' = \alpha A \eta$ and is also a right-sentential form.
 - $\triangleright \gamma' \Longrightarrow_{rm} \gamma$ and thus η contains no nonterminals.

Definitions (2/2)

Example:
$$S \rightarrow aABe$$
 $A \rightarrow Abc \mid b$
 $B \rightarrow d$

input: abbcde

 $\gamma \equiv aAbcde$ is a right-sentential form

A o Abc and position 2 in γ is a handle for γ

- Reduce: replace a handle in a right-sentential form with its left-hand-side. In the above example, replace Abc starting at position 2 in γ with A.
- A right-most derivation in reverse can be obtained by handle reducing.
- Problems:
 - How to find handles?
 - What to do when there are two possible handles?
 - ▶ Have a common prefix or suffix.
 - ▶ Have overlaps.

STACK implementation

- Four possible actions:
 - shift: shift the input to STACK.
 - reduce: perform a reversed rightmost derivation.
 - ▶ The first item popped is the rightmost item in the right hand side of the reduced production.
 - accept
 - error
- Make sure handles are always on the top of STACK.

STACK	INPUT	ACTION	
\$	xw\$	shift	F -
\$ x	w\$	reduce by $A \rightarrow x$	A B A A A
\$ A	w\$	shift	
\$Aw	\$	reduce by $B \rightarrow w$	x w x w x w
\$ AB	\$	reduce by $S \rightarrow AB$	$S \Longrightarrow AB \Longrightarrow Aw \Longrightarrow xw.$
\$S	\$	accept	rm rm rm rm rm rm

Viable prefix (1/2)

- Definition: the set of prefixes of right-sentential forms that can appear on the top of the stack.
 - Some suffix of a viable prefix is a prefix of a handle.
 - Some suffix of a viable prefix may be a handle.
- Some prefix of a right-sentential form cannot appear on the top of the stack during parsing.
 - Grammar:
 - $\triangleright S \rightarrow AB$
 - $\triangleright A \rightarrow x \mid Y$
 - $\triangleright B \rightarrow w \mid Z$
 - $\triangleright Y \rightarrow xb$
 - $\triangleright Z \rightarrow wp$
 - Input: xw
 - $\triangleright xw$ is a right-sentential form.
 - ightharpoonup The prefix xw is not a viable prefix.
 - \triangleright You cannot have the situation that some suffix of xw is a handle.

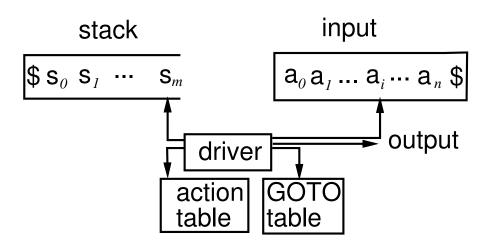
Viable prefix (2/2)

- Note: when doing bottom-up parsing, that is reversed rightmost derivation,
 - it cannot be the case a handle on the right is reduced before a handle on the left in a right-sentential form;
 - the handle of the first reduction consists of all terminals and can be found on the top of the stack;
 - ▶ That is, some substring of the input is the first handle.

Strategy:

- Try to recognize all possible viable prefixes.
 - ▶ Can recognize them incrementally.
- Shift is allowed if after shifting, the top of STACK is still a viable prefix.
- Reduce is allowed if after a handle is found on the top of STACK and after reducing, the top of STACK is still a viable prefix.
- Questions:
 - ▶ How to recognize a viable prefix efficiently?
 - ▶ What to do when multiple actions are allowed?

Model of a shift-reduce parser



- Push-down automata!
 - Current state S_m encodes the symbols that has been shifted and the handles that are currently being matched.
 - $S_0S_1\cdots S_ma_ia_{i+1}\cdots a_n$ represents a right-sentential form.
 - GOTO table:
 - ▶ when a "reduce" action is taken, which handle to replace;
 - Action table:
 - ▶ when a "shift" action is taken, which state currently in, that is, how to group symbols into handles.
- The power of context free grammars is equivalent to nondeterministic push down automata.
 - ▶ Not equal to deterministic push down automata.

LR parsers

- By Don Knuth at 1965.
- LR(k): see all of what can be derived from the right side with k input tokens lookahead.
 - First L: scan the input from left to right.
 - Second R: reverse rightmost derivation.
 - Last (k): with k lookahead tokens.
- ullet Be able to decide the whereabout of a handle after seeing all of what have been derived so far plus k input tokens lookahead.

$$X_1, X_2, \ldots, \begin{bmatrix} X_i, X_{i+1}, \ldots, X_{i+j}, \\ \mathbf{a} \text{ handle} \end{bmatrix} \begin{bmatrix} X_{i+j+1}, \ldots, X_{i+j+k}, \\ \mathbf{lookahead tokens} \end{bmatrix} \ldots$$

■ Top-down parsing for LL(k) grammars: be able to choose a production by seeing only the first k symbols that will be derived from that production.

Recognizing viable prefixes

- Use an LR(0) item (item for short) to record all possible extensions of the current viable prefix.
 - It is a production, with a dot at some position in the RHS (right-hand side).
 - ▶ The production is the handle.
 - ▶ The dot indicates the prefix of the handle that has seen so far.

Example:

- $\begin{array}{c} \bullet \ A \to XY \\ & \triangleright \ A \to \cdot XY \\ & \triangleright \ A \to X \cdot Y \\ & \triangleright \ A \to XY \cdot \end{array}$
- Augmented grammar G' is to add a new starting symbol S' and a new production $S' \to S$ to a grammar G with the original starting symbol S.
 - ▶ We assume working on the augmented grammar from now on.

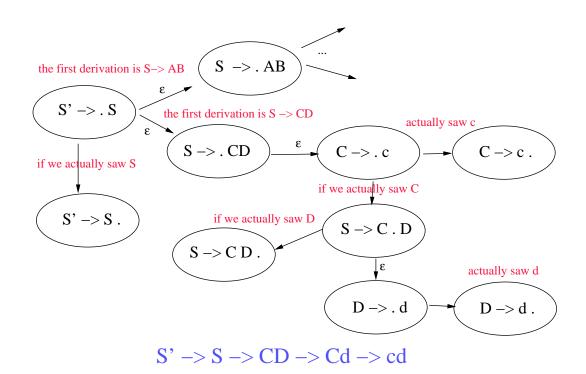
High-level ideas for LR(0) parsing

Grammar:

- $S' \rightarrow S$
- $S \rightarrow AB \mid CD$
- \bullet $A \rightarrow a$
- $B \rightarrow b$
- \bullet $C \rightarrow c$
- $D \rightarrow d$

Approach:

- ▶ Use a STACK to record the current viable prefix.
- ▶ Use NFA to record information about the next possible handle.
- \triangleright push down automata = FA + stack.
- ▶ Need to use DFA for simplicity.



Closure

- The closure operation closure(I), where I is a set of items, is defined by the following algorithm:
 - If $A \to \alpha \cdot B\beta$ is in closure(I), then
 - \triangleright at some point in parsing, we might see a substring derivable from $B\beta$ as input;
 - \triangleright if $B \rightarrow \gamma$ is a production, we also see a substring derivable from γ at this point.
 - ightharpoonup Thus $B \to \gamma$ should also be in closure(I).
- What does closure(I) mean informally?
 - When $A \to \alpha \cdot B\beta$ is encountered during parsing, then this means we have seen α so far, and expect to see $B\beta$ later before reducing to A.
 - At this point if $B \to \gamma$ is a production, then we may also want to see $B \to \cdot \gamma$ in order to reduce to B, and then advance to $A \to \alpha B \cdot \beta$.
- Using closure(I) to record all possible things about the next handle that we have seen in the past and expect to see in the future.

Example for the closure function

- Example: E^\prime is the new starting symbol, and E is the original starting symbol.
 - $E' \rightarrow E$
 - $E \rightarrow E + T \mid T$
 - $T \rightarrow T * F \mid F$
 - $F \rightarrow (E) \mid id$
- $closure(\{E' \rightarrow \cdot E\}) =$
 - $\{E' \rightarrow \cdot E$,
 - $E \rightarrow E + T$,
 - $E \rightarrow T$.
 - $T \rightarrow T * F$.
 - $T \rightarrow \cdot F$.
 - ullet $F
 ightarrow \cdot (E)$,
 - $F \rightarrow \cdot id$

GOTO table

- ullet GOTO(I,X), where I is a set of items and X is a legal symbol, means
 - If $A \to \alpha \cdot X\beta$ is in I, then
 - $closure(\{A \rightarrow \alpha X \cdot \beta\}) \subseteq GOTO(I, X)$
- Informal meanings:
 - currently we have seen $A \to \alpha \cdot X\beta$
 - expect to see X
 - if we see X,
 - then we should be in the state $closure(\{A \rightarrow \alpha X \cdot \beta\})$.
- Use the GOTO table to denote the state to go to once we are in I and have seen X.

Sets-of-items construction

- Canonical LR(0) items : the set of all possible DFA states, where each state is a set of LR(0) items.
- Algorithm for constructing LR(0) parsing table.
 - $C \leftarrow \{closure(\{S' \rightarrow \cdot S\})\}$
 - Repeat
 - ▶ for each set of items I in C and each grammar symbol X such that $GOTO(I, X) \neq \emptyset$ and not in C do
 - ightharpoonup add GOTO(I, X) to C
 - Until no more sets can be added to C
- Kernel of a state:
 - Definitions: items
 - \triangleright not of the form $X \rightarrow \beta$ or
 - \triangleright of the form $S' \rightarrow \cdot S$
 - Given the kernel of a state, all items in this state can be derived.

Example of sets of LR(0) items

$$E' \to E$$

 $E \rightarrow E + T \mid T$

Grammar:

$$T \to T * F \mid F$$

$$F \to (E) \mid id$$

• Canonical LR(0) items:

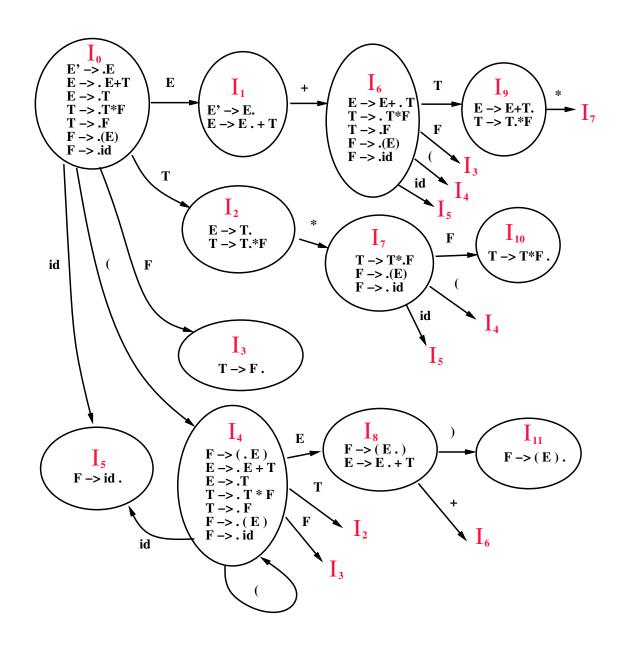
•
$$I_1 = GOTO(I_0, E) =$$

• $\{E' \rightarrow E \cdot, \\
E \rightarrow E \cdot + T\}$

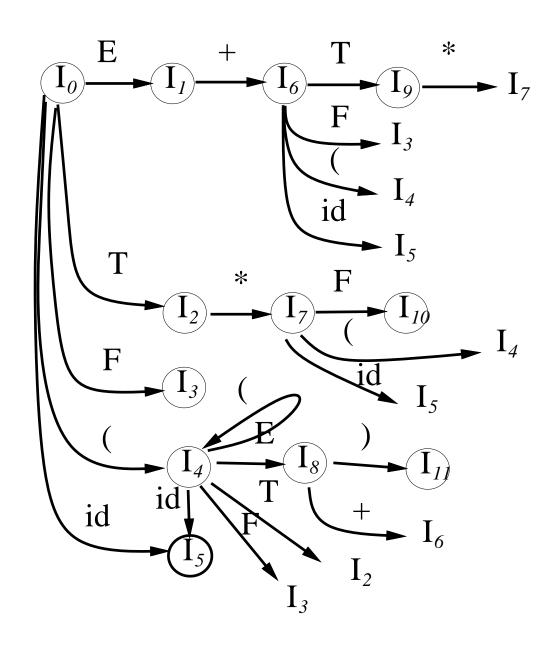
$$I_0 = closure(\{E'
ightarrow \cdot E\}) = \ \{E'
ightarrow \cdot E, \ E
ightarrow \cdot E + T, \ E
ightarrow \cdot T, \ T
ightarrow \cdot T * F, \ T
ightarrow \cdot F, \ F
ightarrow \cdot (E),$$

 $F \rightarrow \cdot id$

Transition diagram (1/2)



Transition diagram (2/2)



Meaning of LR(0) transition diagram

- $lackbox{\blacksquare} E + T * \text{ is a viable prefix that can happen on the top of the}$ stack while doing parsing.
 - $\{T \rightarrow T * \cdot F,$
- After seeing E+T *, we are in state I_7 . $I_7 = \bullet F \rightarrow \cdot (E)$,

 - $F \rightarrow id$
- We expect to follow one of the following three possible derivations:

$$E' \underset{rm}{\Longrightarrow} E$$

$$\Longrightarrow E + T$$

$$\Longrightarrow E + T * F$$

$$\Longrightarrow E + T * id$$

. . .

Meanings of closure(I) and GOTO(I, X)

- closure(I): a state/configuration during parsing recording all possible information about the next handle.
 - If $A \to \alpha \cdot B\beta \in I$, then it means
 - \triangleright in the middle of parsing, α is on the top of the stack;
 - \triangleright at this point, we are expecting to see $B\beta$;
 - \triangleright after we saw $B\beta$, we will reduce $\alpha B\beta$ to A and make A top of stack.
 - To achieve the goal of seeing $B\beta$, we expect to perform some operations below:
 - \triangleright We expect to see B on the top of the stack first.
 - ▶ If $B \to \gamma$ is a production, then it might be the case that we shall see γ on the top of the stack.
 - \triangleright If it does, we reduce γ to B.
 - \triangleright Hence we need to include $B \rightarrow \gamma$ into closure(I).
- GOTO(I,X): when we are in the state described by I, and then a new symbol X is pushed into the stack,
 - If $A \to \alpha \cdot X\beta$ is in I, then $closure(\{A \to \alpha X \cdot \beta\}) \subseteq GOTO(I,X)$.

LR(0) parsing

- LR parsing without lookahead symbols.
- Initially,
 - Push I_0 into the stack.
 - Begin to scan the input from left to right.
- In state I_i
 - if $\{A \to \alpha \cdot a\beta\} \subseteq I_i$ then perform "shift i" while seeing the terminal a in the input, and then go to the state $I_i = closure(\{A \to \alpha a \cdot \beta\})$.
 - ▶ Push a into the STACK first.
 - \triangleright Then push I_i into the STACK.
 - if $\{A \to \beta \cdot\} \subseteq I_i$, then perform "reduce by $A \to \beta$ " and then go to the state $I_j = GOTO(I,A)$ where I is the state on the top of the stack after removing β
 - \triangleright Pop β and all intermediate states from the STACK.
 - ▶ Push A into the STACK.
 - \triangleright Then push I_i into the STACK.
 - Reject if none of the above can be done.
 - Report "conflicts" if more than one can be done.
- Accept an input if EOF is seen at I_0 .

Parsing example

STACK	input	action
$-\$ I_0$	id*id+id\$	shift 5
$\$ I_0 id I_5	* $id + id$ \$	reduce by $F \to id$
$\$ I_0 F	* $id + id$ \$	in I_0 , saw F, goto I_3
$\$ $I_0 \ \mathrm{F} \ I_3$	* $id + id$ \$	reduce by $T \to F$
$\ \ I_0\ \mathrm{T}$	* $id + id$ \$	in I_0 , saw T, goto I_2
$\$ $I_0 \ \mathrm{T} \ I_2$	* $id + id$ \$	shift 7
$I_0 T I_2 * I_7$	id + id\$	shift 5
$I_0 T I_2 * I_7 id I_5$	+ id\$	reduce by $F \to id$
$I_0 T I_2 * I_7 F$	+ id\$	in I_7 , saw F, goto I_{10}
$I_0 T I_2 * I_7 F I_{10}$	+ id\$	reduce by $T \to T * F$
$\$ I_0 T	+ id\$	in I_0 , saw T, goto I_2
$\$ $I_0 \ \mathrm{T} \ I_2$	+ id\$	reduce by $E \to T$
$\ \ I_0 \to \ $	+ id\$	in I_0 , saw E , goto I_1
$\$ $I_0 \to I_1$	+ id\$	shift 6
$\ \ \ I_0 \to I_1 + I_6$	id\$	shift 5
$I_0 \to I_1 + I_6 \to I_6$	\$	reduce by $F \to id$
• • •		• • •

Problems of LR(0) parsing

- Conflicts: handles have overlaps, thus multiple actions are allowed at the same time.
 - shift/reduce conflict
 - reduce/reduce conflict
- Very few grammars are LR(0). For example:
 - In I_2 of our example, you can either perform a reduce or a shift when seeing "*" in the input.
 - However, it is not possible to have E followed by "*". Thus we should not perform "reduce."
- Idea: use $\mathsf{FOLLOW}(E)$ as look ahead information to resolve some conflicts.

SLR(1) parsing algorithm

- Using FOLLOW sets to resolve conflicts in constructing SLR(1) [DeRemer 1971] parsing table, where the first "S" stands for "Simple".
 - Input: an augmented grammar G'
 - Output: the SLR(1) parsing table
- Construct $C = \{I_0, I_1, \dots, I_n\}$ the collection of sets of LR(0) items for G'.
- The parsing table for state I_i is determined as follows:
 - If $A \to \alpha \cdot a\beta$ is in I_i and $GOTO(I_i, a) = I_j$, then $action(I_i, a)$ is "shift j" for a being a terminal.
 - If $A \to \alpha$ is in I_i , then $action(I_i, a)$ is "reduce by $A \to \alpha$ " for all terminal $a \in \mathsf{FOLLOW}(A)$; here $A \neq S'$
 - If $S' \to S$ is in I_i , then $action(I_i, \$)$ is "accept".
- If any conflicts are generated by the above algorithm, we say the grammar is not SLR(1).

SLR(1) parsing table

		action				GOTO				
	state	id	+	*	(\$	${ m E}$	${ m T}$	\mathbf{F}
(4) 5/ 5	0	s5			s4			1	2	3
(1) $E' \rightarrow E$	1		s6				accept			
(2) $E \to E + T$	2		r2	s7		r2	r2			
(3) $E \rightarrow T$	3		r5	r5		r5	r5			
(4) $T \rightarrow T * F$	4	s5			s4			8	2	3
` '	5		r7	r7		r7	r7			
(5) $T \rightarrow F$	6	s5			s4				9	3
(6) $F \to (E)$	7	s5			s4					10
(7) $F \rightarrow id$	8		s6			s11				
	9		r2	s7		r2	r2			
	10		r4	r4		r4	r4			
	11		r6	r6		r6	r6			

- \blacksquare ri means reduce by the ith production.
- ullet si means shift and then go to state I_i .
- Use FOLLOW sets to resolve some conflicts.

Discussion (1/3)

- Every SLR(1) grammar is unambiguous, but there are many unambiguous grammars that are not SLR(1).
- Grammar:
 - $S \rightarrow L = R \mid R$
 - $L \rightarrow *R \mid id$
 - \bullet $R \to L$
- States:

 I_0 :

$$\triangleright S' \rightarrow \cdot S$$

$$\triangleright S \rightarrow \cdot L = R$$

$$\triangleright S \rightarrow \cdot R$$

$$\triangleright L \rightarrow \cdot * R$$

$$\triangleright L \rightarrow \cdot id$$

$$\triangleright R \rightarrow \cdot L$$

$$I_1: S' \to S$$

 I_2 :

$$\triangleright S \rightarrow L \cdot = R$$

$$ightharpoonup R
ightharpoonup L
ightharpoonup$$

$$I_3$$
: $S \to R$.

$$I_4$$
:

$$\triangleright L \rightarrow * \cdot R$$

$$ightharpoonup R
ightharpoonup \cdot L$$

$$\triangleright L \rightarrow \cdot * R$$

$$\triangleright L \rightarrow \cdot id$$

$$I_5$$
: $L \rightarrow id$ ·

$$I_6$$
:

$$\triangleright S \rightarrow L = \cdot R$$

$$\triangleright R \rightarrow \cdot L$$

$$\triangleright L \rightarrow \cdot * R$$

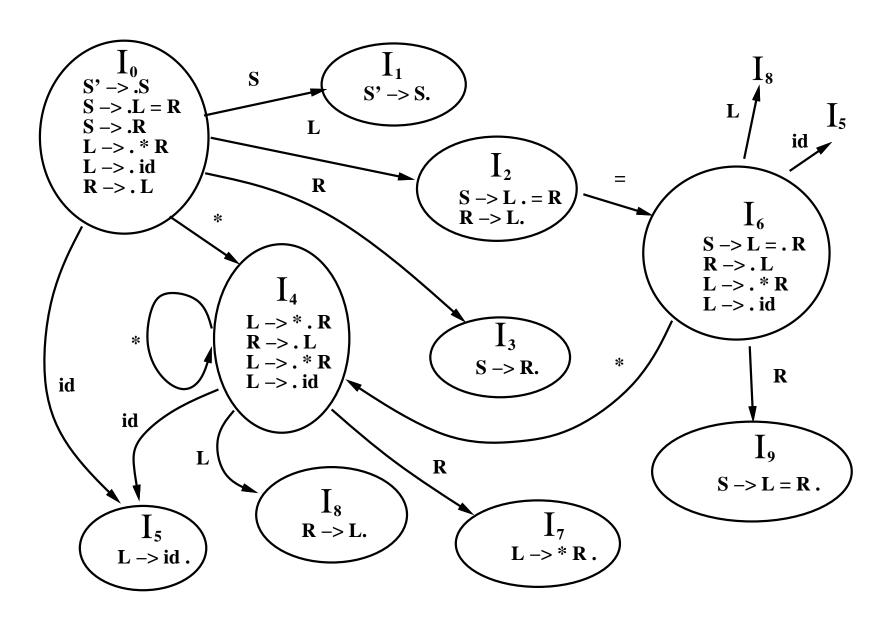
$$\triangleright L \rightarrow \cdot id$$

$$I_7$$
: $L \to *R$.

$$I_8$$
: $R \to L$.

$$I_0: S \to L = R$$

Discussion (2/3)



Discussion (3/3)

- Suppose the STACK has " $\$I_0 L I_2$ " and the input is "=". We can either
 - shift 6, or
 - reduce by $R \to L$, since $= \in \mathsf{FOLLOW}(R)$.
- This grammar is ambiguous for SLR(1) parsing.
- However, we should not perform a $R \rightarrow L$ reduction.
 - After performing the reduction, the viable prefix is \$R;
 - $= \notin \mathsf{FOLLOW}(\$R);$
 - $=\in$ **FOLLOW**(*R);
 - That is to say, we cannot find a right-sentential form with the prefix $R=\cdots$.
 - We can find a right-sentential form with $\cdots * R = \cdots$

Canonical LR - LR(1)

- In SLR(1) parsing, if $A \to \alpha$ is in state I_i , and $a \in \mathsf{FOLLOW}(A)$, then we perform the reduction $A \to \alpha$.
- However, it is possible that when state I_i is on the top of the stack, we have the viable prefix $\beta\alpha$ on the top of the stack, and βA cannot be followed by α .
 - In this case, we cannot perform the reduction $A \to \alpha$.
- It looks difficult to find the FOLLOW sets for every viable prefix.
- We can solve the problem by knowing more left context using the technique of lookahead propagation.
 - Construct FOLLOW(ω) on the fly.
 - Assume $\omega = \omega' X$ and FOLLOW (ω') is known.
 - Can FOLLOW($\omega'X$) be computed efficiently?

LR(1) items

- An LR(1) item is in the form of $[A \to \alpha \cdot \beta, a]$, where the first field is an LR(0) item and the second field a is a terminal belonging to a subset of FOLLOW(A).
- Intuition: perform a reduction based on an LR(1) item $[A \to \alpha \cdot, a]$ only when the next symbol is a.
 - Instead of maintaining FOLLOW sets of viable prefixes, we maintain FIRST sets of possible future extensions of the current viable prefix.
- Formally: $[A \to \alpha \cdot \beta, a]$ is valid (or reachable) for a viable prefix γ if there exists a derivation

$$S \stackrel{*}{\Longrightarrow} \delta A \omega \Longrightarrow \underbrace{\delta}_{rm} \underbrace{\delta}_{\gamma} \alpha \beta \omega,$$

where

- either $a \in \mathsf{FIRST}(\omega)$ or
- $\omega = \epsilon$ and a = \$.

Examples of LR(1) items

Grammar:

- $S \rightarrow BB$
- $B \rightarrow aB \mid b$

$$S \stackrel{*}{\Longrightarrow} aaBab \Longrightarrow_{rm} aaaBab$$

viable prefix aaa can reach $[B \rightarrow a \cdot B, a]$

$$S \stackrel{*}{\Longrightarrow} BaB \Longrightarrow_{rm} BaaB$$

viable prefix Baa can reach $[B \rightarrow a \cdot B, \$]$

Finding all LR(1) items

- Ideas: redefine the closure function.
 - Suppose $[A \to \alpha \cdot B\beta, a]$ is valid for a viable prefix $\gamma \equiv \delta \alpha$.
 - In other words,

$$S \stackrel{*}{\Longrightarrow} \delta \boxed{A} a\omega \stackrel{*}{\Longrightarrow} \delta \boxed{\alpha B\beta} a\omega.$$

 $\triangleright \omega$ is ϵ or a sequence of terminals.

• Then for each production $B \to \eta$, assume $\beta a \omega$ derives the sequence of terminals $bea\omega$.

$$S \xrightarrow{*} \delta \alpha \underline{B} \left[\beta a \omega \right] \xrightarrow{*} \delta \alpha \underline{B} \left[bea \omega \right] \xrightarrow{*} \delta \alpha \underline{\eta} \left[bea \omega \right]$$

Thus $[B \to \cdot \eta, b]$ is also valid for γ for each $b \in \mathsf{FIRST}(\beta a)$. Note a is a terminal. So $\mathsf{FIRST}(\beta a) = \mathsf{FIRST}(\beta a\omega)$.

Lookahead propagation.

Algorithm for LR(1) parsers

- $closure_1(I)$
 - Repeat
 - \triangleright for each item $[A \rightarrow \alpha \cdot B\beta, a]$ in I do
 - $\triangleright \qquad \text{if } B \to \cdot \eta \text{ is in } G'$
 - ightharpoonup then add $[B \to \eta, b]$ to I for each $b \in FIRST(\beta a)$
 - Until no more items can be added to I
 - return I
- $\blacksquare GOTO_1(I,X)$
 - let $J = \{[A \to \alpha X \cdot \beta, a] \mid [A \to \alpha \cdot X\beta, a] \in I\};$
 - return $closure_1(J)$
- $\blacksquare items(G')$
 - $C \leftarrow \{closure_1(\{[S' \rightarrow \cdot S, \$]\})\}$
 - Repeat
 - ▶ for each set of items $I \in C$ and each grammar symbol X such that $GOTO_1(I,X) \neq \emptyset$ and $GOTO_1(I,X) \not\in C$ do
 - ightharpoonup add $GOTO_1(I,X)$ to C
 - Until no more sets of items can be added to C

Example for constructing LR(1) closures

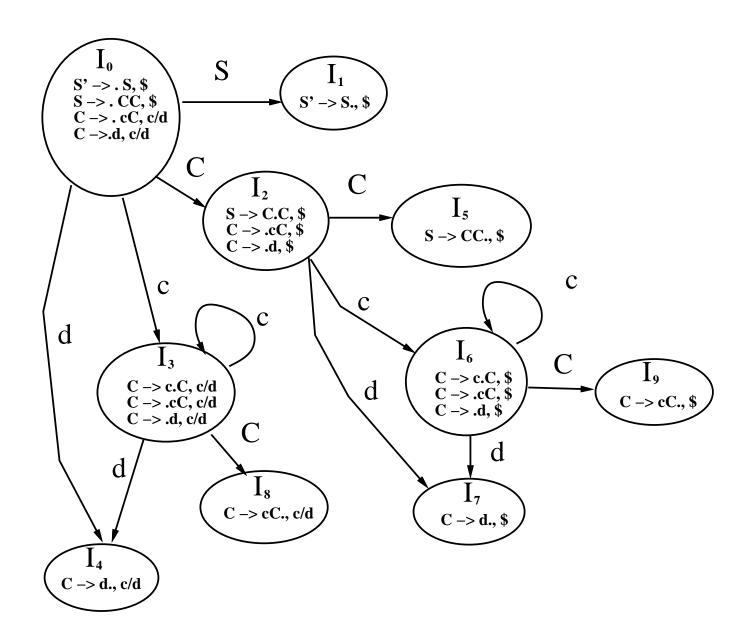
Grammar:

- $S' \to S$
- $S \rightarrow CC$
- $C \rightarrow cC \mid d$
- $closure_1(\{[S' \rightarrow \cdot S, \$]\}) =$
 - $\{[S' \rightarrow \cdot S, \$],$
 - $[S \rightarrow \cdot CC, \$],$
 - $[C \rightarrow \cdot cC, c/d],$
 - $[C \rightarrow \cdot d, c/d]$

Note:

- $FIRST(\epsilon\$) = \{\$\}$
- $FIRST(C\$) = \{c, d\}$
- $[C \rightarrow \cdot cC, c/d]$ means
 - $\triangleright [C \rightarrow \cdot cC, c]$ and
 - $\triangleright [C \rightarrow \cdot cC, d].$

LR(1) transition diagram



LR(1) parsing example

■ Input cdccd

STACK	INPUT	ACTION
$-\$ I_0$	cdccd \$	
$\$ I_0 c I_3	dccd\$	shift 3
$\$ I_0 c I_3 d I_4	$\operatorname{ccd}\$$	shift 4
$\$ I_0 c I_3 C I_8	$\operatorname{ccd}\$$	reduce by $C \to d$
$\ I_0 \subset I_2$	$\operatorname{ccd}\$$	reduce by $C \to cC$
$I_0 \subset I_2 \subset I_6$	cd\$	shift 6
$\$ $I_0 \subset I_2 \subset I_6 \subset I_6$	d\$	shift 6
$\$ $I_0 \subset I_2 \subset I_6 \subset I_6$	d\$	shift 6
$I_0 \subset I_2 \subset I_6 \subset I_6 \subset I_7$	\$	shift 7
$I_0 \subset I_2 \subset I_6 \subset I_6 \subset I_9$	\$	reduce by $C \to cC$
$I_0 \subset I_2 \subset I_6 \subset I_9$	\$	reduce by $C \to cC$
$\$ $I_0 \subset I_2 \subset I_5$	\$	reduce by $S \to CC$
$\$ $I_0 \ \mathrm{S} \ I_1$	\$	reduce by $S' \to S$
$\$ I_0 S'$	\$	accept

Generating LR(1) parsing table

- Construction of canonical LR(1) parsing tables.
 - Input: an augmented grammar G'
 - Output: the canonical LR(1) parsing table, i.e., the $ACTION_1$ table
- Construct $C = \{I_0, I_1, \dots, I_n\}$ the collection of sets of LR(1) items form G'.
- Action table is constructed as follows:
 - if $[A \to \alpha \cdot a\beta, b] \in I_i$ and $GOTO_1(I_i, a) = I_j$, then $action_1[I_i, a] =$ "shift j" for a is a terminal.
 - if $[A \to \alpha \cdot, a] \in I_i$ and $A \neq S'$, then $action_1[I_i, a] =$ "reduce by $A \to \alpha$ "
 - if $[S' \rightarrow S \cdot, \$] \in I_i$, then $action_1[I_i, \$] =$ "accept."
- If conflicts result from the above rules, then the grammar is not LR(1).
- The initial state of the parser is the one constructed from the set containing the item $[S' \to \cdot S, \$]$.

Example of an LR(1) parsing table

	action_1			$GOTO_1$		
state	c	d	\$	S	С	
0	s3	s4		1	2	
1			accept			
2 3	s6	s7			5	
	s3	s4			8	
4	r3	r3				
5			r1			
6	s6	s7			9	
7			r3			
8	r2	r2				
9			r2			

• Canonical LR(1) parser:

- Most powerful!
- Has too many states and thus occupies too much space.

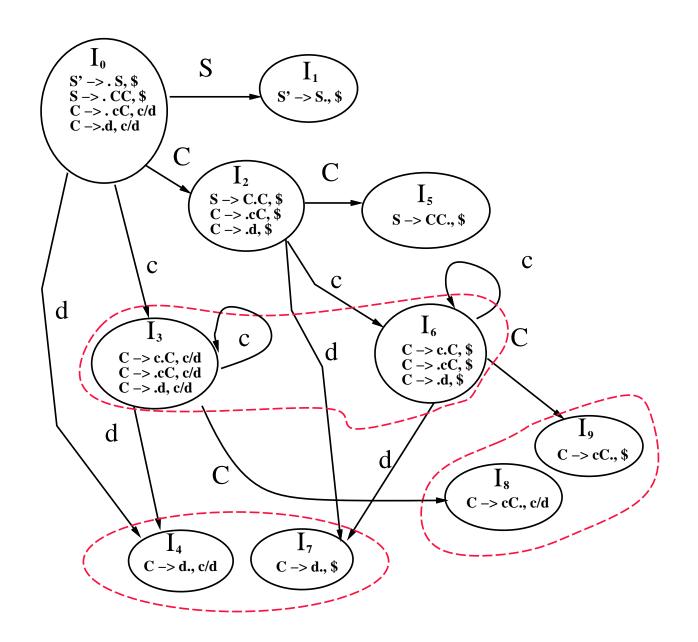
LALR(1) parser — Lookahead LR

- The method that is often used in practice.
- Most common syntactic constructs of programming languages can be expressed conveniently by an LALR(1) grammar [DeRemer 1969].
- SLR(1) and LALR(1) always have the same number of states.
- Number of states is about 1/10 of that of LR(1).
- Simple observation:
 - an LR(1) item is of the form $[A \rightarrow \alpha \cdot \beta, c]$
- lacksquare We call $A o lpha \cdot eta$ the first component .
- \blacksquare Definition: in an LR(1) state, set of first components is called its core .

Intuition for LALR(1) grammars

- In an LR(1) parser, it is a common thing that several states only differ in lookahead symbols, but have the same core.
- To reduce the number of states, we might want to merge states with the same core.
 - If I_4 and I_7 are merged, then the new state is called $I_{4,7}$.
 - After merging the states, revise the $GOTO_1$ table accordingly.
- Merging of states can never produce a shift-reduce conflict that was not present in one of the original states.
 - $I_1 = \{ [A \to \alpha \cdot, a], \ldots \}$
 - \triangleright For I_1 , one of the actions is to perform a reduce when the lookahead symbol is "a".
 - $I_2 = \{ [B \rightarrow \beta \cdot a\gamma, b], \ldots \}$
 - \triangleright For I_2 , one of the actions is to perform a shift on input "a".
 - Merging I_1 and I_2 , the new state $I_{1,2}$ has shift-reduce conflicts.
 - However, we merge I_1 and I_2 because they have the same core.
 - ▶ That is, $[A \to \alpha \cdot, c] \in I_2$ and $[B \to \beta \cdot a\gamma, d] \in I_1$.
 - \triangleright The shift-reduce conflict already occurs in I_1 and I_2 .
- Merging of states can produce a new reduce-reduce conflict.

LALR(1) transition diagram



Possible new conflicts from LALR(1)

- May produce a new reduce-reduce conflict.
- For example (textbook page 267, Example 4.58), grammar:
 - $S' \rightarrow S$
 - $S \rightarrow aAd \mid bBf \mid aBe \mid bAe$
 - \bullet $A \rightarrow c$
 - $B \rightarrow c$
- The language recognized by this grammar is $\{acd, ace, bcd, bce\}$.
- ullet You may check that this grammar is LR(1) by constructing the sets of items.
- You will find the set of items $\{[A \to c \cdot, d], [B \to c \cdot, e]\}$ is valid for the viable prefix ac, and $\{[A \to c \cdot, e], [B \to c \cdot, d]\}$ is valid for the viable prefix bc.
- Neither of these sets generates a conflict, and their cores are the same. However, their union, which is
 - $\{[A \rightarrow c \cdot, d/e],$
 - $[B
 ightarrow c \cdot, d/e]$ },

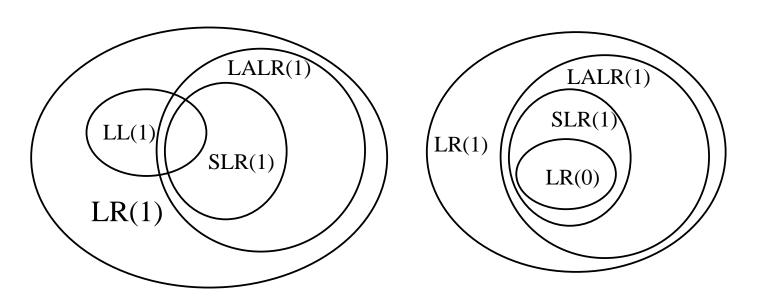
generates a reduce-reduce conflict, since reductions by both $A \to c$ and $B \to c$ are called for on inputs d and e.

How to construct LALR(1) parsing table

- Naive approach:
 - Construct LR(1) parsing table, which takes lots of intermediate spaces.
 - Merging states.
- Space and/or time efficient methods to construct an LALR(1) parsing table are known.
 - Constructing and merging on the fly.

• • • •

Summary



- LR(1) and LALR(1) can almost express all important programming languages issues, but LALR(1) is easier to write and uses much less space.
- ullet LL(1) is easier to understand and uses much less space, but cannot express some important common-language features.
 - May try to use it first for your own applications.
 - If it does not succeed, then use more powerful ones.