Syntax Analyzer - Parser

ALSU Textbook Chapter 4.1-4.7

Tsan-sheng Hsu
tshsu@iis.sinica.edu.tw
http://www.iis.sinica.edu.tw/~tshsu

Main tasks

```
a program represented
```

by a sequence of tokens

$\longrightarrow \square$ parser \longrightarrow| if it is a legal program, |
| :--- |
| then output some ab- |
| stract representation of |
| the program |

- Abstract representations of the input program:
- abstract-syntax tree + symbol table
- intermediate code
- object code
- Context free grammar (CFG) is used to specify the structure of legal programs.
- Deals with errors.
- Syntactic errors.
- Static semantic errors .
\triangleright Example: a variable is not declared or declared twice in a language where a variable must be declared before its usage.

Error handling

- Goals:
- Report errors clearly and accurately.
- Recover from errors quickly enough to detect subsequent errors.
- Spend minimal overhead.
- Strategies:
- Panic-mode recovery: skip until synchronizing tokens are found.
\triangleright ";" marks the end of a C-sentence;
\triangleright "\}" closes a C-scope.
- Phrase-level recovery: perform local correction and then continue.
\triangleright Assume a un-declared variable is declared with the default type "int."
- Error productions: anticipating common errors using grammars.
\triangleright Example: write a grammar rule for the case when ";" is missing between two var-declarations in C.
- Global correction: choose a minimal sequence of changes to obtain a globally least-cost correction.
\triangleright A very difficult task!
\triangleright May have more than one interpretations.
$\triangleright C$ example: In " $y=* x$;", whether an operand is missing in multiplication or the type of x should be pointer?

Context free grammar (CFG)

Definitions: $G=(T, N, P, S)$.
$\triangleright T$: a set of terminals;
$\triangleright N$: a set of nonterminals;
$\triangleright P$: productions of the form

$\triangleright S$: the starting nonterminal where $S \in N$.

- Notations:
- terminals : strings with lower-cased English letters and printable characters.
\triangleright Examples: a, b, c, int and int_1.
- nonterminals: strings started with an upper-cased English letter.
\triangleright Examples: A, B, C and Procedure.
- $\alpha, \beta, \gamma, \ldots \in(T \cup N)^{*}$
$\triangleright \alpha, \beta, \gamma$ and ϵ : alpha, beta, gamma and epsilon.
-

$$
\left.\begin{array}{lll}
A & \rightarrow & \alpha_{1} \\
A & \rightarrow & \alpha_{2}
\end{array}\right\} \equiv A \rightarrow \alpha_{1} \mid \alpha_{2}
$$

How does a CFG define a language?

- The language defined by the grammar is the set of strings (sequence of terminals) that can be "derived" from the starting nonterminal.
- How to "derive" something?
- Start with:
$\triangleright{ }^{" c}$ current sequence" $=$ the starting nonterminal.
- Repeat
\triangleright find a nonterminal X in the current sequence;
\triangleright find a production in the grammar with X on the left of the form $X \rightarrow \alpha$, where α is ϵ or a sequence of terminals and/or nonterminals;
\triangleright create a new "current sequence" in which α replaces X;
- Until "current sequence" contains no nonterminals;
- We derive either ϵ or a string of terminals.
- This is how we derive a string of the language.

Example

Grammar:

- $E \rightarrow i n t$
- $E \rightarrow E-E$
- $E \rightarrow E / E$
- $E \rightarrow(E)$

$$
\begin{aligned}
& E \\
& \Longrightarrow E-E \\
& \Longrightarrow 1-E \\
& \Longrightarrow 1-E / E \\
& \Longrightarrow 1-E / 2 \\
& \Longrightarrow 1-4 / 2
\end{aligned}
$$

Details:

- The first step was done by choosing the second production.
- The second step was done by choosing the first production.
- Conventions:
- \Longrightarrow : means "derives in one step";
$\stackrel{+}{\Longrightarrow}$: means "derives in one or more steps";
- $\xlongequal{*}$: means "derives in zero or more steps";
- In the above example, we can write $E \stackrel{+}{\Longrightarrow} 1-4 / 2$.

Language

- The language defined by a grammar G is

$$
L(G)=\{w \mid S \xlongequal{+} \omega\}
$$

where S is the starting nonterminal and ω is a sequence of terminals or ϵ.

- An element in a language is ϵ or a sequence of terminals in the set defined by the language.
- More terminology:
- $E \Longrightarrow \cdots \Longrightarrow 1-4 / 2$ is a derivation of $1-4 / 2$ from E.
- There are several kinds of derivations that are important:
\triangleright The derivation is a leftmost one if the leftmost nonterminal always gets to be chosen (if we have a choice) to be replaced.
$\triangleright I t$ is a rightmost one if the rightmost nonterminal is replaced all the times.

A way to describe derivations

- Construct a derivation or parse tree as follows:
- start with the starting nonterminal as a single-node tree
- Repeat
\triangleright choose a leaf nonterminal X
\triangleright choose a production $X \rightarrow \alpha$
\triangleright symbols in α become the children of X
- Until no more leaf nonterminal left
- This is called top-down parsing or expanding of the parse tree.
- Construct the parse tree starting from the root.
- Other parsing methods, such as bottom-up, are known.

Top-down parsing

- Need to annotate the order of derivation on the nodes.

$$
\begin{aligned}
& E \\
& \Longrightarrow E-E \\
& \Longrightarrow 1-E \\
& \Longrightarrow 1-E / E \\
& \Longrightarrow 1-E / 2 \\
& \Longrightarrow 1-4 / 2
\end{aligned}
$$

- It is better to keep a systematic order in parsing for the sake of performance or ease-to-understand.
- leftmost
- rightmost

Parse tree examples

- Example:

leftmost derivation
- Using $1-4 / 2$ as the input, the left parse tree is derived.
- A string is formed by reading the leaf nodes from left to right, which gives $1-4 / 2$.
- The string $1-4 / 2$ has another parse tree on the right.

rightmost derivation
- Some standard notations:
- Given a parse tree and a fixed order (for example leftmost or rightmost) we can derive the order of derivation.
- For the "semantic" of the parse tree, we normally "interpret" the meaning in a bottom-up fashion. That is, the one that is derived last will be "serviced" first.

Ambiguous grammar

- If for grammar G and string α, there are
- more than one leftmost derivation for α, or
- more than one rightmost derivation for α, or
- more than one parse tree for α,

then G is called ambiguous .

- Note: the above three conditions are equivalent in that if one is true, then all three are true.
- Q: How to prove this?
\triangleright Hint: Any un-annotated tree can be annotated with a leftmost numbering.
- Problems with an ambiguous grammar:
- Ambiguity can make parsing difficult.
- Underlying structure is ill-defined.
\triangleright In the previous example, the precedence is not uniquely defined, e.g., the leftmost parse tree groups $4 / 2$ while the rightmost parse tree groups $1-4$, resulting in two different semantics.

How to use CFG

- Breaks down the problem into pieces.
- Think about a C program:
- Declarations: typedef, struct, variables, ...
\triangleright Procedures: type-specifier, function name, parameters, function body.
\triangleright function body: various statements.
- Example:

```
\triangleright ~ P r o c e d u r e ~ \rightarrow ~ T y p e D e f ~ i d ~ O p t P a r a m s ~ O p t D e c l ~ \{ O p t S t a t e m e n t s \}
\triangleright ~ T y p e D e f ~ \rightarrow ~ i n t e g e r ~ \| ~ c h a r ~ \| ~ f l o a t ~ \| . . . ~
\triangleright ~ O p t P a r a m s ~ \rightarrow ~ ( ~ L i s t P a r a m s ) ~
\triangleright ~ L i s t P a r a m s ~ \rightarrow \epsilon \| ~ N o n E m p t y P a r L i s t ~
\triangleright ~ N o n E m p t y P a r L i s t ~ \rightarrow ~ N o n E m p t y P a r L i s t , i d \| i d ~
\triangleright...
```

- One of purposes to write a grammar for a language is for others to understand. It will be nice to break things up into different levels in a top-down easily understandable fashion.

Non-context free grammars

- Some grammar is not CFG, that is, it may be context sensitive.
- Expressive power of grammars (in the order of small to large):
- Regular expression \equiv FA.
- Context-free grammar
- Context-sensitive grammar
- ...
- $\{\omega c \omega \mid \omega$ is a string of a and b 's $\}$ cannot be expressed by CFG.

Common grammar problems (CGP)

- A grammar may have some bad "styles" or ambiguity.
- Some common grammar problems (CGP's) are:
- Ambiguity;
- Left factor;
- Left recursion.

Need to rewrite a grammar G_{1} into another grammar G_{2} so that G_{2} has no CGP's and the two grammars are equivalent and G_{2} contains no CGP's.

- G_{1} and G_{2} must accept the same set of strings, that is, $L\left(G_{1}\right)=L\left(G_{2}\right)$.
- The "semantic" of a given string α must stay the same using G_{2}.
\triangleright The "main structure" of the parse tree may need to stay unchanged.

CGP: ambiguity (1/2)

- Sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity.
- Example:
- G_{1}

$$
\begin{aligned}
& \triangleright S \rightarrow \text { if } E \text { then } S \\
& \triangleright S \rightarrow \text { if } E \text { then } S \text { else } S \\
& \triangleright S \rightarrow \text { Others }
\end{aligned}
$$

- Input: if E_{1} then if E_{2} then S_{1} else S_{2}
- G_{1} is ambiguous given the above input.
- Have two parse trees.
\triangleright Dangling-else ambiguity.

CGP: ambiguity (2/2)

- Rewrite G_{1} into the following:
- G_{2}

$$
\begin{aligned}
& \triangleright S \rightarrow M \mid O \\
& \triangleright M \rightarrow \text { if } E \text { then } M \text { else } M \mid \text { Others } \\
& \triangleright O \rightarrow \text { if } E \text { then } S \\
& \triangleright O \rightarrow \text { if } E \text { then } M \text { else } O
\end{aligned}
$$

- Only one parse tree for the input
if E_{1} then if E_{2} then S_{1} else S_{2} using grammar G_{2}.
- Intuition: "else" is matched with the nearest "then."

CGP: left factor

- Left factor: a grammar G has two productions whose right-hand-sides have a common prefix.
\triangleright Have left-factors.
\triangleright Potentially difficult to parse.
- Example: $S \rightarrow(S) \mid()$
- In this example, the common prefix is "(".
- This problem can be solved by using the left-factoring trick.
- $A \rightarrow \alpha \beta_{1} \mid \alpha \beta_{2}$
- Transform to:

$$
\begin{aligned}
& \triangleright A \rightarrow \alpha A^{\prime} \\
& \triangleright A^{\prime} \rightarrow \beta_{1} \mid \beta_{2}
\end{aligned}
$$

- Example:
- $S \rightarrow(S) \mid()$
- Transform to

$$
\begin{aligned}
& \triangleright S \rightarrow\left(S^{\prime}\right. \\
& \left.\left.\triangleright S^{\prime} \rightarrow S\right) \mid\right)
\end{aligned}
$$

Algorithm for left-factoring

- Input: context free grammar G
- Output: equivalent left-factored context-free grammar G^{\prime}
- for each nonterminal A do
- find the longest non- ϵ prefix α that is common to right-hand sides of two or more productions;
- replace

$$
\triangleright A \rightarrow \alpha \beta_{1}|\cdots| \alpha \beta_{n}\left|\gamma_{1}\right| \cdots \mid \gamma_{m}
$$

with

$$
\begin{aligned}
& \triangleright A \rightarrow \alpha A^{\prime}\left|\gamma_{1}\right| \cdots \mid \gamma_{m} \\
& \triangleright A^{\prime} \rightarrow \beta_{1}|\cdots| \beta_{n}
\end{aligned}
$$

- repeat the above step until the grammar has no two productions with a common prefix;
- Example:
- $S \rightarrow a a W a a|a a a a| a a T c c \mid b b$
- Transform to

$$
\begin{aligned}
& \triangleright S \rightarrow a a S^{\prime} \mid b b \\
& \triangleright S^{\prime} \rightarrow W a a|a a| T c c
\end{aligned}
$$

CGP: left recursion

- Definitions:
- recursive grammar: a grammar is recursive if this grammar contains a nonterminal X such that

$$
X \stackrel{+}{\Longrightarrow} \alpha X \beta
$$

- G is left-recursive if $X \stackrel{+}{\Longrightarrow} X \beta$.
- G is immediately left-recursive if $X \Longrightarrow X \beta$.
- Why left recursion is bad?
- Potentially difficult to parse if you read input from left to right.
- Difficult to know when recursion should be stopped.

Example of removing immediate left-recursion

- Example:
- Grammar $G: A \rightarrow A \alpha \mid \beta$, where β does not start with A
- Revised grammar G^{\prime} :

$$
\begin{aligned}
& \triangleright A \rightarrow \beta A^{\prime} \\
& \triangleright A^{\prime} \rightarrow \alpha A^{\prime} \mid \epsilon
\end{aligned}
$$

- The above two grammars are equivalent. That is $L(G) \equiv L\left(G^{\prime}\right)$.

Rule for removing immediate left-recursion

- Both grammars recognize the same string, but G^{\prime} is not left-recursive.
- However, G is clear and intuitive.
- General rule for removing immediately left-recursion:
- Replace $A \rightarrow A \alpha_{1}|\cdots| A \alpha_{m}\left|\beta_{1}\right| \cdots \mid \beta_{n}$
- with

$$
\begin{aligned}
& \triangleright A \rightarrow \beta_{1} A^{\prime}|\cdots| \beta_{n} A^{\prime} \\
& \triangleright A^{\prime} \rightarrow \alpha_{1} A^{\prime}|\cdots| \alpha_{m} A^{\prime} \mid \epsilon
\end{aligned}
$$

- This rule does not work if $\alpha_{i}=\epsilon$ for some i.
- This is called a direct cycle in a grammar.
- May need to worry about whether the semantics are equivalent between the original grammar and the transformed grammar.

Algorithm 4.19

- Algorithm 4.19 systematically eliminates left recursion and works only if the input grammar has no cycles or ϵ-productions.
\triangleright Cycle: $A \xlongequal{+} A$
$\triangleright \epsilon$-production: $A \rightarrow \epsilon$
\triangleright Can remove cycles and all but one ϵ-production using other algorithms.

Input: grammar G without cycles and ϵ-productions.
Output: An equivalent grammar without left recursion. Number the nonterminals in some order $A_{1}, A_{2}, \ldots, A_{n}$ for $i=1$ to n do

- for $j=1$ to $i-1$ do
\triangleright replace $A_{i} \rightarrow A_{j} \gamma$
with $A_{i} \rightarrow \delta_{1} \gamma|\cdots| \delta_{k} \gamma$
where $A_{j} \rightarrow \delta_{1}|\cdots| \delta_{k}$ are all the current A_{j}-productions.
- Eliminate immediate left-recursion for A_{i}
\triangleright New nonterminals generated above are numbered A_{i+n}

Algorithm 4.19 - Discussions

- Intuition:
- Consider only the productions where the leftmost item on the right hand side are nonterminals.
- If it is always the case that

$$
\triangleright A_{i} \xlongequal{+} A_{j} \alpha \text { implies } i<j, \text { then }
$$

it is not possible to have left-recursion.

- Why cycles are not allowed?
- For the procedure of removing immediate left-recursion.
- Why ϵ-productions are not allowed?
- Inside the loop, when $A_{j} \rightarrow \epsilon$, that is some $\delta_{g}=\epsilon$, and the prefix of γ is some A_{k} where $k<i$, it generates $A_{i} \rightarrow A_{k}, k<i$.
- Time and space complexities:
- The size may be blowed up exponentially.
- Works well in real cases.

Trace an instance of Algorithm 4.19

- After each i-loop, only productions of the form $A_{i} \rightarrow A_{k} \gamma, i<k$ remain.
- $i=1$
- allow $A_{1} \rightarrow A_{k} \alpha$, $\forall k$ before removing immediate left-recursion
- remove immediate left-recursion for A_{1}
- $i=2$
- $j=1$: replace $A_{2} \rightarrow A_{1} \gamma$ by

$$
\begin{aligned}
& A_{2} \rightarrow\left(A_{k_{1}} \alpha_{1}|\cdots| A_{k_{p}} \alpha_{p}\right) \gamma, \text { where } \\
& A_{1} \rightarrow\left(A_{k_{1}} \alpha_{1}|\cdots| A_{k_{p}} \alpha_{p}\right) \text { and } k_{j}>1 \forall k_{j}
\end{aligned}
$$

- remove immediate left-recursion for A_{2}
- $i=3$
- $j=1$: replace $A_{3} \rightarrow A_{1} \gamma_{1}$
- $j=2$: replace $A_{3} \rightarrow A_{2} \gamma_{2}$
- remove immediate left-recursion for A_{3}

Example

- Original Grammar:
- (1) $S \rightarrow A a \mid b$
-(2) $A \rightarrow A c|S d| e$
- Ordering of nonterminals: $S \equiv A_{1}$ and $A \equiv A_{2}$.
- $i=1$
- do nothing as there is no immediate left-recursion for S
- $i=2$
- replace $A \rightarrow S d$ by $A \rightarrow A a d \mid b d$
- hence (2) becomes $A \rightarrow A c|A a d| b d \mid e$
- after removing immediate left-recursion:

$$
\begin{aligned}
& \triangleright A \rightarrow b d A^{\prime} \mid e A^{\prime} \\
& \triangleright A^{\prime} \rightarrow c A^{\prime} \mid \text { ad } A^{\prime} \mid \epsilon
\end{aligned}
$$

- Resulting grammar:

$$
\begin{aligned}
& \triangleright S \rightarrow A a \mid b \\
& \triangleright A \rightarrow b d A^{\prime} \mid e A^{\prime} \\
& \triangleright A^{\prime} \rightarrow c A^{\prime}\left|a d A^{\prime}\right| \epsilon
\end{aligned}
$$

Left-factoring and left-recursion removal

- Original grammar:
$S \rightarrow(S)|S S|()$
- To remove immediate left-recursion, we have
- $S \rightarrow(S) S^{\prime} \mid() S^{\prime}$
- $S^{\prime} \rightarrow S S^{\prime} \mid \epsilon$
- To do left-factoring, we have
- $S \rightarrow\left(S^{\prime \prime}\right.$
- $\left.\left.S^{\prime \prime} \rightarrow S\right) S^{\prime} \mid\right) S^{\prime}$
- $S^{\prime} \rightarrow S S^{\prime} \mid \epsilon$

Top-down parsing

- There are $O\left(n^{3}\right)$-time algorithms to parse a language defined by CFG, where n is the number of input tokens.
- For practical purpose, we need faster algorithms. Here we make restrictions to CFG so that we can design $O(n)$-time algorithms.
- Recursive-descent parsing : top-down parsing that allows backtracking.
- Top-down parsing naturally corresponds to leftmost derivation.
- Attempt to find a leftmost derivation for an input string.
- Try out all possibilities, that is, do an exhaustive search to find a parse tree that parses the input.

Example for recursive-descent parsing

- Problems with the above approach:
- still too slow!
- want to select a derivation without ever causing backtracking!
\triangleright Predictive parser : a recursive-descent parser needing no backtracking.

Predictive parser - (1/2)

- Goal: Find a rich class of grammars that can be parsed using predictive parsers.
- The class of $L L(1)$ grammars [Lewis \& Stearns 1968] can be parsed by a predictive parser in $O(n)$ time.
- First " L ": scan the input from left-to-right.
- Second " L ": find a leftmost derivation.
- Last "(1)": allow one lookahead token!
- Based on the current lookahead symbol, pick a derivation when there are multiple choices.
- Using a STACK during implementation to avoid recursion.
- Build a PARSING TABLE T, using the symbol X on the top of STACK and the lookahead symbol s as indexes, to decide the production to be used.
\triangleright If X is a terminal, then $X=s$. Input s is matched.
\triangleright If X is a nonterminal, then $T(X, s)$ tells you the production to be used in the next derivation.

Predictive parser - (2/2)

- How a predictive parser works:
- start by pushing the starting nonterminal into the STACK and calling the scanner to get the first token.
LOOP: if top-of-STACK is a nonterminal, then
\triangleright use the current token and the PARSING TABLE to choose a production
\triangleright pop the nonterminal from the STACK
\triangleright push the above production's right-hand-side to the STACK from right to left
\triangleright GOTO LOOP.
- if top-of-STACK is a terminal and matches the current token, then
\triangleright pop STACK and ask scanner to provide the next token
\triangleright GOTO LOOP.
- if STACK is empty and there is no more input, then ACCEPT!
- If none of the above succeed, then FAIL!
\triangleright STACK is empty and there is input left.
\triangleright top-of-STACK is a terminal, but does not match the current token
\triangleright top-of-STACK is a nonterminal, but the corresponding PARSING TABLE entry is ERROR!

Example for parsing an $L L(1)$ grammar

" grammar: $S \rightarrow a|(S)|[S] \quad$ input: ([a])

STACK	INPUT	ACTION
S	(a)	pop, push " (S) "
) S (([a])	pop, match with input
)S	(a)	pop, push " $[S]$ "
) ${ }^{\text {S }}$	[a])	pop, match with input
S	a])	pop, push " a "
a	a])	pop, match with input
])	pop, match with input
))	pop, match with input

- Use the current input token to decide which production to derive from the top-of-STACK nonterminal.

About $L L(1)$ - (1/2)

- It is not always possible to build a predictive parser given a CFG; It works only if the CFG is $L L(1)$!
- $L L(1)$ is a proper subset of CFG.
- For example, the following grammar is not $L L(1)$, but is $L L(2)$.
- Grammar: $S \rightarrow(S)|[S]|() \mid[]$ Try to parse the input ().
STACK INPUT ACTION
S () pop, but use which production?
- In this example, we need 2-token look-ahead.
- If the next token is), push "()" from right to left.
- If the next token is (, push " (S) " from right to left.

About $L L(1)-(2 / 2)$

- A grammar is not $L L(1)$ if it
- is ambiguous,
- is left-recursive, or
- has left-factors.
- However, grammars that are not ambiguous, are not leftrecursive and have no left-factors may still not be $L L(1)$.
- Q: Any examples?
- Two questions:
- How to tell whether a grammar G is $L L(1)$?
- How to build the PARSING TABLE if it is $L L(1)$?

Definition of $L L(1)$ grammars

- To see if a grammar is $L L(1)$, we need to compute its FIRST and FOLLOW sets, which are used to build its parsing table.
- FIRST sets:
- Definition: let α be a sequence of terminals and/or nonterminals or ϵ
$\triangleright \operatorname{FIRST}(\alpha)$ is the set of terminals that begin the strings derivable from α;
$\triangleright \epsilon \in \operatorname{FIRST}(\alpha)$ if and only if α can derive ϵ.
- $\operatorname{FIRST}(\alpha)=$
$\{t \mid \mathbf{(} t$ is a terminal and $\alpha \stackrel{*}{\Longrightarrow} t \beta)$ or $(t=\epsilon$ and $\alpha \stackrel{*}{\Longrightarrow} \epsilon)\}$

How to compute $\operatorname{FIRST}(X) ?(1 / 2)$

- X is a terminal:
- $\operatorname{FIRST}(X)=\{X\}$
- X is ϵ :
- $\operatorname{FIRST}(X)=\{\epsilon\}$
- X is a nonterminal: must check all productions with X on the left-hand side.
- That is, for all $X \rightarrow Y_{1} Y_{2} \cdots Y_{k}$ perform the following steps:
- $\operatorname{FIRST}(X)=\operatorname{FIRST}\left(Y_{1}\right)-\{\epsilon\} ;$
- if $\epsilon \in \operatorname{FIRST}\left(Y_{1}\right)$, then
\triangleright put $\operatorname{FIRST}\left(Y_{2}\right)-\{\epsilon\}$ into $\operatorname{FIRST}(X)$;
- if $\epsilon \in \boldsymbol{\operatorname { F I R S T }}\left(Y_{1}\right) \cap \operatorname{FIRST}\left(Y_{2}\right)$, then
\triangleright put $\operatorname{FIRST}\left(Y_{3}\right)-\{\epsilon\}$ into $\operatorname{FIRST}(X)$;
- if $\epsilon \in \cap_{i=1}^{k-1} \operatorname{FIRST}\left(Y_{i}\right)$, then
\triangleright put $\operatorname{FIRST}\left(Y_{k}\right)-\{\epsilon\}$ into $\operatorname{FIRST}(X)$;
- if $\epsilon \in \cap_{i=1}^{k}$ FIRST $\left(Y_{i}\right)$, then
\triangleright put ϵ into $\operatorname{FIRST}(X)$.

How to compute $\operatorname{FIRST}(X)$? (2/2)

- Algorithm to compute FIRST's for all non-terminals.
- compute FIRST's for ϵ and all terminals;
- initialize FIRST's for all non-terminals to \emptyset;
- Repeat
for all nonterminals X do
\triangleright apply the steps to compute $\operatorname{FIRST}(X)$
- Until no items can be added to any FIRST set;
- What to do when recursive calls are encountered?
- Types of recursive calls: direct or indirect recursive calls.
- Actions: do not go further.
\square why?
- The time complexity of this algorithm.
- at least one item, terminal or ϵ, is added to some FIRST set in an iteration;
\triangleright maximum number of items in all FIRST sets are $(|T|+1) \cdot|N|$, where T is the set of terminals and N is the set of nonterminals.
- Each iteration takes $O(|N|+|T|)$ time.
- $O(|N| \cdot|T| \cdot(|N|+|T|))$.

Example for computing $\operatorname{FIRST}(X)$

- Start with computing FIRST for the last production and walk your way up.

$$
\begin{aligned}
& \text { Grammar } \\
& E \rightarrow E^{\prime} T \\
& E^{\prime} \rightarrow-T E^{\prime} \mid \epsilon \\
& T \rightarrow F T^{\prime} \\
& T^{\prime} \rightarrow / F T^{\prime} \mid \epsilon \\
& F \rightarrow \text { int } \mid(E)
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{\operatorname { F I R S T }}(F)=\{\text { int },(\} \\
& \boldsymbol{\operatorname { F I R S T }}\left(T^{\prime}\right)=\{/, \epsilon\} \\
& \boldsymbol{\operatorname { F I R S T } (T) = \{ \text { int } , (\} ,} \\
& \text { since } \epsilon \notin \mathbf{F I R S T}(F) \text {, that's all. } \\
& \text { FIRST }\left(E^{\prime}\right)=\{-, \epsilon\} \\
& \operatorname{FIRST}(E)=\{-, \text { int },(\}, \\
& \text { since } \epsilon \in \mathbf{F I R S T}\left(E^{\prime}\right) .
\end{aligned}
$$

How to compute FIRST (α) ?

- To build a parsing table, we need $\operatorname{FIRST}(\alpha)$ for all α such that $X \rightarrow \alpha$ is a production in the grammar.
- Need to compute $\operatorname{FIRST}(X)$ for each nonterminal X first.
- Let $\alpha=X_{1} X_{2} \cdots X_{n}$. Perform the following steps in sequence:
- $\operatorname{FIRST}(\alpha)=\boldsymbol{F I R S T}\left(X_{1}\right)-\{\epsilon\}$;
- if $\epsilon \in \operatorname{FIRST}\left(X_{1}\right)$, then
\triangleright put $\operatorname{FIRST}\left(X_{2}\right)-\{\epsilon\}$ into $\operatorname{FIRST}(\alpha)$;
- if $\epsilon \in \operatorname{FIRST}\left(X_{1}\right) \cap \operatorname{FIRST}\left(X_{2}\right)$, then
\triangleright put $\operatorname{FIRST}\left(X_{3}\right)-\{\epsilon\}$ into $\operatorname{FIRST}(\alpha)$;
- if $\epsilon \in \cap_{i=1}^{n-1} \operatorname{FIRST}\left(X_{i}\right)$, then
\triangleright put $\operatorname{FIRST}\left(X_{n}\right)-\{\epsilon\}$ into $\operatorname{FIRST}(\alpha)$;
- if $\epsilon \in \cap_{i=1}^{n} \operatorname{FIRST}\left(X_{i}\right)$, then
\triangleright put $\{\epsilon\}$ into $\operatorname{FIRST}(\alpha)$.
- What to do when recursive calls are encountered?
- What are the time and space complexities?

Example for computing FIRST (α)

$$
\begin{aligned}
& \text { Grammar } \\
& E \rightarrow E^{\prime} T \\
& E^{\prime} \rightarrow-T E^{\prime} \mid \epsilon \\
& T \rightarrow F T^{\prime} \\
& T^{\prime} \rightarrow / F T^{\prime} \mid \epsilon \\
& F \rightarrow \text { int } \mid(E)
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{\operatorname { F I R S T }}(F)=\{i n t,(\} \\
& \boldsymbol{\operatorname { F I R S T }}\left(T^{\prime}\right)=\{/, \epsilon\} \\
& \boldsymbol{\operatorname { F I R S T }}(T)=\{i n t,(\} \\
& \boldsymbol{\operatorname { F I R S }}\left(E^{\prime}\right)=\{-, \epsilon\} \\
& \boldsymbol{\operatorname { F I R S T }}(E)=\{-, i n t,(\}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{F I R S T}\left(E^{\prime} T\right)=\{-, \text { int },(\} \\
& \boldsymbol{F I R S T}\left(-T E^{\prime}\right)=\{-\} \\
& \boldsymbol{\operatorname { F I R S T }}(\epsilon)=\{\epsilon\} \\
& \boldsymbol{\operatorname { F I R S T }}\left(F T^{\prime}\right)=\{i n t,(\} \\
& \boldsymbol{\operatorname { F I R S T }}\left(/ F T^{\prime}\right)=\{/\} \\
& \boldsymbol{\operatorname { F I R S T }}(\epsilon)=\{\epsilon\} \\
& \boldsymbol{\operatorname { F I R S T }}(i n t)=\{i n t\} \\
& \boldsymbol{\operatorname { F I R S T }}((E))=\{(\}
\end{aligned}
$$

- $\operatorname{FIRST}\left(T^{\prime} E^{\prime}\right)=$

$$
\begin{array}{ll}
\triangleright & \left(\boldsymbol{\operatorname { F I R S T }}\left(T^{\prime}\right)-\{\epsilon\}\right) \cup \\
\triangleright & \left(\boldsymbol{\operatorname { F I R S T }}\left(E^{\prime}\right)-\{\epsilon\}\right) \cup \\
\triangleright & \{\epsilon\}
\end{array}
$$

Why do we need FIRST (α) ?

- During parsing, suppose top-of-STACK is a nonterminal A and there are several choices
- $A \rightarrow \alpha_{1}$
- $A \rightarrow \alpha_{2}$
- $A \rightarrow \alpha_{k}$
for derivation, and the current lookahead token is a
- If $a \in \operatorname{FIRST}\left(\alpha_{i}\right)$, then pick $A \rightarrow \alpha_{i}$ for derivation, pop, and then push α_{i}.
- If a is in several FIRST $\left(\alpha_{i}\right)$'s, then the grammar is not $L L(1)$.
- Question: if a is not in any FIRST $\left(\alpha_{i}\right)$, does this mean the input stream cannot be accepted?
- Maybe not!
- What happen if ϵ is in some FIRST $\left(\alpha_{i}\right)$?

FOLLOW sets

- Assume there is a special EOF symbol "\$" ends every input.
- Add a new terminal "\$".
- Definition: for a nonterminal $X, \operatorname{FOLLOW}(X)$ is the set of terminals that can appear immediately to the right of X in some partial derivation.
- That is, $S \xlongequal{+} \alpha_{1} X t \alpha_{2}$, where t is a terminal.
- If X can be the rightmost symbol in a derivation, then $\$$ is in FOLLOW (X).
- $\operatorname{FOLLOW}(X)=$
$\left\{t \mid \mathbf{(} t\right.$ is a terminal and $\left.S \xlongequal{+} \alpha_{1} X t \alpha_{2}\right)$ or $(t$ is $\mathbb{\$}$ and $\left.S \xlongequal{+} \alpha X)\right\}$.

How to compute FOLLOW (X) ?

- Initialization:
- If X is the starting nonterminal, initial value of $\operatorname{FOLLOW}(X)$ is $\{\$\}$.
- If X is not the starting nonterminal, initial value of $\operatorname{FOLLOW}(X)$ is \emptyset.
- Repeat
for all nonterminals X do
- Find the productions with X on the right-hand-side.
- for each production of the form $Y \rightarrow \alpha X \beta$, put $\operatorname{FIRST}(\beta)-\{\epsilon\}$ into FOLLOW (X).
- if $\epsilon \in \operatorname{FIRST}(\beta)$, then put $\operatorname{FOLLOW}(Y)$ into $\operatorname{FOLLOW}(X)$.
- for each production of the form $Y \rightarrow \alpha X$, put $\operatorname{FOLLOW}(Y)$ into FOLLOW (X).
until nothing can be added to any FOLLOW set.
- Questions:
- What to do when recursive calls are encountered?
- What are the time and space complexities?

Examples for FIRST's and FOLLOW's

- Grammar
- $S \rightarrow B c \mid D B$
- $B \rightarrow a b \mid c S$
- $D \rightarrow d \mid \epsilon$

α	FIRST (α)	FOLLOW (α)
D	$\{d, \epsilon\}$	$\{a, c\}$
B	$\{a, c\}$	$\{c, \$\}$
S	$\{a, c, d\}$	$\{c, \$\}$
$B c$	$\{a, c\}$	
$D B$	$\{d, a, c\}$	
$a b$	$\{a\}$	
$c S$	$\{c\}$	
d	$\{d\}$	
ϵ	$\{\epsilon\}$	

Why do we need FOLLOW sets?

- Note FOLLOW (S) always includes \$.
- Situation:
- During parsing, the top-of-STACK is a nonterminal X and the lookahead symbol is a.
- Assume there are several choices for the nest derivation:

```
\triangleright X }->\mp@subsup{\alpha}{1}{
\triangleright ...
\triangleright X }->\mp@subsup{\alpha}{k}{
```

- If $a \in \operatorname{FIRST}\left(\alpha_{i}\right)$ for exactly one i, then we use that derivation.
- If $a \in \operatorname{FIRST}\left(\alpha_{i}\right), a \in \operatorname{FIRST}\left(\alpha_{j}\right)$, and $i \neq j$, then this grammar is not $L L(1)$.
- If $a \notin \operatorname{FIRST}\left(\alpha_{i}\right)$ for all i, then this grammar can still be $L L(1)$!
- If there exists some i such that $\alpha_{i} \xlongequal{*} \epsilon$ and $a \in \operatorname{FOLLOW}(X)$, then we can use the derivation $X \rightarrow \alpha_{i}$.
- $\alpha_{i} \stackrel{*}{\Rightarrow} \epsilon$ if and only if $\epsilon \in \operatorname{FIRST}\left(\alpha_{i}\right)$.

Whether a grammar is $L L(1) ?(1 / 2)$

- To see whether a given grammar is $L L(1)$, or to to build its parsing table:
- Compute FIRST (α) for every α such that $X \rightarrow \alpha$ is a production;
\triangleright Need to first compute $\operatorname{FIRST}(X)$ for every nonterminal X.
- Compute FOLLOW (X) for all nonterminals X;
\triangleright Need to compute $\operatorname{FIRST}(\alpha)$ for every α such that $Y \rightarrow \beta X \alpha$ is a production.
Note that FIRST and FOLLOW sets are always sets of terminals, plus, perhaps, ϵ for some FIRST sets.
- A grammar is not $L L(1)$ if there exists productions

$$
X \rightarrow \alpha \mid \beta
$$

and any one of the followings is true:

- $\operatorname{FIRST}(\alpha) \cap \operatorname{FIRST}(\beta) \neq \emptyset$.
\triangleright It may be the case that $\epsilon \in \operatorname{FIRST}(\alpha)$ and $\epsilon \in \operatorname{FIRST}(\beta)$.
- $\epsilon \in \operatorname{FIRST}(\alpha)$, and $\operatorname{FIRST}(\beta) \cap \operatorname{FOLLOW}(X) \neq \emptyset$.

Whether a grammar is $L L(1) ?(2 / 2)$

- If a grammar is not $L L(1)$, then
- you cannot write a linear-time predictive parser as described previously.
- If a grammar is not $L L(1)$, then we do not know to use the production $X \rightarrow \alpha$ or the production $X \rightarrow \beta$ when the lookahead symbol is a in any of the following cases:
- $a \in \operatorname{FIRST}(\alpha) \cap \operatorname{FIRST}(\beta)$;
- $\epsilon \in \operatorname{FIRST}(\alpha)$ and $\epsilon \in \operatorname{FIRST}(\beta)$;
- $\epsilon \in \operatorname{FIRST}(\alpha)$, and $a \in \operatorname{FIRST}(\beta) \cap \operatorname{FOLLOW}(X)$.

A complete example (1/2)

- Grammar:
- ProgHead \rightarrow prog id Parameter semicolon
- Parameter $\rightarrow \epsilon \mid$ id | l_paren Parameter r_paren
- FIRST and FOLLOW sets:

α	$\operatorname{FIRST}(\alpha)$	$\operatorname{FOLLOW}(\alpha)$
ProgHead	$\{$ prog $\}$	$\{\$\}$
Parameter	$\{\epsilon$, id, l_paren $\}$	$\{$ semicolon, r_paren $\}$
prog id Parameter semicolon	$\{$ prog $\}$	
l_paren Parameter r _paren	\{l_paren $\}$	

A complete example (2/2)

Input: prog id semicolon

STACK	INPUT	ACTION
\$ ProgHead	prog id semicolon $\$$	pop, push
\$ semicolon Parameter id prog	prog id semicolon $\$$	match with input
$\$$ semicolon Parameter id	id semicolon $\$$	match with input
$\$$ semicolon Parameter	semicolon $\$$	WHAT TO DO?

- Last actions:
- Three choices:
\triangleright Parameter $\rightarrow \epsilon \mid$ id \mid l_paren Parameter r_paren
- semicolon \notin FIRST (ϵ) and semicolon \notin FIRST $(i d)$ and semicolon \notin FIRST (l_paren Parameter r_paren)
- Parameter $\stackrel{*}{\Longrightarrow} \epsilon$ and semicolon \in FOLLOW(Parameter)
- Hence we use the derivation

Parameter $\rightarrow \epsilon$

$L L(1)$ parsing table (1/2)

Grammar:

- $S \rightarrow X C$
- $X \rightarrow a \mid \epsilon$
- $C \rightarrow a \mid \epsilon$

α	$\operatorname{FIRST}(\alpha)$	FOLLOW (α)
S	$\{a, \epsilon\}$	$\{\$\}$
X	$\{a, \epsilon\}$	$\{a, \$\}$
C	$\{a, \epsilon\}$	$\{\$\}$
ϵ	$\{\epsilon\}$	
a	$\{a\}$	
$X C$	$\{a, \epsilon\}$	

Check for possible conflicts in $X \rightarrow a \mid \epsilon$.

- $\operatorname{FIRST}(a) \cap \operatorname{FIRST}(\epsilon)=\emptyset$
- $\epsilon \in \operatorname{FIRST}(\epsilon)$ and $\operatorname{FOLLOW}(X) \cap \operatorname{FIRST}(a)=\{a\}$ Conflict!!
- $\epsilon \notin$ FIRST (a)
- Check for possible conflicts in $C \rightarrow a \mid \epsilon$.
- $\operatorname{FIRST}(a) \cap \operatorname{FIRST}(\epsilon)=\emptyset$
- $\epsilon \in \operatorname{FIRST}(\epsilon)$ and $\operatorname{FOLLOW}(C) \cap \operatorname{FIRST}(a)=\emptyset$
- $\epsilon \notin$ FIRST (a)

$L L(1)$ parsing table (2/2)

- Parsing table: $\begin{array}{l|l|l} & a & \$ \\$\cline { 2 - 2 } \& $\left.S \rightarrow X C & S \rightarrow X C \\ X & \text { conflict } & X \rightarrow \epsilon \\ & C & C \rightarrow a\end{array}\right) C \rightarrow \epsilon$

Bottom-up parsing (Shift-reduce parsers)

- Intuition: construct the parse tree from the leaves to the root.

Grammar: $S \rightarrow A B$
$A \rightarrow x \mid Y$

- Example:

$$
B \rightarrow w \mid Z
$$

$Y \rightarrow x b$
$Z \rightarrow w p$

- Input $x w$.
- This grammar is not $L L(1)$.
- Why?
- It can be written into an $L L(1)$ grammar.

Definitions (1/2)

Rightmost derivation:

- $S \underset{r m}{\Longrightarrow} \alpha$: the rightmost nonterminal is replaced.
- $S \underset{r m}{+} \alpha: \alpha$ is derived from S using one or more rightmost derivations.
$\triangleright \alpha$ is called a right-sentential form
- In the previous example:

$$
S \underset{r m}{\Longrightarrow} A B \underset{r m}{\Longrightarrow} A w \underset{r m}{\Longrightarrow} x w
$$

- Define similarly for leftmost derivation and left-sentential form.

Handle : a handle for a right-sentential form γ

- is the combining of the following two information:
\triangleright a production rule $A \rightarrow \beta$ and
\triangleright a position w in γ where β can be found.
- Let γ^{\prime} be obtained by replacing β at the position w with A in γ.
$\triangleright \gamma=\alpha \beta \eta$ and is a right-sentential form.
$\triangleright \gamma^{\prime}=\alpha A \eta$ and is also a right-sentential form.
$\triangleright \gamma^{\prime} \underset{r m}{\Longrightarrow} \gamma$ and thus η contains no nonterminals.

Definitions (2/2)

$$
S \rightarrow a A B e
$$

Example: $\quad A \rightarrow A b c \mid b$
$B \rightarrow d$

Reduce : replace a handle in a right-sentential form with its left-hand-side. In the above example, replace $A b c$ starting at position 2 in γ with A.

- A right-most derivation in reverse can be obtained by handle reducing.
- Problems:
- How to find handles?
- What to do when there are two possible handles?
\triangleright Have a common prefix or suffix.
- Have overlaps.

STACK implementation

- Four possible actions:
- shift: shift the input to STACK.
- reduce: perform a reversed rightmost derivation.
\triangleright The first item popped is the rightmost item in the right hand side of the reduced production.
- accept
- error
- Make sure handles are always on the top of STACK.

Viable prefix (1/2)

- Definition: the set of prefixes of right-sentential forms that can appear on the top of the stack.
- Some suffix of a viable prefix is a prefix of a handle.
- Some suffix of a viable prefix may be a handle.
- Some prefix of a right-sentential form cannot appear on the top of the stack during parsing.
- Grammar:

$$
\begin{aligned}
& \triangleright S \rightarrow A B \\
& \triangleright A \rightarrow x \mid Y \\
& \triangleright B \rightarrow w \mid Z \\
& \triangleright Y \rightarrow x b \\
& \triangleright Z \rightarrow w p
\end{aligned}
$$

- Input: $x w$
$\triangleright x w$ is a right-sentential form.
\triangleright The prefix $x w$ is not a viable prefix.
\triangleright You cannot have the situation that some suffix of $x w$ is a handle.

Viable prefix (2/2)

- Note: when doing bottom-up parsing, that is reversed rightmost derivation,
- it cannot be the case a handle on the right is reduced before a handle on the left in a right-sentential form;
- the handle of the first reduction consists of all terminals and can be found on the top of the stack;
\triangleright That is, some substring of the input is the first handle.
- Strategy:
- Try to recognize all possible viable prefixes.
\triangleright Can recognize them incrementally.
- Shift is allowed if after shifting, the top of STACK is still a viable prefix.
- Reduce is allowed if after a handle is found on the top of STACK and after reducing, the top of STACK is still a viable prefix.
- Questions:
\triangleright How to recognize a viable prefix efficiently?
\triangleright What to do when multiple actions are allowed?

Model of a shift-reduce parser

- Push-down automata!

- Current state S_{m} encodes the symbols that has been shifted and the handles that are currently being matched.
- $\$ S_{0} S_{1} \cdots S_{m} a_{i} a_{i+1} \cdots a_{n} \$$ represents a right-sentential form.
- GOTO table:
\triangleright when a "reduce" action is taken, which handle to replace;
- Action table:
\triangleright when a "shift" action is taken, which state currently in, that is, how to group symbols into handles.
- The power of context free grammars is equivalent to nondeterministic push down automata.
\triangleright Not equal to deterministic push down automata.

$L R$ parsers

- By Don Knuth at 1965.
- $L R(k)$: see all of what can be derived from the right side with k input tokens lookahead.
- First L : scan the input from left to right.
- Second R : reverse rightmost derivation.
- Last (k) : with k lookahead tokens.
- Be able to decide the whereabout of a handle after seeing all of what have been derived so far plus k input tokens lookahead.

$$
X_{1}, X_{2}, \ldots, \frac{X_{i}, X_{i+1}, \ldots, X_{i+j},}{\text { a handle }} \frac{X_{i+j+1}, \ldots, X_{i+j+k},}{\frac{X^{2}}{\text { lookahead tokens }}} \cdots
$$

- Top-down parsing for $L L(k)$ grammars: be able to choose a production by seeing only the first k symbols that will be derived from that production.

Recognizing viable prefixes

- Use an $L R(0)$ item (item for short) to record all possible extensions of the current viable prefix.
- It is a production, with a dot at some position in the RHS (right-hand side).
\triangleright The production is the handle.
\triangleright The dot indicates the prefix of the handle that has seen so far.
- Example:
- $A \rightarrow X Y$

$$
\begin{aligned}
& \triangleright A \rightarrow \cdot X Y \\
& \triangleright A \rightarrow X \cdot Y \\
& \triangleright A \rightarrow X Y .
\end{aligned}
$$

- $A \rightarrow \epsilon$

$$
\triangleright A \rightarrow .
$$

- Augmented grammar G^{\prime} is to add a new starting symbol S^{\prime} and a new production $S^{\prime} \rightarrow S$ to a grammar G with the original starting symbol S.
\triangleright We assume working on the augmented grammar from now on.

High-level ideas for $L R(0)$ parsing

Grammar:

- $S^{\prime} \rightarrow S$
- $S \rightarrow A B \mid C D$
- $A \rightarrow a$
- $B \rightarrow b$
- $C \rightarrow c$
- $D \rightarrow d$
- Approach:
\triangleright Use a STACK to record the current viable prefix.
\triangleright Use NFA to record information about the next possible handle.
\triangleright push down automata $=F A+$ stack.
\triangleright Need to use DFA for simplicity.

Closure

- The closure operation closure (I), where I is a set of items, is defined by the following algorithm:
- If $A \rightarrow \alpha \cdot B \beta$ is in $\operatorname{closure}(I)$, then
\triangleright at some point in parsing, we might see a substring derivable from $B \beta$ as input;
\triangleright if $B \rightarrow \gamma$ is a production, we also see a substring derivable from γ at this point.
\triangleright Thus $B \rightarrow \gamma$ should also be in closure (I).
- What does closure (I) mean informally?
- When $A \rightarrow \alpha \cdot B \beta$ is encountered during parsing, then this means we have seen α so far, and expect to see $B \beta$ later before reducing to A.
- At this point if $B \rightarrow \gamma$ is a production, then we may also want to see $B \rightarrow \gamma$ in order to reduce to B, and then advance to $A \rightarrow \alpha B \cdot \beta$.
- Using closure (I) to record all possible things about the next handle that we have seen in the past and expect to see in the future.

Example for the closure function

- Example: E^{\prime} is the new starting symbol, and E is the original starting symbol.
- $E^{\prime} \rightarrow E$
- $E \rightarrow E+T \mid T$
- $T \rightarrow T * F \mid F$
- $F \rightarrow(E) \mid i d$
- closure $\left(\left\{E^{\prime} \rightarrow \cdot E\right\}\right)=$
- $\left\{E^{\prime} \rightarrow \cdot E\right.$,
- $E \rightarrow \cdot E+T$,
- $E \rightarrow \cdot T$,
- $T \rightarrow \cdot T * F$,
- $T \rightarrow \cdot F$,
- $F \rightarrow \cdot(E)$,
- $F \rightarrow \cdot i d\}$

GOTO table

- $G O T O(I, X)$, where I is a set of items and X is a legal symbol, means
- If $A \rightarrow \alpha \cdot X \beta$ is in I, then
- closure $(\{A \rightarrow \alpha X \cdot \beta\}) \subseteq G O T O(I, X)$
- Informal meanings:
- currently we have seen $A \rightarrow \alpha \cdot X \beta$
- expect to see X
- if we see X,
- then we should be in the state $\operatorname{closure}(\{A \rightarrow \alpha X \cdot \beta\})$.
- Use the GOTO table to denote the state to go to once we are in I and have seen X.

Sets-of-items construction

- Canonical $L R(0)$ items : the set of all possible DFA states, where each state is a set of $L R(0)$ items.
- Algorithm for constructing $L R(0)$ parsing table.
- $C \leftarrow\left\{\operatorname{closure}\left(\left\{S^{\prime} \rightarrow \cdot S\right\}\right)\right\}$
- Repeat

```
\triangleright ~ f o r ~ e a c h ~ s e t ~ o f ~ i t e m s ~ I ~ i n ~ C ~ a n d ~ e a c h ~ g r a m m a r ~ s y m b o l ~ X ~ s u c h ~ t h a t \(\operatorname{GOTO}(I, X) \neq \emptyset\) and not in \(C\) do
\(\triangleright \quad\) add \(\operatorname{GOTO}(I, X)\) to \(C\)
```

- Until no more sets can be added to C
- Kernel of a state:
- Definitions: items

```
not of the form X 
\triangleright ~ o f ~ t h e ~ f o r m ~ S ' ~ \rightarrow ~ \cdot S
```

- Given the kernel of a state, all items in this state can be derived.

Example of sets of $L R(0)$ items

$$
\begin{aligned}
& E^{\prime} \rightarrow E \\
& E \rightarrow E+T \mid T
\end{aligned}
$$

Grammar:

$$
\begin{aligned}
& T \rightarrow T * F \mid F \\
& F \rightarrow(E) \mid i d
\end{aligned}
$$

$$
\begin{aligned}
& I_{0}=\operatorname{closure}\left(\left\{E^{\prime} \rightarrow \cdot E\right\}\right)= \\
& \left\{E^{\prime} \rightarrow \cdot E\right. \\
& E \rightarrow \cdot E+T, \\
& E \rightarrow \cdot T,
\end{aligned}
$$

$$
T \rightarrow \cdot T * F
$$

$$
T \rightarrow \cdot F
$$

$$
F \rightarrow \cdot(E)
$$

$$
F \rightarrow \cdot i d\}
$$

Canonical $L R(0)$ items:

- $I_{1}=\operatorname{GOTO}\left(I_{0}, E\right)=$

$$
\begin{aligned}
& \triangleright\left\{E^{\prime} \rightarrow E .\right. \\
& \triangleright E \rightarrow E \cdot+T\}
\end{aligned}
$$

- $I_{2}=\operatorname{GOTO}\left(I_{0}, T\right)=$
$\triangleright\{E \rightarrow T$,
$\triangleright T \rightarrow T \cdot * F\}$

Transition diagram (1/2)

Transition diagram (2/2)

Meaning of $L R(0)$ transition diagram

- $E+T *$ is a viable prefix that can happen on the top of the stack while doing parsing.

$$
\begin{aligned}
& \text { - }\{T \rightarrow T * \cdot F, \\
& \text { - } F \rightarrow \cdot(E), \\
& \text { - } F \rightarrow \cdot i d\}
\end{aligned}
$$

- After seeing $E+T *$, we are in state $I_{7} . I_{7}=$
- We expect to follow one of the following three possible derivations:

$$
\begin{array}{lll}
E^{\prime} \underset{r m}{\Longrightarrow} E & E^{\prime} \underset{r m}{\Longrightarrow} E & E^{\prime} \underset{r m}{\Longrightarrow} E \\
\underset{r m}{\Longrightarrow} E+T & \underset{r m}{\Longrightarrow} E+T & \underset{r m}{\Longrightarrow} E+T \\
\underset{r m}{\Longrightarrow} E+T * F & \underset{r m}{\Longrightarrow} E+T * F & \underset{r m}{\Longrightarrow} E+T * F \\
\underset{r m}{\Longrightarrow} E+T * i d & \underset{r m}{\Longrightarrow} \underline{E+T *(E)} & \underset{r m}{\Longrightarrow} \underline{E+T * i d} \\
\underset{r m}{\Longrightarrow} \underline{\Longrightarrow}+T * F * i d & \cdots & \cdots
\end{array}
$$

Meanings of closure (I) and $G O T O(I, X)$

- closure (I) : a state/configuration during parsing recording all possible information about the next handle.
- If $A \rightarrow \alpha \cdot B \beta \in I$, then it means
\triangleright in the middle of parsing, α is on the top of the stack;
\triangleright at this point, we are expecting to see $B \beta$;
\triangleright after we saw $B \beta$, we will reduce $\alpha B \beta$ to A and make A top of stack.
- To achieve the goal of seeing $B \beta$, we expect to perform some operations below:
\triangleright We expect to see B on the top of the stack first.
\triangleright If $B \rightarrow \gamma$ is a production, then it might be the case that we shall see γ on the top of the stack.
\triangleright If it does, we reduce γ to B.
\triangleright Hence we need to include $B \rightarrow \cdot \gamma$ into closure (I).
- $G O T O(I, X)$: when we are in the state described by I, and then a new symbol X is pushed into the stack,
- If $A \rightarrow \alpha \cdot X \beta$ is in I, then $\operatorname{closure}(\{A \rightarrow \alpha X \cdot \beta\}) \subseteq \operatorname{GOTO}(I, X)$.

$L R(0)$ parsing

- $L R$ parsing without lookahead symbols.
- Initially,
- Push I_{0} into the stack.
- Begin to scan the input from left to right.
- In state I_{i}
- if $\{A \rightarrow \alpha \cdot a \beta\} \subseteq I_{i}$ then perform "shift i " while seeing the terminal a in the input, and then go to the state $I_{j}=\operatorname{closure}(\{A \rightarrow \alpha a \cdot \beta\})$.
\triangleright Push a into the STACK first.
\triangleright Then push I_{j} into the STACK.
- if $\{A \rightarrow \beta$ • $\} \subseteq I_{i}$, then perform "reduce by $A \rightarrow \beta$ " and then go to the state $I_{j}=\operatorname{GOTO}(I, A)$ where I is the state on the top of the stack after removing β

```
\triangleright P \mp@code { P o p ~ \beta ~ a n d ~ a l l ~ i n t e r m e d i a t e ~ s t a t e s ~ f r o m ~ t h e ~ S T A C K . }
\triangleright Push A into the STACK.
\triangleright ~ T h e n ~ p u s h ~ I ~ I ~ i n t o ~ t h e ~ S T A C K .
```

- Reject if none of the above can be done.
- Report "conflicts" if more than one can be done.
- Accept an input if EOF is seen at I_{0}.

Parsing example

STACK	input	action
\$ I_{0}	id*id+id\$	shift 5
\$ I_{0} id I_{5}	* id + id \$	reduce by $F \rightarrow i d$
$\$ I_{0} \mathrm{~F}$	* id + id \$	in I_{0}, saw F , goto I_{3}
$\$ I_{0} \mathrm{~F} I_{3}$	* id + id \$	reduce by $T \rightarrow F$
$\$ I_{0} \mathrm{~T}$	* id + id \$	in I_{0}, saw T , goto I_{2}
\$ $I_{0} \mathrm{~T} I_{2}$	* id + id \$	shift 7
\$ $I_{0} \mathrm{~T} I_{2}{ }^{*} I_{7}$	$\mathrm{id}+\mathrm{id} \$$	shift 5
$\$ I_{0} \mathrm{~T} I_{2} * I_{7} \mathrm{id} I_{5}$	$+\mathrm{id} \$$	reduce by $F \rightarrow i d$
\$ $I_{0} \mathrm{~T} I_{2} * I_{7} \mathrm{~F}$	$+\mathrm{id} \$$	in I_{7}, saw F , goto I_{10}
$\$ I_{0} \mathrm{~T} I_{2} * I_{7} \mathrm{~F} I_{10}$	$+\mathrm{id} \$$	reduce by $T \rightarrow T * F$
$\$ I_{0} \mathrm{~T}$	+ id \$	in I_{0}, saw T , goto I_{2}
\$ $I_{0} \mathrm{~T} I_{2}$	+ id\$	reduce by $E \rightarrow T$
\$ $I_{0} \mathrm{E}$	+ id \$	in I_{0}, saw E, goto I_{1}
\$ $I_{0} \mathrm{E} I_{1}$	$+\mathrm{id} \$$	shift 6
$\$ I_{0} \mathrm{E} I_{1}+I_{6}$	id\$	shift 5
\$ $I_{0} \mathrm{E} I_{1}+I_{6} \mathrm{~F}$	\$	reduce by $F \rightarrow i d$

Problems of $L R(0)$ parsing

- Conflicts: handles have overlaps, thus multiple actions are allowed at the same time.
- shift/reduce conflict
- reduce/reduce conflict
- Very few grammars are $L R(0)$. For example:
- In I_{2} of our example, you can either perform a reduce or a shift when seeing " $*$ " in the input.
- However, it is not possible to have E followed by "*". Thus we should not perform "reduce."
- Idea: use FOLLOW (E) as look ahead information to resolve some conflicts.

$S L R(1)$ parsing algorithm

- Using FOLLOW sets to resolve conflicts in constructing $S L R(1)$ [DeRemer 1971] parsing table, where the first " S " stands for "Simple".
- Input: an augmented grammar G^{\prime}
- Output: the $S L R(1)$ parsing table
- Construct $C=\left\{I_{0}, I_{1}, \ldots, I_{n}\right\}$ the collection of sets of $L R(0)$ items for G^{\prime}.
- The parsing table for state I_{i} is determined as follows:
- If $A \rightarrow \alpha \cdot a \beta$ is in I_{i} and $\operatorname{GOTO}\left(I_{i}, a\right)=I_{j}$, then $\operatorname{action}\left(I_{i}, a\right)$ is "shift j " for a being a terminal.
- If $A \rightarrow \alpha$. is in I_{i}, then $\operatorname{action}\left(I_{i}, a\right)$ is "reduce by $A \rightarrow \alpha$ " for all terminal $a \in \operatorname{FOLLOW}(A)$; here $A \neq S^{\prime}$
- If $S^{\prime} \rightarrow S$ is in I_{i}, then $\operatorname{action}\left(I_{i}, \$\right)$ is "accept".
- If any conflicts are generated by the above algorithm, we say the grammar is not $S L R(1)$.

$S L R(1)$ parsing table

- $\mathbf{r} i$ means reduce by the i th production.
- si means shift and then go to state I_{i}.
- Use FOLLOW sets to resolve some conflicts.

Discussion (1/3)

- Every $S L R(1)$ grammar is unambiguous, but there are many unambiguous grammars that are not $S L R(1)$.

Grammar:

- $S \rightarrow L=R \mid R$
- $L \rightarrow * R \mid i d$
- $R \rightarrow L$
- States:

$$
\begin{aligned}
& I_{0} \text { : } \\
& \triangleright S^{\prime} \rightarrow \cdot S \\
& \triangleright S \rightarrow \cdot L=R \\
& \triangleright S \rightarrow \cdot R \\
& \triangleright L \rightarrow \cdot * R \\
& \triangleright L \rightarrow \cdot i d \\
& \triangleright R \rightarrow \cdot L \\
& I_{1}: S^{\prime} \rightarrow S . \\
& I_{2} \text { : } \\
& \triangleright S \rightarrow L \cdot=R \\
& \triangleright R \rightarrow L . \\
& I_{3}: S \rightarrow R . \\
& I_{4} \text { : } \\
& \triangleright L \rightarrow * \cdot R \\
& \triangleright R \rightarrow \cdot L \\
& \triangleright L \rightarrow \cdot * R \\
& \triangleright L \rightarrow \cdot i d \\
& I_{5}: L \rightarrow i d . \\
& I_{6} \text { : } \\
& \triangleright S \rightarrow L=\cdot R \\
& \triangleright R \rightarrow \cdot L \\
& \triangleright L \rightarrow \cdot * R \\
& \triangleright L \rightarrow \cdot i d \\
& I_{7}: L \rightarrow * R . \\
& I_{8}: R \rightarrow L . \\
& I_{9}: S \rightarrow L=R \text {. }
\end{aligned}
$$

Discussion (2/3)

Discussion (3/3)

- Suppose the STACK has " $\$ I_{0} L I_{2}$ " and the input is " $=$ ". We can either
- shift 6, or
- reduce by $R \rightarrow L$, since $=\in \operatorname{FOLLOW}(R)$.
- This grammar is ambiguous for $S L R(1)$ parsing.
- However, we should not perform a $R \rightarrow L$ reduction.
- After performing the reduction, the viable prefix is $\$ R$;
- = \neq FOLLOW $(\$ R)$;
- = $\in \operatorname{FOLLOW}(* R)$;
- That is to say, we cannot find a right-sentential form with the prefix $R=\cdots$.
- We can find a right-sentential form with $\cdots * R=\cdots$

Canonical $L R-L R(1)$

- In $S L R(1)$ parsing, if $A \rightarrow \alpha \cdot$ is in state I_{i}, and $a \in \operatorname{FOLLOW}(A)$, then we perform the reduction $A \rightarrow \alpha$.
- However, it is possible that when state I_{i} is on the top of the stack, we have the viable prefix $\beta \alpha$ on the top of the stack, and βA cannot be followed by a.
- In this case, we cannot perform the reduction $A \rightarrow \alpha$.
- It looks difficult to find the FOLLOW sets for every viable prefix.
- We can solve the problem by knowing more left context using the technique of lookahead propagation .
- Construct FOLLOW (ω) on the fly.
- Assume $\omega=\omega^{\prime} X$ and $\operatorname{FOLLOW}\left(\omega^{\prime}\right)$ is known.
- Can FOLLOW $\left(\omega^{\prime} X\right)$ be computed efficiently?

$L R(1)$ items

- An $L R(1)$ item is in the form of $[A \rightarrow \alpha \cdot \beta, a]$, where the first field is an $L R(0)$ item and the second field a is a terminal belonging to a subset of FOLLOW (A).
- Intuition: perform a reduction based on an $L R(1)$ item [$A \rightarrow \alpha \cdot, a]$ only when the next symbol is a.
- Instead of maintaining FOLLOW sets of viable prefixes, we maintain FIRST sets of possible future extensions of the current viable prefix.
- Formally: $[A \rightarrow \alpha \cdot \beta, a]$ is valid (or reachable) for a viable prefix γ if there exists a derivation

$$
S \underset{r m}{*} \delta A \omega \underset{r m}{\Longrightarrow} \underbrace{\delta \alpha^{\prime}}_{\gamma} \beta \omega,
$$

where

- either $a \in \operatorname{FIRST}(\omega)$ or
- $\omega=\epsilon$ and $a=\$$.

Examples of $L R(1)$ items

- Grammar:
- $S \rightarrow B B$
- $B \rightarrow a B \mid b$

$$
S \underset{r m}{*} a a B a b \underset{r m}{\Longrightarrow} a a a B a b
$$

viable prefix $a a a$ can reach $[B \rightarrow a \cdot B, a]$

$$
S \underset{r m}{*} B a B \underset{r m}{\Longrightarrow} B a a B
$$

viable prefix $B a a$ can reach $[B \rightarrow a \cdot B, \$]$

Finding all $L R(1)$ items

- Ideas: redefine the closure function.
- Suppose $[A \rightarrow \alpha \cdot B \beta, a]$ is valid for a viable prefix $\gamma \equiv \delta \alpha$.
- In other words,

$$
S \underset{r m}{*} \delta \xrightarrow[A]{ } a \omega \underset{r m}{\Longrightarrow} \delta \alpha^{\alpha B \beta} a \omega .
$$

$\triangleright \omega$ is ϵ or a sequence of terminals.

- Then for each production $B \rightarrow \eta$, assume $\beta a \omega$ derives the sequence of terminals beaw.

$$
S \underset{r m}{*} \delta \alpha \underline{B} \beta a \omega \underset{r m}{*} \delta \alpha \underline{B} \text { bea } \underset{r m}{\stackrel{*}{*}} \delta \alpha \eta \text { bea }
$$

Thus $[B \rightarrow \eta, b]$ is also valid for γ for each $b \in \operatorname{FIRST}(\beta a)$. Note a is a terminal. So $\operatorname{FIRST}(\beta a)=\operatorname{FIRST}(\beta a \omega)$.

- Lookahead propagation.

Algorithm for $L R(1)$ parsers

- closure $_{1}(I)$
- Repeat
\triangleright for each item $[A \rightarrow \alpha \cdot B \beta, a]$ in I do
$\triangleright \quad$ if $B \rightarrow \cdot \eta$ is in G^{\prime}
$\triangleright \quad$ then add $[B \rightarrow \cdot \eta, b]$ to I for each $b \in \operatorname{FIRST}(\beta a)$
- Until no more items can be added to I
- return I
- $\operatorname{GOTO}_{1}(I, X)$
- let $J=\{[A \rightarrow \alpha X \cdot \beta, a] \mid[A \rightarrow \alpha \cdot X \beta, a] \in I\}$;
- return closure $_{1}(J)$
- items $\left(G^{\prime}\right)$
- $C \leftarrow\left\{\operatorname{closure}_{1}\left(\left\{\left[S^{\prime} \rightarrow \cdot S, \$\right]\right\}\right)\right\}$
- Repeat
\triangleright for each set of items $I \in C$ and each grammar symbol X such that $\operatorname{GOTO}_{1}(I, X) \neq \emptyset$ and $\operatorname{GOTO}_{1}(I, X) \notin C$ do
$\triangleright \quad$ add $\operatorname{GOTO}_{1}(I, X)$ to C
- Until no more sets of items can be added to C

Example for constructing $L R(1)$ closures

- Grammar:
- $S^{\prime} \rightarrow S$
- $S \rightarrow C C$
- $C \rightarrow c C \mid d$
- $\operatorname{closure}_{1}\left(\left\{\left[S^{\prime} \rightarrow \cdot S, \$\right]\right\}\right)=$
- $\left\{\left[S^{\prime} \rightarrow \cdot S, \$\right]\right.$,
- $[S \rightarrow C C, \$]$,
- $[C \rightarrow \cdot c C, c / d]$,
- $[C \rightarrow \cdot d, c / d]\}$
- Note:
- $\boldsymbol{\operatorname { F I R S T }}(\epsilon \$)=\{\$\}$
- $\boldsymbol{\operatorname { F I R S T }}(C \$)=\{c, d\}$
- $[C \rightarrow \cdot c C, c / d]$ means

$$
\begin{aligned}
& \triangleright[C \rightarrow c C, c] \text { and } \\
& \triangleright[C \rightarrow c C, d] .
\end{aligned}
$$

$L R(1)$ transition diagram

$L R(1)$ parsing example

- Input $c d c c d$

STACK	INPUT	ACTION
\$ I_{0}	cdccd\$	
$\$ I_{0} \mathrm{c} I_{3}$	dccd $\$$	shift 3
$\$ I_{0} \mathrm{c} I_{3} \mathrm{~d} I_{4}$	$\operatorname{ccd} \$$	shift 4
$\$ I_{0}$ с $I_{3} \mathrm{C} I_{8}$	$\operatorname{ccd} \$$	reduce by $C \rightarrow d$
\$ $I_{0} \mathrm{C} I_{2}$	$\operatorname{ccd} \$$	reduce by $C \rightarrow c C$
$\$ I_{0} \mathrm{C} I_{2}$ c I_{6}	cd\$	shift 6
\$ $I_{0} \mathrm{C} I_{2}$ с I_{6} с I_{6}	d\$	shift 6
\$ I_{0} C I_{2} c I_{6} c I_{6}	d\$	shift 6
$\$ I_{0} \mathrm{C} I_{2}$ c I_{6} c $I_{6} \mathrm{~d} I_{7}$	\$	shift 7
$\$ I_{0} \mathrm{C} I_{2}$ с I_{6} с $I_{6} \mathrm{C} I_{9}$	\$	reduce by $C \rightarrow c C$
$\$ I_{0} \mathrm{C} I_{2}$ с $I_{6} \mathrm{C} I_{9}$	\$	reduce by $C \rightarrow c C$
$\$ I_{0} \mathrm{C} I_{2} \mathrm{C} I_{5}$	\$	reduce by $S \rightarrow C C$
$\$ I_{0} \mathrm{~S} I_{1}$	\$	reduce by $S^{\prime} \rightarrow S$
\$ $I_{0} S^{\prime}$	\$	accept

Generating $L R(1)$ parsing table

Construction of canonical $L R(1)$ parsing tables.

- Input: an augmented grammar G^{\prime}
- Output: the canonical $L R(1)$ parsing table, i.e., the $A C T I O N_{1}$ table
- Construct $C=\left\{I_{0}, I_{1}, \ldots, I_{n}\right\}$ the collection of sets of $L R(1)$ items form G^{\prime}.
- Action table is constructed as follows:
- if $[A \rightarrow \alpha \cdot a \beta, b] \in I_{i}$ and $G O T O_{1}\left(I_{i}, a\right)=I_{j}$, then action $_{1}\left[I_{i}, a\right]=$ "shift j " for a is a terminal.
- if $[A \rightarrow \alpha \cdot a] \in I_{i}$ and $A \neq S^{\prime}$, then
action $_{1}\left[I_{i}, a\right]=$ "reduce by $A \rightarrow \alpha$ "
- if $\left[S^{\prime} \rightarrow S^{\cdot}, \$\right] \in I_{i}$, then
action $_{1}\left[I_{i}, \$\right]=$ "accept."
- If conflicts result from the above rules, then the grammar is not $L R(1)$.
- The initial state of the parser is the one constructed from the set containing the item $\left[S^{\prime} \rightarrow \cdot S, \$\right]$.

Example of an $L R(1)$ parsing table

state	action $_{1}$		GOTO_{1}		
	c	d	$\$$	S	C
0	s 3	s 4		1	2
1			accept		
2	s 6	s 7			5
3	s 3	s 4			8
4	r 3	r 3			
5			r1		
6	s 6	s 7			9
7			r3		
8	r 2	r 2			
9			r 2		

- Canonical $L R(1)$ parser:
- Most powerful!
- Has too many states and thus occupies too much space.

$L A L R(1)$ parser - Lookahead $L R$

- The method that is often used in practice.
- Most common syntactic constructs of programming languages can be expressed conveniently by an $L A L R(1)$ grammar [DeRemer 1969].
- $S L R(1)$ and $L A L R(1)$ always have the same number of states.
- Number of states is about $\mathbf{1 / 1 0}$ of that of $L R(1)$.
- Simple observation:
- an $L R(1)$ item is of the form $[A \rightarrow \alpha \cdot \beta, c]$
- We call $A \rightarrow \alpha \cdot \beta$ the first component .
- Definition: in an $L R(1)$ state, set of first components is called its core.

Intuition for $L A L R(1)$ grammars

- In an $L R(1)$ parser, it is a common thing that several states only differ in lookahead symbols, but have the same core.
- To reduce the number of states, we might want to merge states with the same core.
- If I_{4} and I_{7} are merged, then the new state is called $I_{4,7}$.
- After merging the states, revise the $G O T O_{1}$ table accordingly.
- Merging of states can never produce a shift-reduce conflict that was not present in one of the original states.
- $I_{1}=\{[A \rightarrow \alpha \cdot, a], \ldots\}$
\triangleright For I_{1}, one of the actions is to perform a reduce when the lookahead symbol is "a".
- $I_{2}=\{[B \rightarrow \beta \cdot a \gamma, b], \ldots\}$
\triangleright For I_{2}, one of the actions is to perform a shift on input "a".
- Merging I_{1} and I_{2}, the new state $I_{1,2}$ has shift-reduce conflicts.
- However, we merge I_{1} and I_{2} because they have the same core.

```
\triangleright ~ T h a t ~ i s , ~ [ A \rightarrow \alpha \cdot , c ] \in I 2 ~ a n d ~ [ B \rightarrow \beta \cdot a \gamma , d ] \in I ~ I . ~
    \triangleright ~ T h e ~ s h i f t - r e d u c e ~ c o n f l i c t ~ a l r e a d y ~ o c c u r s ~ i n ~ I ~ I ~ a n d ~ I ~ I ~ . ~
```

- Merging of states can produce a new reduce-reduce conflict.

$L A L R(1)$ transition diagram

Possible new conflicts from $L A L R(1)$

- May produce a new reduce-reduce conflict.
- For example (textbook page 267, Example 4.58), grammar:
- $S^{\prime} \rightarrow S$
- $S \rightarrow a A d|b B f| a B e \mid b A e$
- $A \rightarrow c$
- $B \rightarrow c$
- The language recognized by this grammar is $\{a c d, a c e, b c d, b c e\}$.
- You may check that this grammar is $L R(1)$ by constructing the sets of items.
- You will find the set of items $\{[A \rightarrow c \cdot, d],[B \rightarrow c \cdot, e]\}$ is valid for the viable prefix $a c$, and $\{[A \rightarrow c \cdot, e],[B \rightarrow c \cdot, d]\}$ is valid for the viable prefix $b c$.
- Neither of these sets generates a conflict, and their cores are the same. However, their union, which is
- $\{[A \rightarrow c \cdot, d / e]$,
\cdot
- $[B \rightarrow c \cdot, d / e]\}$,
generates a reduce-reduce conflict, since reductions by both $A \rightarrow c$ and $B \rightarrow c$ are called for on inputs d and e.

How to construct $L A L R(1)$ parsing table

Naive approach:

- Construct $L R(1)$ parsing table, which takes lots of intermediate spaces.
- Merging states.
- Space and/or time efficient methods to construct an $L A L R(1)$ parsing table are known.
- Constructing and merging on the fly.

Summary

- $L R(1)$ and $L A L R(1)$ can almost express all important programming languages issues, but $L A L R(1)$ is easier to write and uses much less space.
- $L L(1)$ is easier to understand and uses much less space, but cannot express some important common-language features.
- May try to use it first for your own applications.
- If it does not succeed, then use more powerful ones.

